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[1] We have conducted an observing system simulation experiment for the Tropospheric
Emission Spectrometer (TES) satellite instrument to determine the potential of nadir
retrievals of carbon monoxide (CO) from this instrument to constrain estimates of
continental sources of CO. We use the GEOS-CHEM global chemical transport model to
produce a pseudoatmosphere in which the relationship between sources and
concentrations of CO is known. Linear profile retrievals of CO are calculated by sampling
this pseudoatmosphere along the orbit of TES. These retrievals are used as pseudo-
observations with a maximum a posteriori inverse algorithm to estimate the CO sources
from the different continents. This algorithm accounts for the finite vertical resolution of
the retrieval, instrument errors, and representation and transport errors in the GEOS-
CHEM simulation of CO. The structure of the transport error is estimated using the
statistics of the difference between paired GEOS-CHEM forecasts of CO, and this
structure is then scaled to match the model error in the GEOS-CHEM simulation of
aircraft observations of Asian outflow over the NW Pacific. We show that with proper
characterization of observation errors just 2 weeks of observations from TES have the
potential to constrain estimates of continental sources of CO to within 10%. INDEX
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1. Introduction

[2] Accurate estimates of the sources of atmospheric
carbon monoxide (CO) are essential to understand the
impact of human activity on the composition of the atmo-
sphere. Atmospheric CO is a product of incomplete com-
bustion and a by-product of the oxidation of atmospheric
hydrocarbons. It plays a critical role in determining the
oxidative capacity of the atmosphere because it is the
primary sink of OH, the main tropospheric oxidant. Present
estimates of the sources of CO derived from inventory-
based, bottom-up techniques are highly uncertain. Recently,
a number of studies have used a top-down approach
employing inverse modeling techniques with atmospheric

observations of CO to better constrain estimates of the
sources [e.g., Bergamaschi et al., 2000a, 2000b; Kasibhatla
et al., 2002; Pétron et al., 2002; Palmer et al., 2003]. These
studies relied on data from aircraft campaigns or surface
observation sites with limited spatiotemporal coverage.
Global observations of CO from satellite instruments such
as the Measurement of Air Pollution from Space (MAPS)
[Reichle et al., 1999; Lamarque et al., 1999], the Interfer-
ometric Monitor of Greenhouse Gases (IMG) [Clerbaux et
al., 2001], and the Measurements of Pollution in the
Troposphere (MOPITT) [Drummond and Mand, 1996] offer
new constraints on CO sources. The Tropospheric Emission
Spectrometer (TES), scheduled for launch in 2004 on the
Aura spacecraft, will provide augmented resolution of
the vertical profile of CO using spectrally resolved
infrared measurements of CO absorption lines around the
4.7-mm band [Beer et al., 2001].
[3] In this study we examine quantitatively the potential

of nadir observations from TES to constrain estimates of
continental sources of CO. The addition of limb observa-
tions should provide additional vertical and angular infor-
mation on the CO distribution. However, this is one of the
first studies to examine the utility of space-based observa-
tions for constraining estimates of CO sources. We believe
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that the first-order task should be to establish the utility of
observations from the nadir or limb mode separately, before
attempting to combine the two data sets. Combining the
limb and nadir retrievals and properly accounting for the
different sensitivities of these two modes of observation and
the possible covariance of retrieval errors will be a chal-
lenging task. In particular, the vertical and angular distribu-
tion of atmospheric temperature and constituents along with
cloud top heights must be taken into account for limb
retrievals. Therefore for simplicity we focus on nadir
retrievals here and we will consider limb retrievals in a
subsequent study. We use the GEOS-CHEM global three-
dimensional model of tropospheric chemistry [Bey et al.,
2001a; Duncan et al., 2003; B. N. Duncan et al., Model
study of the variability and trends in carbon monoxide
(1988–1997): 1. Model formulation, evaluation, and sensi-
tivity, submitted to Journal of Geophysical Research, 2003
(hereinafter referred to as Duncan et al., submitted manu-
script, 2003)] to produce a pseudoatmosphere in which the
relationships between sources and concentrations of CO are
known exactly. Vertical, linear profile retrievals of CO are
calculated by sampling this pseudoatmosphere along the
orbit of TES. The resulting profiles provide a pseudo–data
set of TES observations. We then examine the ability of
these observations to constrain CO source estimates by
using a maximum a posteriori (MAP) inverse algorithm
[Rodgers, 2000], starting from an a priori estimate of the
sources. Our goal is to determine if the pseudo-observations
from TES contain sufficient information to accurately
estimate the specified ‘‘true’’ source strengths, given the
vertical resolution of the TES retrieval, instrument noise,
and associated forward model errors.
[4] Characterizing errors in the observations and forward

model is a critical issue in inverse modeling. Palmer et al.
[2003] showed that transport errors in the forward model
can be the largest source of uncertainty in an inversion
analysis of atmospheric CO and presented a method to
estimate the statistics of these errors through simulation of
aircraft observations. We extend this approach here to the
global scale by using pairs of successive chemical forecasts
of CO generated with the GEOS-CHEM model, as
described below.
[5] We begin with a description of the TES instrument in

section 2. We discuss our approach for generating the CO
retrievals in section 3. The inversion methodology and the
characterization of forward model transport and representa-
tion errors are presented in section 4. The a posteriori CO
source strengths and their error covariance are discussed in
section 5. In section 6 we present a summary of the results
and a discussion of their implications for the potential of
observations from TES.

2. TES Instrument

2.1. TES Description

[6] The TES instrument is an infrared Fourier transform
spectrometer that measures thermal emission from atmo-
spheric trace gases over the spectral range 650–2250 cm�1

(4.4–15.4 mm) [Beer et al., 2001]. It will be launched on
board the Aura spacecraft in 2004 into a Sun-synchronous
orbit at an altitude of 705 km, with an inclination of 98.2�,
and with a 1345 LT (local mean solar) equator crossing

time. The Aura spacecraft will make 14.56 orbits per day,
with the orbits repeating every 16 days (233 orbits). The
instrument will operate in both nadir and limb modes and
will make 73 observations per orbit with a 1-day-on, 1-day-
off observational cycle. In the limb mode of observation
each of the 16 detectors on TES will view the limb with a
different tangent height. In the nadir mode the combined
footprint of this 16-detector array will be 5 km across-track
by 8 km along-track, with each detector observing a field of
view of 5 km � 0.5 km. The observations will be spaced by
about 5� along the orbit track.

2.2. Nadir Retrievals of CO

[7] A detailed discussion of the nonlinear retrieval of
vertical profiles of trace gases using TES radiances is
presented by Clough et al. [2002] and Bowman et al.
[2002]. The dependence of the retrieved profile of CO on
the true state can be approximated by the linear relation
[Rodgers, 2000]

ŷ j ¼ ya þ Ayyðy j � yaÞ þGyn; ð1Þ

where ŷ j 2 RN is the retrieval vector (for a given
spatiotemporal location j) whose elements are the natural
log of the volume mixing ratio of CO, N is the number of
pressure levels in the profile (N � 28 and represents a subset
of the 87 levels of the pressure grid of the TES radiative
transfer forward model [Clough and Iacono, 1995; Clough
et al., 1995]), y j 2 RN is the true profile, ya 2 RN is the a
priori constraint vector, n 2 RM is the spectral radiance
noise vector of M spectral elements, Gy 2 RN�M is the gain
matrix, and Ayy 2 RN�N is the averaging kernel matrix. For
simplicity, the linear retrieval described by equation (1),
together with a representative averaging kernel matrix, is
used to generate the pseudo–data set of CO profiles for this
study.
[8] The averaging kernel matrix A describes the sensitiv-

ity of the retrieved profile to perturbations of the true
profile. The rows of the averaging kernel matrix are shown
in Figure 1a. Each row of the averaging kernel matrix
describes the change in the retrieved state at a specific
pressure level to a perturbation of the true state vector. The
degrees of freedom for signal (dofs), which is a measure of
the number of independent elements of the retrieved state
[Rodgers, 2000], is calculated by

dofs ¼ trðAyyÞ: ð2Þ

The dofs for the averaging kernel in Figure 1a is 2.1, which
reflects the strong correlation in the retrieved CO between
the levels below about 600 hPa and between levels above
500 hPa.
[9] The retrieval spectral noise error is the last term in

equation (1). The spectral radiance noise vector, n, is
assumed to be zero-mean, white Gaussian noise such that

S j
n ¼ E nnT

� �
¼ s2I; ð3Þ

where E [	] is the expectation operator [Papoulis, 1984] and
s = 3.8 � 10�9 W cm�2 sr�1/cm�1 is the noise equivalent
spectral radiance (NESR) averaged over all detectors. The
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retrieval spectral noise error or instrument error covariance
matrix is calculated by combining equations (3) and (1),

S
j
ret ¼ GyS

j
nðGyÞT : ð4Þ

Other sources of observation error are discussed in
section 4.2.

3. Generating the Pseudo-Observations

3.1. GEOS-CHEM Model

[10] The GEOS-CHEM model is a global three-dimen-
sional chemical transport model (CTM) driven by assimi-
lated meteorological observations from the Goddard Earth
Observing System (GEOS) of the NASA Data Assimilation
Office (DAO). A detailed description of the model, along
with a comparison of model results with observations, is
presented by Bey et al. [2001a]. Recent applications of
GEOS-CHEM to the simulation of CO are presented in the
work of Duncan et al. [2003], B. N. Duncan et al.
(submitted manuscript, 2003), Palmer et al. [2003], and
Heald et al. [2003a, 2003b]. We employ here version 4.20
of GEOS-CHEM (http://www-as.harvard.edu/chemistry/
trop/geos), driven by GEOS-3 assimilated meteorological
fields for 2000 and 2001. The model has a horizontal
resolution of 2� � 2.5� with 48 sigma levels in the vertical
from the surface to 0.01 hPa. In our simulation of CO we
use the CO-only mode of GEOS-CHEM [Bey et al., 2001b],

in which the loss of CO due to reaction with OH is
calculated from archived monthly mean concentrations of
OH.
[11] Global sources of CO used here are based on the

source inventories of Duncan et al. (submitted manuscript,
2003) and Yevich and Logan [2003]. We use source esti-
mates appropriate for 1994. The global, annual source
strength is 2270 Tg CO. Emissions of CO from biomass
burning and from the combustion of fossil fuels and biofuels
together contribute about 50% of that total. The remaining
is from photochemical oxidation of methane and nonme-
thane volatile organic compounds. Biomass burning sources
are specified on a monthly mean basis and have a strong
seasonal variation [Duncan et al., 2003]. We assume that
emissions of CO from biofuel and fossil fuel combustion
are aseasonal.

3.2. Pseudo-Observation Data Set

[12] We generate TES retrievals of CO for February–
April 2001, during the period of the NASA Transport and
Chemical Evolution over the Pacific (TRACE-P) aircraft
campaign [Jacob et al., 2003]. The TRACE-P campaign
was conducted off the eastern coast of Asia to study the
outflow of Asian pollution over the western Pacific Ocean.
We focus on this period because the TRACE-P aircraft
observations of CO provide valuable data to characterize the
forward model transport error in the inversion analysis
[Palmer et al., 2003; see also section 4.2]. The TES

Figure 1. (a) Averaging kernels for TES nadir retrieval of CO for selected retrieval levels between 1000
and 100 hPa. The corresponding retrieval levels for the individual averaging kernels are indicated by
solid circles. (b) Example of a retrieved profile. The true profile is represented by the solid line, the a
priori profile is shown by the dotted line, and the retrieved profile is denoted by the dashed line. The
retrieval levels are indicated by the solid circles. See color version of this figure at back of this issue.
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retrievals are produced by sampling the pseudoatmosphere
along the TES orbit [Beer et al., 2001]. We assume that each
5 km � 8 km nadir measurement is representative of the
entire 2� � 2.5� GEOS-CHEM grid box within which it
falls; this approach introduces representation error but no
artifact covariance since the measurements are spaced by
about 5�. We restrict the coverage of the retrievals here to
observations between the equator and 60�N (about 25 out of
the 73 observations per orbit) which are most useful for our
purpose. The effects of clouds are included, following Luo
et al. [2002]. We assume that clouds are randomly distrib-
uted within a given GEOS-CHEM grid box with a uniform
distribution and that the GEOS-3 cloud fraction for the grid

box represents the probability that the TES retrieval will be
contaminated by cloud cover. We exclude all retrievals
which contain cloudy scenes, resulting in a loss of about
60% of the retrievals (see Figure 1 of Luo et al. [2002]).
[13] Retrieved vertical profiles are produced by first

interpolating the ‘‘true’’ vertical profiles of CO from
GEOS-CHEM onto the TES pressure levels and then
substituting these profiles into equation (1). An example
of a retrieved profile from the northwestern Pacific is shown
in Figure 1b. The true profile in Figure 1b shows enhanced
CO in the upper troposphere from biomass burning in
Southeast Asia as simulated by the GEOS-CHEM model.
The retrieved profile captures some of this biomass burning
signal in the upper troposphere and the low concentrations
of CO in lower troposphere.

4. Inversion Methodology

[14] The pseudo-observations are incorporated into a
maximum a posteriori inverse model to quantify the sources
of CO, which are aggregated here into nine source catego-
ries (listed in Table 1). The corresponding geographical
regions for the sources are shown in Figure 2. The subre-
gional distribution and the seasonal cycle of the sources are
specified as a priori constraints; the inversion adjusts the
source strengths but does not modify their spatial distribu-
tion or their seasonal variability. In our analysis we combine
fossil fuels and biofuel sources. These sources of CO are
spatially coincident and consequently cannot be indepen-
dently resolved by the inversion analysis [Kasibhatla et al.,
2002; Palmer et al., 2003]. The a priori is constructed by
randomly perturbing the ‘‘true’’ source strengths (defined in
Table 1). We assume that the sources are uncorrelated and
have a uniform a priori error of 50%. Our analysis quantifies
the sources for the February–April 2001 period; however,
for clarity we express the source estimates as annual means

Table 1. CO Source Categories Used in the Inverse Model

Analysis

Sourcea Symbol
‘‘True’’ CO Emissions,

Tg CO/yr

North American fuel combustion NAFFBF 121
European fuel combustion EUFFBF 131
Asian fuel combustion ASFFBF 258
Asian biomass burning ASBB 96
African biomass burning AFBB 194
South American biomass burning SABB 96
Rest of the world biomass burningb RWBB 98
Rest of the world fuel combustionc RWFFBF 150
Chemical productiond CHEM 1125
Total 2269

aFossil fuel, biofuel, and biomass burning sources include a secondary
contribution of CO from the oxidation of nonmethane hydrocarbons emitted
by these sources.

bRWBB includes major contributions from biomass burning in North
America, Central America, Indonesia, and Australia.

cRWFFBF includes major contributions from fossil fuel and biofuel
combustion in Central America, South America, Africa, Indonesia, and
Australia.

dCHEM represents the production of CO from the oxidation of methane
and biogenic nonmethane volatile organic compounds.

Figure 2. Regions for sources of CO specified in the state vector of the inversion analysis. The sources
are described in Table 1. The regions indicated are North America (NA), South America (SA), Europe
(EU), Africa (AF), and Asia (AS). All other areas are included in the rest of the world (RW) region.
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by assuming that the a priori seasonal cycle of the sources is
correct.

4.1. Maximum A Posteriori Method

[15] A retrieved profile at a specific spatiotemporal loca-
tion j can be related to the sources of CO as

ŷ j ¼ F jðxÞ þ Ej; ð5Þ

where x 2 Rn is the state vector whose elements are the
sources of CO for the regions and source types listed in
Table 1 (n = 9 is the number of elements in the state vector),
ŷ j 2 RN is the retrieved profile of CO (given by
equation (1)), and E

j 2 RN is the observation error. The
forward model F j: Rn ! RN transforms the CO sources into
concentrations of CO through the GEOS-CHEM model and
accounts for the vertical sensitivity of TES and the a
priori constraints used in the TES retrievals. The expression
for the forward model is thus analogous to equation (1),

F jðxÞ ¼ ya þ Ayy ln H j xð Þ
� �

� ya
� �

; ð6Þ

where H j: Rn ! RN represents the GEOS-CHEM model,
and the a priori vector and averaging kernel are defined in
equation (1).
[16] The observation error E j is composed of errors from

the retrievals, representation errors, and GEOS-CHEM
model errors

Ej ¼ E
j
ret þ Ejrep þ E

j
mod ¼ E

j
ret þ Ayy E0jrep

� �
þ Ayy E

0j
mod

� �
; ð7Þ

where Eret
j = Gyn is the retrieval error specified in

equation (1), E0rep
j and E

0
mod
j are the representation errors

and GEOS-CHEM transport errors, respectively, in the
GEOS-CHEM vertical coordinates, and Erep

j and Emod
j are the

‘‘smoothed’’ representation errors and model transport
errors, respectively. These terms are considered ‘‘smoothed’’
because they include the effects of the averaging kernels
from the TES retrieval. We assume here that the observation
error E j is zero-mean and has a Gaussian distribution with
respect to the logarithm of the volume mixing ratio of CO.
We also assume that the errors that comprise E

j are
uncorrelated. The observation error covariance is

S j
e ¼ E½ðEjÞðEjÞT  ¼ S

j
ret þ S j

rep þ S
j
mod; ð8Þ

where Sret
j 2 RN�N is the instrument error covariance matrix

(given by equation (4)), Srep
j 2 RN�N is the representation

error covariance matrix, and Smod
j 2 RN�N is the forward

model transport error covariance matrix. The representation
error covariance matrix and the forward model transport
error covariance matrix are given by

S j
rep ¼ E E j

rep

� �
E j
rep

� �T
� �

¼ AyyE E0jrep

� �
E0jrep

� �T
� �

AT
yy ð9Þ

and

S
j
mod ¼ E E

j
mod

� �
E
j
mod

� �Th i
¼ AyyE E

0j
mod

� �
E
0j
mod

� �Th i
AT

yy: ð10Þ

[17] We obtain an optimal estimate of the sources of CO
from the pseudo-observations of CO by minimizing the
MAP cost function [Rodgers, 2000]

J xð Þ ¼ ŷ� F xð Þð ÞTS�1
e ŷ� F xð Þð Þ þ x� xað ÞTS�1

a x� xað Þ;
ð11Þ

where ŷ 2 Rm is the observation vector whose elements are
the retrievals of CO described in equation (1) (we
concatenate retrieved profiles between the surface and
250 hPa), m is total number of observations used in the
inversion analysis (about 2000 observations per day,
depending on the fraction of retrievals lost due to cloud
cover), Se 2 Rm�m is the block diagonal error covariance
matrix of the observation vector (with each block given by
the matrix Se

j, defined in equation (8)). As previously
defined, x 2 Rn is the state vector whose elements are the
strengths of the sources of CO for the regions and source
types listed in Table 1, and F(x) 2 Rm is the forward model
whose elements are defined in equation (6). The quantity xa
2 Rn is the a priori state vector and Sa 2 Rn�n is the a priori
covariance matrix. Sa is diagonal, since, as described above,
we assume that the sources are uncorrelated (with uniform
uncertainty of 50%). The a posteriori estimate of the state
vector is obtained by iteratively minimizing the cost
function in equation (11). For the Gauss-Newton method
[Rodgers, 2000] a single iteration is

xiþ1 ¼ xi þ KT
i S

�1
e Ki þ S�1

a

� ��1

	 KT
i S

�1
e ŷ� F xið Þð Þ � S�1

a xi � xað Þ
� �

; ð12Þ

where xi and Ki = @F(xi)/@x 2 Rm�n are estimates of the
state vector and the Jacobian matrix, respectively, at the ith
iteration. To reduce the computational costs associated with
manipulating the matrices in equation (12), we use a
sequential approach for each iteration in which the inversion
model ingests one retrieved profile at a time. This sequential
updating technique is described in Appendix A.
[18] Despite the linearity of the chemistry (as a result of

the specified OH abundances), the forward model is non-
linear with respect to x because CO fields are expressed in
terms of the natural logarithm of the mixing ratio of CO for
the TES retrievals. Therefore we must recalculate the
Jacobian matrix at each iteration. The Jacobian for the jth
profile ingested during the ith iteration is given by

K
j
i ¼

@F jðxiÞ
@x

¼ Ayy@ ln H jðxiÞ½ 
@x

¼ Ayy

1

H jðxiÞ
@H jðxiÞ

@x

� �� �
:

ð13Þ

The quantity @H j(xi)/@x is the sensitivity of the concentra-
tion of CO to the sources. We calculate @H j(xi)/@x using a
‘‘tagged CO’’ approach in GEOS-CHEM in which we
specify a separate CO tracer for each source; the sensitivity
of the CO concentration to a particular source is thus given
by the abundance of the tagged CO from that source divided
by the magnitude of the source.
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[19] We assume convergence in equation (12), following
Rodgers [2000], with the error criterion

xi � xiþ1ð ÞT KT
i S

�1
e Ki þ S�1

a

� ��1
xi � xiþ1ð Þ < 0:1: ð14Þ

Convergence is typically achieved in 3–4 iterations. The a
posteriori error covariance matrix is given by

Ŝ ¼ ðK̂ TS�1
e K̂ þ S�1

a Þ�1; ð15Þ

where K̂ is the Jacobian matrix calculated for the a
posteriori estimate of the state vector.

4.2. Forward Model Error Specification

[20] The a posteriori estimate of the sources depends
critically on the observation error covariance matrix Se.
Palmer et al. [2003] showed that forward model transport
errors can be the dominant component in Se, with represen-
tation errors providing a much smaller contribution. We
present here a brief description of the representation errors
and a methodology for characterizing the forward model
transport errors that contribute to Se.
[21] Representation errors arise because the TES nadir

measurements have a 5 km � 8 km footprint that may not
be representative of the mean concentrations of CO over the
2� � 2.5� GEOS-CHEM grid. We adopt here a uniform
representation error of 5% based on the estimates by Palmer
et al. [2003] of the subgrid-scale variance of aircraft
observations of CO over the NW Pacific.
[22] The forward model error represents uncertainties in

model parameters affecting the relationship between the
sources and concentrations of CO. It includes contributions
from the simulation of transport, the specification of OH
concentrations, and the assumed distribution of the sources
of CO within the regions of Figure 1. Palmer et al. [2003]
estimated this error in their inversion analysis of TRACE-P
observations of CO by calculating the relative differences
between the observations and the GEOS-CHEM model
along the aircraft flight tracks. They postulated that the
mean relative differences (i.e., mean bias) were due to errors
in the a priori CO sources and that the residual defined the
model errors, mainly from transport. They verified the
validity of the approach by finding that the a posteriori
source estimates from their inversion significantly reduced
the mean bias but had little effect on the residual error. We
adopt here the model errors calculated as a function of
altitude by Palmer et al. [2003] using their a posteriori
source estimates. These errors are typically 20–30%.
[23] The Palmer et al. [2003] analysis defines model

errors specific to the NW Pacific as observed in the
TRACE-P mission. To extrapolate to the entire hemisphere
we first use the ‘‘NMC method’’ [Parish and Derber, 1992]
to describe the global transport error patterns in the model.
In the NMC method it is assumed that differences between
forecasts for the same end time, but of different lengths, are
representative of the forecast error structure (in our analysis,
the error structure in the transport of CO). This method was
originally developed for data assimilation of meteorological
variables [e.g., Parish and Derber, 1992; Rabier et al.,
1998]. We construct the forecast error covariance over the
Northern Hemisphere by using differences between 89 pairs
of 48- and 24-hour forecasts of CO that were generated for

3 months (February–April 2001) during the TRACE-P
campaign with the GEOS-CHEM model, driven by meteo-
rological forecasts from the same meteorological model
(GEOS-3) as is used here. A detailed discussion of this
approach and the estimated model error covariance is
presented by D. B. A. Jones et al. (manuscript in prepara-
tion, 2003). The forecast error covariance estimated using
the NMC method reflects the dominant mode of growth,
over the 24-hour period, of the errors associated with the
differences in the initial conditions of the forecasts. They
are not necessarily representative of the actual magnitude of
the errors in the forecast model. Consequently, in data
assimilation the variances are usually scaled using an
empirically derived global scaling factor [e.g., Rabier et
al., 1998; Derber and Bouttier, 1999]. In our application
where transport errors could accumulate and where other
sources of error could be present (e.g., from regional source
patterns not resolved by the model), scaling of the forecast
errors is also necessary.
[24] We estimate scaling factors by calculating the mean

forecast errors from the NMC method for all the GEOS-
CHEM grid boxes sampled by the TRACE-P aircraft in
the domain considered by Palmer et al. [2003], binned into
2-km altitude bins, and comparing them with the model
errors from the work of Palmer et al. [2003]. As shown in
Figure 3, at all altitudes in the NW Pacific, the model errors
are a factor of 2–4 larger than the mean forecast errors. The
global model transport error is obtained by applying the
appropriate scaling factor from Figure 3 for each altitude bin
to the global forecast errors. Examples of the resulting
model errors are shown in Figure 4 for the upper and lower
troposphere. Throughout much of the upper troposphere
the model error is 10–20%. The largest model errors
(exceeding 60%) in the free troposphere in the model are
associated with the outflow of pollution from Asia across
the Pacific Ocean. There are also large errors in the transport

Figure 3. Comparison of the relative model error
(squares) [from Palmer et al., 2003] and the mean relative
forecast errors (circles), as a function of altitude, for the NW
Pacific region sampled by the TRACE-P aircraft.
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of CO which has been convectively lofted into the free
troposphere over South America and central Africa. In the
lower troposphere the model errors are small (10–20%) in
the remote troposphere but increase significantly over the
continental source regions (where errors can be as large as
40–50%). The largest errors (exceeding 100%) are found
over Southeast Asia. The model transport errors E

0
mod
j

(in equation (7)) are generated by sampling these error
patterns along the TES orbit track and imposing a Gaussian
distribution, with a mean of zero, with respect to the
logarithm of the volume mixing ratio of CO.
[25] Examination of the forecast error covariance (not

shown) reveals that the model transport errors have a hori-
zontal correlation length scale of about 400 km, less than the
distance between successive TES retrievals. Consequently,
we assume that the model errors E

0
mod
j are horizontally

uncorrelated. The vertical correlation length scale in the free
troposphere is 1–2 km, which is much smaller than the
effective vertical correlation length scale of the TES retrievals
(which provide about two pieces of information in the vertical
profile). Therefore we also neglect vertical correlations in the
model transport error.

5. Results

[26] The results of the inversion model using 8 days of
pseudodata (2–16 March 2001) are shown in Figure 5 (red
bars). The inversion model successfully estimates the true
source strengths and significantly reduces the uncertainties
for most of the sources. The a posteriori errors are less than

10% (compared with 50% for the a priori), with the
exception of RWBB and RWFFBF, for which they are
10–25%. This is not unexpected since a large fraction of
the emissions of CO from the latter two sources is in the
Southern Hemisphere, while we restricted our inversion to
the Northern Hemisphere. We find that in the absence of
cloud contamination, comparable reduction in the source
uncertainties can be achieved with about 4 days (2–
8 March) of pseudodata.
[27] We examined the sensitivity of the inversion model to

the added noise by repeating the inversion for 100 realizations
of the noise in equation (7). We found that in each case the
model accurately estimated the true source strengths. The
mean a posteriori solution based on the statistics of all
the solutions in the ensemble is similar to that shown in
Figure 5, confirming the robustness of the results.
[28] The extent to which the inverse model can resolve

the true state is given by the resolution matrix (the ‘‘aver-
aging kernels’’ of the inversion) [Rodgers, 2000]

Axx ¼ I� ŜS
�1

a ; ð16Þ

where I is the identity matrix. Individual rows of the
resolution matrix are plotted in Figure 6. The results show
that, in general, the model resolves the individual sources
well. The rows of the resolution matrix all have peak values
close to unity for the corresponding source and are small
elsewhere. From the resolution matrix we calculate that the
degrees of freedom for signal (the number of independent
pieces of information to constrain the nine-dimensional state

Figure 4. Relative model errors in (a) the upper troposphere (8 km) and (b) the lower troposphere
(1.5 km) for the GEOS-CHEM model simulation of CO over the period February–April 2001. See color
version of this figure at back of this issue.
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space) in the inversion is dofs = tr(Axx) = 8.3. The inversion
resolves the sources well (the dofs is close to 9) because the
large-scale transport patterns of CO (as a result of the long
lifetime of CO) are unique for the sources considered here
and the TES observations provide dense sampling of these
patterns. We find that even if we restrict the retrievals in the
observation vector to levels above 500 hPa, the inversion
analysis can estimate accurately the true source strengths
(green bar in Figure 5). The dofs for this case is also 8.3.
[29] The sharply peaked kernels suggest that the TES

observation vector constrains well the relatively coarse
resolution state vector. They also imply that the nadir
retrievals from TES have the potential to resolve CO source
strengths on smaller geographical scales. However, recent
inverse modeling studies have shown that there is still
significant uncertainty associated with emissions on conti-
nental scales. For example, a posteriori estimates of biomass
burning in Asia from the work of Pétron et al. [2002],
Kasibhatla et al. [2002], and Palmer et al. [2003] differ by
as much as a factor of 2. Additional constraints from TES
would represent a significant improvement in our under-
standing of the global CO budget.

6. Summary and Discussion

[30] We have conducted an observing system simulation
experiment for the TES satellite instrument to determine the
potential of the instrument to constrain the magnitude of
continental sources of CO. Using the GEOS-CHEM global
three-dimensional chemical transport model we produced a
pseudoatmosphere in which the relationship between the
sources and concentrations of CO were known exactly.

Nadir profile retrievals of CO from TES were generated
by sampling this atmosphere along the TES orbit track.
These pseudo-observations were incorporated into a maxi-
mum a posteriori inverse model to solve for the defined
‘‘true’’ source strengths. We focused on constraining a
9-element state vector representing CO source strengths
from different regions and processes.
[31] Because the GEOS-CHEM model was used as the

forward model in the inversion as well as to generate the
pseudo-observations, it was necessary to independently
characterize the errors in the GEOS-CHEM simulation of
CO and add these errors to the forward model simulation. A
previous study, by Palmer et al. [2003], quantified the
GEOS-CHEM transport error for CO over the NW Pacific
by simulation of aircraft observations from the NASA
TRACE-P mission (Febuary–April 2001). We extrapolated
these errors globally by using GEOS-CHEM chemical
forecasts of CO and the NMC method [Parish and Derber,
1992], in which it is assumed that differences between
forecasts valid for the same end point in time, but of
different lengths, are representative of the forecast error
structure in the model. We constructed the global transport
error pattern based on the statistics of 89 pairs of 48- and
24-hour forecasts of CO that were generated with GEOS-
CHEM during the TRACE-P mission in February–April
2001. The global forecast error patterns were then scaled to
match the model errors obtained by Palmer et al. [2003]
over the NW Pacific. This approach represents an advance
over previous methods of characterizing forward model
errors in chemical inversions. It demonstrates the utility of
complementary aircraft observations when interpreting sat-
ellite observations.

Figure 5. Comparison of a posteriori CO source estimates with true and a priori source strengths. Red
bars indicate a posteriori source strengths estimated with instrument noise and model error, as described
in section 3.2 (our standard inversion), green bars show a posteriori estimates obtained using only
retrieval levels between 500 and 250 hPa. A priori source strengths are given by the blue bars, and the
true source strengths are denoted by the black bars. Error bars indicate an uncertainty of 1-s. See color
version of this figure at back of this issue.
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[32] Using our best estimates of model errors and instru-
ment noise, we found that the inversion analysis accurately
estimated the true source strengths and significantly reduced
uncertainty in the sources, starting from randomly chosen a
priori estimates of the sources. A posteriori uncertainties on
the sources were typically less than 10% as compared to
50% assumed for the a priori. This suggests that the TES
nadir retrievals of CO have the potential to constrain
accurately estimates of the CO continental source strengths.
We focused here on continental sources; however, our
results indicate that TES observations should contain suffi-
cient information to help quantify CO sources on smaller
geographical scales. This will be the focus of future work.
[33] Proper error characterization will be crucial to fully

exploit the information in the TES retrievals. The success of
the pseudo-observations in constraining the estimate of the
sources in our analysis was contingent on the errors added
to the inversion analysis being perfectly characterized and
free of biases or systematic errors. Kasibhatla et al. [2002]
found that their inversion was relatively insensitive to a
globally uniform bias of 20% in the OH abundance (the
globally averaged abundance of OH is known to within 10–
20%). The presence of large regional biases, however, either
in the retrieval or in the forward model (as a result of errors
in transport or in the chemistry), will strongly impact the

inversion. Our results indicate that proper error character-
ization must be an essential component of inversion ana-
lyses using satellite observations.

Appendix A: Sequential Update

[34] Although we restrict the observations to between
0�N and 60�N and from the surface to 250 hPa, the large
data volume makes the size of the Jacobian matrix and the
observation error covariance matrix computationally cum-
bersome. We therefore use a sequential update approach in
solving equation (12). We sequentially update the estimate
of the state vector by ingesting one profile ŷ j and one
observational error covariance matrix Se

j at a time. The
sequential update is described by the following algorithm:

dx0 ¼ xa � xi

S0 ¼ Sa

do j ¼ 1 to m

Sj ¼ Kj
� �T

S j
e

� ��1
K j þ Sj�1

� ��1
h i�1

ðA1Þ

dxj ¼ Sj Kj
� �T

S j
e

� ��1
ŷ j � F j xið Þ
� �

þ S�1
j�1dxj�1

h i
ðA2Þ

Figure 6. Resolution matrix for the inversion. Each line represents a row of the matrix (for which the
corresponding source is indicated in the legend) and describes the sensitivity of the a posteriori source to
the true state. These are not continuous functions, but for clarity we have plotted them as such. See color
version of this figure at back of this issue.
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enddo

xiþ1 ¼ xi þ dxm;

where m is the total number of individual profiles in the data
set, Kj is the sensitivity of the observations in the jth profile
to the sources xi, and Se

j is the observation error covariance
matrix of the jth profile. Note that the observation error
covariance matrix in equation (12) must be block diagonal,
with elements given by equation (8) (which are uncorrelated
between locations j), for the sequential update to be a valid
implementation of equation (12).
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Figure 1. (a) Averaging kernels for TES nadir retrieval of CO for selected retrieval levels between 1000
and 100 hPa. The corresponding retrieval levels for the individual averaging kernels are indicated by
solid circles. (b) Example of a retrieved profile. The true profile is represented by the solid line, the a
priori profile is shown by the dotted line, and the retrieved profile is denoted by the dashed line. The
retrieval levels are indicated by the solid circles.

JONES ET AL.: POTENTIAL OF OBSERVATIONS OF CO FROM TES

ACH 21 - 3



Figure 4. Relative model errors in (a) the upper troposphere (8 km) and (b) the lower troposphere
(1.5 km) for the GEOS-CHEM model simulation of CO over the period February–April 2001.
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Figure 5. Comparison of a posteriori CO source estimates with true and a priori source strengths. Red
bars indicate a posteriori source strengths estimated with instrument noise and model error, as described
in section 3.2 (our standard inversion), green bars show a posteriori estimates obtained using only
retrieval levels between 500 and 250 hPa. A priori source strengths are given by the blue bars, and the
true source strengths are denoted by the black bars. Error bars indicate an uncertainty of 1-s.
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Figure 6. Resolution matrix for the inversion. Each line represents a row of the matrix (for which the
corresponding source is indicated in the legend) and describes the sensitivity of the a posteriori source to
the true state. These are not continuous functions, but for clarity we have plotted them as such.
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