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[1] Observed correlations between atmospheric concentrations of CO2 and CO represent
potentially powerful information for improving CO2 surface flux estimates through
coupled CO2-CO inverse analyses. We explore the value of these correlations in
improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of
CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our
inverse model uses regional CO2 and CO surface fluxes as the state vector, separating
biospheric and combustion contributions to CO2. CO2-CO error correlation coefficients
are included in the inversion as off-diagonal entries in the a priori and observation error
covariance matrices. We derive error correlations in a priori combustion source estimates
of CO2 and CO by propagating error estimates of fuel consumption rates and emission
factors. However, we find that these correlations are weak because CO source
uncertainties are mostly determined by emission factors. Observed correlations between
atmospheric CO2 and CO concentrations imply corresponding error correlations in the
chemical transport model used as the forward model for the inversion. These error
correlations in excess of 0.7, as derived from the TRACE-P data, enable a coupled CO2-
CO inversion to achieve significant improvement over a CO2-only inversion for
quantifying regional fluxes of CO2.
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1. Introduction

[2] Measurements of atmospheric composition provide
powerful constraints to improve understanding of surface
fluxes of trace compounds and their subsequent fate in the
atmosphere. Recent studies have exploited these data by
employing an inverse model approach [Bousquet et al.,
1999; Gilliland et al., 2003; Palmer et al., 2003], in which
a chemical transport model (forward model) is used to relate
the sensitivity of an observed chemical concentration mea-
surement to changes in particular model parameters (e.g.,
surface fluxes). An optimal estimation inverse model then
combines this sensitivity information with the observations
to yield the solution that is most consistent with the
observations, the a priori information about the model
parameters, and their relative errors. Estimated error vari-

ance and covariance information is included in the inversion
via the a priori and observation error covariance matrices.
Previous studies that analyzed correlations between differ-
ent trace gases [e.g., Ciais et al., 1995; Enting et al., 1995]
did not take advantage of these additional correlations in
inverse model analyses. These correlations can arise from
having similar spatial and temporal flux distributions, from
chemical mass balance, or from atmospheric transport
processes. Exploitation of these correlations in an inverse
model involves quantifying the associated error correlation
coefficients to include in the off-diagonal entries to the a
priori and observation error covariance matrices.
[3] We present in this paper a method to objectively

quantify error correlations between CO and CO2 as con-
straints in inverse model calculations for the budgets of both
gases. Carbon dioxide over continents is released by com-
bustion and biospheric respiration, and is taken up by
photosynthesis. Over many regions of the world these
combustion and biogenic fluxes overlap significantly. Sep-
aration of these fluxes in inverse analyses of CO2 observa-
tions can therefore be difficult. Combustion is a source of
CO and CO2, with the CO emission ratio decreasing with
combustion efficiency. Biospheric fluxes of CO are small.
Here we use the error correlation coefficients between CO
and CO2 in an inverse model analysis to estimate simulta-
neously CO and CO2 fluxes with the principal purpose of
reducing uncertainty of combustion and biospheric CO2
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flux estimates. We apply this method to CO and CO2

concentration data from the NASA TRACE-P aircraft cam-
paign [Jacob et al., 2003], conducted over the western
Pacific during February–April 2001. Two aircraft (DC8
and P3B) were used during TRACE-P to sample Asian
outflow between 10� and 45�N and 0 and 12 km altitude.
TRACE-P was conducted during the season of strongest
outflow from mainland Asia to the Pacific, driven by
frequent midlatitude cyclones and associated cold fronts
and warm conveyor belts [Liu et al., 2003]. The February–
April period is also the biomass burning season in Southeast
Asia [Heald et al., 2003].
[4] Recent studies have used observed CO2:CO slopes

derived from linear regression of atmospheric composition
data to identify the source origins of air masses sampled in
TRACE-P [Suntharalingam et al., 2004; Takegawa et al.,
2004]. Suntharalingam et al. [2004] showed strong corre-
lations between CO2 and CO concentrations during
TRACE-P with distinct CO2:CO slopes that they used to
constrain regional flux estimates of CO2. They interpreted
the CO2:CO correlations using the GEOS-CHEM chemical
transport model (Appendix A) and identified a large under-
estimate in the Chinese biospheric CO2 flux. Other
TRACE-P studies have used CO observations with success
to constrain east Asian source estimates of CO [Carmichael
et al., 2003; Palmer et al., 2003; Allen et al., 2004; Heald et
al., 2004; Tan et al., 2004], but without consideration of the
implications for CO2 surface fluxes.

2. Correlations Between CO and CO2 Errors

[5] There are two types of CO2:CO correlations that can
serve as error covariance constraints for a joint CO2:CO
inverse analysis. Correlations between CO2 and CO com-
bustion sources provide a constraint on the a priori fluxes
used for the joint inversion. Observed correlations be-
tween atmospheric CO2 and CO concentrations imply
corresponding correlations in the source-receptor relation-

ships determining the concentrations at the observation
points, i.e., in the forward model for the inversion.
Therefore they provide information on model error correla-
tions for the observation error covariance matrix. Here we
derive these two types of error correlation for the Asian
outflow conditions sampled by the TRACE-P mission.

2.1. Observation Error Correlations

[6] Atmospheric transport processes during TRACE-P
moved air masses laden with CO and CO2 from east Asia
over the Pacific [Liu et al., 2003; Fuelberg et al., 2003],
introducing correlation in the CO and CO2 concentrations.
TRACE-P took place before the onset of the growing
season, hence the correlations are positive. Figure 1 illus-
trates the spatial distribution of TRACE-P CO and CO2

concentration data in the boundary layer. Examination of
the spatial distributions reveal strong regional correlations
for individual flights (correlation coefficients >0.8) with
CO2:CO slopes ranging from 10 mol/mol in biomass
burning outflow from Southeast Asia, to 20–30 mol/mol
in Chinese pollution plumes and 50 mol/mol in outflow
from Japan [Suntharalingam et al., 2004; Takegawa et al.,
2004]. TRACE-P sampled relatively fresh air masses (1–
2 days old) so we can assume that loss of CO by reaction
with OH does not affect the CO2:CO correlation driven by
Asian outflow.
[7] Figure 2 shows correlation coefficients between CO

and CO2 concentrations measured during TRACE-P as a
function of altitude and latitude. These correlation coeffi-
cients are typically >0.7, and vary only by 5–10% as a
function or altitude, with smaller values at higher altitudes
where aged air masses originating from regions outside Asia
play a relatively large contribution to the total CO abun-
dances. It is useful to split the TRACE-P data into two
distinct latitudinal regions, characterized by differences in
sampled air masses [Blake et al., 2003]. North of 30�N, air
masses were heavily influenced by fossil fuel and biofuel
emissions from China, Korea and Japan, with essentially no

Figure 1. Mean CO and CO2 boundary layer (0–2 km) concentrations during the TRACE-P aircraft
mission in March–April 2001 [Jacob et al., 2003]. The data are averaged on the GEOS-CHEM 2� � 2.5�
model grid.
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influence from biomass burning [Liu et al., 2003]. South of
30�N, and particularly in the free troposphere, air masses
were strongly influenced by biomass burning from South-
east Asia. Correlation coefficients are larger at latitudes
<30�N (Figure 2) because background concentrations are
lower and less variable (Figure 1).

2.2. Source Error Correlations

[8] Combustion is a source of both CO and CO2, and
consequently introduces a correlation in emissions. We take
advantage of a detailed fuel emission inventory for east Asia
[Streets et al., 2003] that offers an opportunity to quantify
the source error correlation by providing uncertainty esti-
mates for the sources from individual energy sectors. We do
not consider error correlation for the biomass burning
source, and as we will see this is justified because of large
uncertainty in the CO emission factor.
[9] The emission of a gas from a combustion process

(g gas emitted yr�1) can be described as a product of the
activity rate A (g fuel burned yr�1) and the emission
factor F (g gas emitted per g fuel burned). Activity rates
are obtained from energy statistics. Emission factors are
determined from laboratory test burns or field measure-
ments. The activity rates and emission factors are both
subject to uncertainties. Emission factors for CO2 and CO
vary with the combustion process. For example, Chinese
CO emission factors range from 0.7 Gg/PJ for industrial
coal burning to 7.0 Gg/PJ for gasoline-powered cars
[Streets et al., 2003]. Chinese CO2 emission factors for
the same processes are 24.7 Gg/PJ and 20 Gg/PJ,
respectively [Streets et al., 2003]. Even for inefficient
forms of combustion, e.g., open biomass burning, values
of F for CO2 are an order of magnitude greater than for
CO [Andreae and Merlet, 2001]. The sum of CO and
CO2 typically represents >95% of the total emitted
carbon, with CH4, and nonmethane volatile organic com-
pounds (NMVOC) contributing the remaining few percent
[Streets et al., 2003].

[10] Correlation between CO and CO2 emissions can be
introduced via A or F. We assume activity rates are common
to both gases, while CO and CO2 emission factors are
inversely correlated. We use the east Asian emission inven-
tory for 2000 from Streets et al. [2003], which includes
information about A, F, and associated 1s uncertainties (D)
for different energy sectors and for individual regions. The
inventory includes sector emissions from industry (coal and
oil), domestic biofuel, and transportation (domestic and
commercial, gas and diesel powered, vehicles). We derive
error correlations for the national inventories, summing over
all sectors and over all regions within a country.
[11] Table 1 presents values of DA and DF, expressed as a

percentage of A and F, from Streets et al. [2003] for
individual east Asian countries. CO emission estimates are
the most uncertain, due to the uncertainty of the emission
factors. The most uncertain emission estimates are from
biofuels, reflecting large uncertainties in both F and A.
[12] We use a Monte Carlo approach to estimate error

correlations between CO and CO2 sources for individual
countries, in which we generate a large ensemble of CO and
CO2 emissions Ei for each energy sector i within each
country by perturbing the mean values for Ai and Fi by
their estimated 1s uncertainties, DAi and DF i, and a
population of normally distributed random numbers �i with
unit variance (equation set (1)):

Ei
CO2

¼ Ai þ �iADA
i

� �
Fi
CO2

þ �iCO2
DFi

CO2

� �

Ei
CO ¼ Ai þ �iADA

i
� �

Fi
CO þ �iCODF

i
CO

� �
ð1Þ

[13] Regional CO2:CO error correlations are calculated
by first summing the ensembles of CO and CO2 emissions
generated using the Monte Carlo approach from different
energy sectors within a particular country. For each energy
sector i within a particular country we generate an ensemble
of size 104, ensuring a statistical significant correlation. In
the absence of a regional and sector breakdown of CH4 and

Figure 2. Correlation coefficients (r) between CO and CO2 mixing ratios measured during TRACE-P
as a function of altitude (2-km altitude bins). Numbers inset in each plot refer to the number of
observations used to compute the correlation at each altitude bin. Correlation coefficients calculated from
10 or more data points are shown.
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other VOC emission factors, we assume that CO2 and CO
represents 97.5% of the total carbon emitted [Streets et al.,
2003], and that CH4 and other VOCs contribute the remain-
ing 2.5%. In perturbations to this best estimate we require
that the sum of the CO2 and CO emission factors is between
95% and 100%, ensuring that we only consider physically
realistic realizations, e.g., the total carbon emitted does not
exceed the carbon content of the fuel burned.
[14] The value of the CO2:CO error correlation for a

particular sector i depends on the relative uncertainties
associated with Ai and Fi. In the limiting case, where values
of Fi are known perfectly the correlation will be +1 because
DA is common to both CO and CO2. Conversely, if A

i is
known perfectly, uncertainties in Fi will lead to correlation
coefficients between �1 and +1. In practice, there are
significant uncertainties associated with both Ai and Fi,
and error correlations between CO2 and CO sources repre-
sent a balance between the relative magnitudes and uncer-
tainties of Ai and Fi, e.g., FCO2

i is a smaller factor of
variability for CO2 emission than the activity rate, while
the converse holds for CO.
[15] We find that the error correlations on the a priori

sources of CO2 and CO, corresponding to values of DAi and
DF i prescribed by Streets et al. [2003], are negligible or
weakly negative (Table 1). This is due primarily to large
values of DFCO

i . However, analyses of the TRACE-P CO
data indicate that the Streets et al. [2003] inventory under-

estimated A and F [Tan et al., 2004], so we explored the
sensitivity of theCO2:CO source error correlation to the range
of possible values of DAi and DFi (Figure 3) using the same
percentage change in DAi and DFi over all sectors i and over
all regions. As we will show later, source error correlation
coefficients need to be greater than 0.5 before we get a
significant improvement in the inverse analysis for CO2

fluxes. Such correlations are unrealistic, given constraints
on A from the CO2 concentrations [Suntharalingam et al.,
2004].

3. Inverse Model

[16] Our inverse model aims to achieve the best estimate
of CO and CO2 fluxes that is consistent with the TRACE-P
concentration measurements of CO and CO2, the a priori
CO and CO2 flux estimates, and their respective uncertain-
ties. It builds on our previous CO-only inverse model that
used the TRACE-P observations to estimate east Asian CO
fluxes [Palmer et al., 2003].

3.1. Model Description

[17] Anthropogenic sources of CO and CO2 include
burning of fossil fuels and biofuels, and biomass burning
(Tables 2 and 3). We use a priori anthropogenic emission
estimates of CO and CO2 from Streets et al. [2003] for east
Asia and from Palmer et al. [2003] and Suntharalingam et

Table 1. Percentage Uncertainties of Activity Rates (DA/A) and Emission Factors (DF/F) Associated With East Asian CO and CO2

Emissions From Fuel Consumption

Region

Biofuel Fossil Fuela

CO2:CO Source
Error Correlation

CO CO2 CO CO2

DA/A DF/F DA/A DF/F DA/A DF/F DA/A DF/F

China 25 240 20 6 12 67 7 7 0.03
Korea 25 240 20 6 8 65 5 6 0.04
Japan 18 240 15 6 8 24 5 9 �0.46
Southeast Asiab 36 240 30 6 31 121 10 9 0.17

aCO and CO2 sectors include domestic coal, domestic oil, industrial coal, and transport [Streets et al., 2003]. Values of DA and DF given here are national
averages (Figure 4) weighted by activity rates over different sectors and regions resolved by Streets et al. [2003].

bSEA in Figure 4.

Figure 3. Regional error correlation coefficients r between bottom-up emission estimates for CO2 and
CO from fuel consumption as a function of relative uncertainties in activity rates A and emission factors
F. These illustrative calculations assume the same relative uncertainties for all energy sectors within the
region.
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al. [2004] for the rest of the world (ROW). We use the same
biomass burning emission estimates as Palmer et al. [2003],
based on daily satellite fire count data for the TRACE-P
period [Heald et al., 2003]. We account for the secondary
source CO from oxidation of anthropogenic VOCs coemit-
ted with CO by scaling up fossil fuel and biofuel (19%) and
biomass burning (16%) [Heald et al., 2004]; these scaling
factors are different from those used by Palmer et al. [2003]
and are reflected in the a priori emissions presented in Table 2.
The ROWrepresents a background of CO andCO2, including
sources outside of Asia and chemical production of CO from
CH4. ROWalso includes the chemical production of CO from
biogenic NMVOCs, representing a small diffuse source over
the TRACE-P period (which was mainly outside the growing
season). Daily mean terrestrial biosphere fluxes of CO2

are provided by the CASA balanced biosphere model
[Randerson et al., 1997]. TRACE-P data are a few days
downwind of continental sources and at this offshore
distance the influence of diurnal variation from the
terrestrial biosphere is weak [Suntharalingam et al.,
2004]. For the TRACE-P season (March) there is a net
positive flux of CO2 from the east Asian biosphere
[Suntharalingam et al., 2004]. Ocean CO2 fluxes, pre-
scribed by Takahashi [1999], are assumed not to contrib-
ute significantly to the magnitude and variability of
TRACE-P data [Suntharalingam et al., 2004]. We aggre-
gate the CO2 flux from the global ocean with ROW.
[18] Observed CO and CO2 mixing ratios (measurement

vector y) are related to CO and CO2 surface fluxes (state
vector x) by

y ¼ Kxþ ��; ð2Þ

where K is the Jacobian matrix describing the forward
model sensitivity. We use the GEOS-CHEM CTM as the
forward model. Loss of CO is computed with fixed 3-D
OH fields from GEOS-CHEM to enforce linearity as
described by equation (2). The linearized CO and linear

CO2 models allow us to describe total CO and CO2

model concentrations as a linear sum of contributions
from different countries and different sources.
[19] The state vector x comprises annual mean CO and

CO2 anthropogenic (including biomass burning) source
estimates assuming seasonal variations [Duncan et al.,
2003; Streets et al., 2003]. It also includes CO2 biospheric
surface fluxes for March 2001 from the different geopolit-
ical regions of Figure 4.
[20] The state vector components were chosen on the

ability of the TRACE-P data to independently resolve
source regions (Figure 4) and processes (fuel FL and
biomass burning BB), as derived formally by Palmer et
al. [2003] and Heald et al. [2004]. For CO we use six
components: CHFL, KRJP, SEA, CHBB, BABB, and
ROW. For CO2 we add regional biospheric terms (BS)
and use eight components: CHFL, KRJP, CHBB, BABB,
ROW, CHBS, KRJPBS, BABS. Observed CO2 signatures
for biomass burning from China (CHBB), boreal Asia
(BABB), and for SEA are too weak to be resolved
independently.
[21] The measurement vector y consists of the TRACE-P

CO and CO2 mixing ratio data. CO and CO2 mixing ratios
are measured using a differential absorption tunable diode
laser system [Sachse et al., 1987] and a nondispersive
infrared analyzer [Vay et al., 2003], respectively. The data
used for the inversion includes 299 hours of measurements
from the two aircraft over 28 flights between 27 February
and 3 April, 2001. We use the data for individual flights
averaged on the GEOS-CHEM 2� � 2.5� model grid.
[22] Errors associated with K and y (the sum of which is

described by ��), include measurement accuracy, subgrid
variability of observations (representation error), and model
error. The ensemble characteristics of these errors are
described by the observation error covariance, SS, repre-
senting a sum of the covariance matrices from individual
sources of error. This will be discussed further in the next
section.

Table 2. A Priori Sources of CO for the Inverse Model Analysis

Region
Biofuels (BF),a

Tg CO yr�1
Fossil Fuels (FF),a

Tg CO yr�1
Biomass Burning (BB),a

Tg CO yr�1

Global CH4 and
Biogenic NMVOCs,

Tg CO yr�1

China (CH) 49 ± 38 59 ± 46 18 ± 9 -
Korea (KR) 3 ± 1 3 ± 1 0.08 ± 0.04 -
Japan (JP) 3 ± 1 6 ± 1 0.3 ± 0.1 -
Southeast Asia (SEA) 23 ± 23 10 ± 10 81 ± 40 -
Boreal Asia (BA) - - 12 ± 6 -
Rest of world (ROW) 124 ± 26 301 ± 78 396 ± 198 1205 ± 301

aSources from BF, BB, and FF include the secondary source of CO from the oxidation of NMVOCs coemitted with CO.

Table 3. A Priori Surface Fluxes of CO2 for the Inverse Model Analysis

Region
Biofuels,

Tg CO2 yr
�1

Fossil Fuels,
Tg CO2 yr

�1
Biomass Burning,
Tg CO2 yr

�1
Terrestrial Biosphere,a

Tg CO2/March 2001
Global Oceans,
Tg CO2 yr

�1

China (CH) 856 ± 69 2553 ± 638 294 ± 147 693 ± 520 -
Korea (KR) 43 ± 3 335 ± 84 1 ± 0.7 20 ± 15 -
Japan (JP) 30 ± 1 813 ± 203 6 ± 3 41 ± 31 -
Southeast Asia (SEA) 419 ± 189 608 ± 274 1320 ± 660 23 ± 17 -
Boreal Asia (BA) - - 197 ± 99 360 ± 270 -
Rest of world (ROW) 1800 ± 900 17137 ± 4741 6467 ± 3331 698 ± 524 �8050 ± �8050

aNet flux for March 2001.
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[23] The maximum a posteriori solution [Rodgers, 1976]
is given by

x̂ ¼ xa þ KTS�1
S K þ S�1

a

� ��1
KTS�1

S y�Kxað Þ ð3Þ

Ŝ ¼ KTS�1
S K þ S�1

a

� ��1
; ð4Þ

where Sa is the a priori error covariance matrix, x̂ is the
optimized a posteriori state vector, Ŝ is the a posteriori error
covariance matrix describing the error associated with x̂,
and other variables are as defined previously. Source and
observation CO2:CO error correlations, as derived in section
2, are implemented in the inversion as off-diagonal terms in
Sa and SS, respectively.
[24] Inverse modeling using Bayesian synthesis generates

artificially small a posteriori errors, due to the assumption
that observational errors are random, Gaussian, representa-
tively sampled by the observations, and described accurately
by its covariance [Heald et al., 2004]. Here we use the a
posteriori errors as a qualitative measure of the constraint
provided by the CO2:CO error correlations.

3.2. Error Variance and Covariance Specification

[25] Error variance and covariance information is included
in the inversion as diagonal and off-diagonal terms in Sa and
SS, respectively. We specify a priori emission error variances
for Asia following Streets et al. [2003]. We assign an
uncertainty of 25% on the global source of CO from the
oxidation of CH4 and biogenic NMVOCs [Palmer et al.,
2003], and further assume flux uncertainties for CO2 from
the ocean and terrestrial biosphere of 100% and 75%,
respectively.
[26] Observation error variances are quantified using the

mean statistics of the relative difference between the ob-
served and model concentrations as a function of altitude
and latitude [Palmer et al., 2003; Heald et al., 2004]. The
mean bias between the model and observed concentration is

assumed to reflect errors in model fluxes to be retrieved by
the inversion, while the standard deviation about the mean
bias (residual relative error, RRE) is assumed to reflect total
observation error. RRE values for CO are typically 20–30%
[Palmer et al., 2003]. Similar analysis for CO2 shows RRE
values of 1–2%, with little variability as a function of
altitude or latitude. The observation error variance for an
individual observation yi is given by (RRE � yi)

2.
[27] Observed correlations between CO2 and CO concen-

trations imply corresponding observation error correlations
(section 2 and Figure 2), which we use to specify the off-
diagonal elements in SS. Correlations in CO and CO2

emission errors provide similar information to construct
the off-diagonal elements of Sa (section 2). These CO2:CO
error correlation coefficients, r, are included as off-diagonal
elements in SS and Sa following

si;j ¼ ri;j
ffiffi
s

p
i;i

ffiffi
s

p
j;j: ð5Þ

We neglect the spatial correlations of observations as
previous work for CO during TRACE-P has shown that it
decays on a length scale of 150 km [Jones et al., 2003;
Heald et al., 2004], which is short relative to the 2� � 2.5�
grid over which the observations are sampled here.

4. Inversion Results

4.1. Best-Case Estimate

[28] Figure 5 shows results for our best-case inversion of
CO and CO2 fluxes that uses the state vector defined in
section 3, and the CO2:CO error correlations derived in
section 2. The results for CO are generally the same as those
presented by Palmer et al. [2003], including a 72% increase
in the anthropogenic source from China but the 45%
decrease in Southeast Asia obtained here is less than the
60% decrease inferred from using only TRACE-P CO data,
and is more consistent with the constraints from the
MOPITT data [Heald et al., 2004]. The CO source from
Chinese biomass burning is weakly negative but is not
significantly different from zero, given that Ŝ underesti-
mates actual a posteriori errors.
[29] A posteriori emissions of CO2 show a 18% decrease

in Chinese anthropogenic sources and a 10% increase in
sources from Korea and Japan. The a posteriori decrease
(increase) in Chinese anthropogenic CO2 (CO) source
estimates implies an overestimate of sources with high
CO2:CO signatures, and a missing source with a low
CO2:CO signature, e.g., which could be contributed by
small heavily polluting power plants [Tan et al., 2004] or
burning of domestic coal and biofuels [Carmichael et al.,
2003]. There is also a 95% reduction in the net Chinese
biospheric CO2 source for March 2001 relative to the CASA
model, consistent with the results of Suntharalingam et al.
[2004], and a 10% increase in CO2 from the boreal Asia
biosphere.

4.2. Sensitivity Studies

[30] Here we assess the added value of CO2:CO error
correlations by comparing our best-case estimates with
sensitivity calculations using modified correlations, i.e.,
modified off-diagonal terms in SS and Sa. The uncorrelated
inversion (best-case inversion but with off-diagonal terms

Figure 4. Source regions for tagged CO and CO2

simulations. See Tables 2 and 3 for flux estimates.
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set to zero) estimates independently the optimal flux esti-
mates of CO and CO2 (Figure 5). A posteriori emissions of
CO are within a few percent of the best case inversion
analysis, with the exception of biomass burning from
Southeast Asia, as described above. A posteriori CO esti-
mates are tightly constrained by the CO concentration data
and are largely insensitive to changes in Sa and SS intro-
duced by the CO2:CO error covariances. In the case of the
Southeast Asian source, transport to the TRACE-P sam-
pling region involved lifting to the free troposphere by
convection and warm conveyor belts [Liu et al., 2003].
Consideration of the CO2:CO correlations in other geopo-
litical regions appears to help reduce the model transport
errors associated with the Southeast Asian source, resulting
in better agreement with the CO inversions that use the
much denser MOPITT data [Heald et al., 2004].
[31] Including CO2:CO correlations further reduces the

Chinese biospheric flux by 80%, while KRJPBS and BABS
estimates are not significantly different from the uncorre-
lated inverse analyses. Examination of the a posteriori
correlation matrix (normalized Ŝ) shows a particularly
strong anticorrelation (�0.8) between CO2 fluxes from
anthropogenic and biospheric sources. Consideration of
the CO2:CO error correlation in the inversion facilitates
the separation of these two sources by reducing the correlation
between biospheric and anthropogenic sources. Figure 6
illustrates for China the strong anticorrelation between CHFL
and CHBS remains until source or observation CO2:CO error

Figure 5. A priori (red), uncorrelated a posteriori (green), and best-case a posteriori (black) CO and
CO2 flux estimates. The vertical lines superimposed on each estimate denotes the 1s uncertainty.

Figure 6. Sensitivity of the a posteriori correlation
between Chinese anthropogenic (CHFL) and biospheric
(CHBS) CO2 flux estimates to the source (Sa) and
observation (SS) CO2:CO error correlations.
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correlations are greater than 0.7–0.8, after which it drops
rapidly to zero. The source CO2:CO error correlation is
the more effective constraint for separating biospheric and
anthropogenic sources but as discussed earlier this error
correlation isweak. Our best estimate, which uses both source
and observation CO2:CO error correlations, leads to a
CHFL:CHBS correlation 10% less than the uncorrelated
inversion.
[32] Figures 7 and 8 illustrate the sensitivity of a poste-

riori Chinese fluxes to the strengths of the source and
observation CO2:CO error correlations. Source CO2:CO
error correlation (Figure 7) provides little improvement in
a posteriori CO source estimates, since CO atmospheric
concentration signals are much stronger than for CO2 and
the transport from China to the TRACE-P sampling region
is principally by boundary layer advection [Liu et al.,
2003] which has low transport error. Anthropogenic and
biospheric CO2 flux estimates are statistically significantly
different from the uncorrelated inversion where the source
CO2:CO error correlation is greater than 0.5. However,
with the emission uncertainty for CO contributed mostly
by emission factor [Streets et al., 2003] the source
CO2:CO error correlation is much less than 0.5 (Table 1).
We conclude that the source CO2:CO error correlation
is unlikely to offer much benefit for joint CO2:CO
inversions. In contrast, accounting for forward model
error CO2:CO correlation (i.e., off-diagonal terms of SS)
effectively reduces the uncertainty of the observations
(Figure 8). The magnitude of a posteriori CO estimates
increases slightly with increasing CO2:CO error correlation,
with the associated uncertainties decreasing. This reduction in

CO emission uncertainty is observed only with changes in SS
because the observation uncertainties dominate the calcula-
tion of Ŝ (equation (4)). The magnitude of the Chinese
biospheric CO2 flux reduces as the observation error CO2:CO
correlation increases and is a CO2 sink at correlations
greater than 0.8. The magnitude of the a posteriori
Chinese anthropogenic CO2 estimate is not significantly
affected by increasing the observation error CO2:CO
correlation. Separation of the biospheric and anthro-
pogenic CO2 sources, indicated by the a posteriori corre-
lation matrix (Figure 6), occurs at correlations coefficients
>0.7, similar to observed CO2:CO correlation (Figure 2).
The importance of the CO2:CO error correlations in the
TRACE-P inverse problem lies in their role of reducing
model transport error and subsequently reducing uncer-
tainty on a posteriori CO2 flux estimates.

5. Closing Remarks

[33] Accurately quantifying CO2 exchanges with the
terrestrial biosphere represents an important challenge for
understanding the global carbon cycle. A standard method
has been to use inverse models constrained with atmo-
spheric observations of CO2, and occasionally CO2 iso-
topes. Strong observed correlations between CO2 and CO in
atmospheric data, as well as CO2:CO correlations in com-
bustion sources, suggest that a joint CO2:CO inversion
might provide information to improve the separation of
combustion and biospheric CO2 surface flux estimates. We
showed here that such an inversion, using concurrent
observations of CO2 and CO in Asian outflow from the

Figure 7. Sensitivity of a posteriori Chinese anthropogenic source estimates and their uncertainties to
the source CO2:CO error correlation (Sa).
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TRACE-P aircraft campaign in Spring 2001, does indeed
provide useful additional constraints for improving a
posteriori CO2 regional flux estimates.
[34] Observed correlations between CO2 and CO concen-

trations in atmospheric data imply a corresponding correla-
tion in source-receptor relationships, and therefore in the
forward model errors for the inversion. Mathematically,
they can be used to estimate off-diagonal terms in the
observation error covariance matrix (SS) of a joint CO2:CO
inversion. Observed CO2:CO correlation coefficients during
TRACE-P are generally larger than 0.7 [Suntharalingam et
al., 2004; Takegawa et al., 2004] and enable significant
improvement of a posteriori flux estimates. CO2:CO corre-
lations may be different for other regions and during other
seasons.
[35] Correlation between CO2 and CO combustion sour-

ces in a priori estimates could also provide constraints to the
joint inversion. We used a Monte Carlo approach to
quantify the resulting CO2:CO source error correlations in
individual Asian countries on the basis of uncertainties in
activity rates and emission factors for individual energy
sectors and source regions reported by the east Asia
emission inventory of Streets et al. [2003]. We find that
these correlation coefficients are weak (r < 0.2) because CO
emission factors are the largest contribution to the overall
uncertainty. Significant improvements in a posteriori CO2

and CO would require correlation coefficients >0.7 but
these would require unrealistic uncertainties in activity
rates.
[36] We find that the benefit of including CO2:CO error

correlations in joint CO2:CO inversions is mainly for

improving retrievals of CO2 surface fluxes, not CO sources.
Atmospheric variability of CO is far greater than that of
CO2, and separation of biospheric and combustion terms is
not an issue, so that information on CO2 has little benefit for
the CO source inversion.
[37] Satellite observations of CO2 have the potential to

improve quantitative understanding of the global carbon
cycle [e.g., Pak and Prather, 2001; Rayner and O’Brien,
2001]. Our work shows that this potential can be enhanced
by exploiting correlations with concurrent satellite observa-
tions of CO, where CO information may be coretrieved
from the measured spectra of one instrument (e.g., SCIA-
MACHY and AIRS), retrieved from another instrument
aboard the same satellite platform, or taken from an instru-
ment in the same orbit (e.g., OCO and TES).

Appendix A: Forward Model

[38] The GEOS-CHEM version used here (6.01, http://
www-as.harvard.edu/chemistry/trop/geos/index.html) has a
horizontal resolution of 2� � 2.5�, with 48 vertical levels
ranging from the surface to the mesosphere, 20 of which
are below 12 km. The model is driven by GEOS-3
assimilated meteorology data from the Global Modeling
and Assimilation Office GCM based at NASA Goddard.
The 3-D meteorological data are updated every 6 hours,
and the mixing depths and surface fields are updated
every 3 hours.
[39] The CO and CO2 simulation are as described by

Palmer et al. [2003] and Suntharalingam et al. [2004],
respectively. The main sink for CO is oxidation by OH,

Figure 8. Sensitivity of a posteriori Chinese anthropogenic source estimates and their uncertainties to
the observation CO2:CO error correlation (SS).
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leading to a lifetime of a few months. We prescribe
global monthly mean OH fields calculated from a full
chemistry model simulation (GEOS-CHEM v4.33) and
consistent with observational constraints [Prinn et al.,
2001]. The CO sink has little effect for the inversion of
TRACE-P measurements, which are only a few days
downwind of the Asian sources. The impact of the OH
sink on the CO background is effectively taken into
account by the adjustment of the ROW CO source
[Palmer et al., 2003]. Suntharalingam et al. [2005]
showed that not properly accounting for reduced carbon
species (CO, CH4 and NMVOCs) in CO2 inversion
analyses can significantly bias a posteriori flux estimates.
This bias arises for two reasons: not accounting for the
3-D production of CO2 from the oxidation of reduced
carbon species and neglecting that reduced carbon species
are often included in bottom-up combustion and biospheric
CO2 flux inventories. Air masses sampled during TRACE-P
are relatively fresh and so the oxidation effect will only affect
observations that sample the background atmosphere. The
Streets et al. [2003] combustion emission inventory only
accounts for direct emissions of CO2, however the terrestrial
biospheric fluxes from CASA do account for reduced carbon
species.
[40] The Jacobian matrix for the inversion is con-

structed by transporting separately CO and CO2 from
individual sources describing the state vector. This re-
quired initialization of the corresponding ‘‘tagged trac-
ers.’’ The CO simulation is initialized in January 2000
and integrated for 16 months (through April 2001). The
14 months prior to TRACE-P effectively remove the
influence of initial conditions. In the case of CO2, we
adopt the model initialization approach previously used
by Xiao et al. [2004] for CH4 in GEOS-CHEM. We use
the total CO2 simulation to define a background CO2

tracer as the CO2 present in the atmosphere on 1 January
2001. The background tracer has no surface fluxes after
January 2001 and is allowed to mix. The other tagged
tracers are initialized with zero concentration on 1 Janu-
ary 2001. Their concentrations evolve over the course of
the simulation as a result of surface fluxes. We also
included an additional initialization to the CO2 simulation
to correct the model bias introduced by not accounting
for the net uptake of CO2 by the land biosphere. We
make this correction by comparing the 20th percentile
(assumed to represent the CO2 background) in the model
and observed CO2 concentration data (east of 150�W) as
a function of latitude (5� increments), and remove it from
the model values. The corresponding model bias ranges
from 4 to 5 ppm and is consistent with the values
calculated using GLOBALVIEW CO2 data [Suntharalingam
et al., 2004].

[41] Acknowledgment. This work was supported by the NASA and
NOAA carbon cycle programs.
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