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Signal Velocity, Causality, and Quantum Noise in Superluminal Light Pulse Propagation
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We consider pulse propagation in a linear anomalously dispersive medium where the group velocity
exceeds the speed of light in vacuum (c) or even becomes negative. A signal velocity is defined opera-
tionally based on the optical signal-to-noise ratio, and is computed for cases appropriate to the recent
experiment where such a negative group velocity was observed. It is found that quantum fluctuations
limit the signal velocity to values less than c.
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It is well known that the group velocity yg of a light
pulse can exceed c in an anomalously dispersive medium
[1–4]. If there is no appreciable loss or gain and the disper-
sion is linear, an incident pulse described by a sufficiently
smooth envelope (an analytic signal) E�t� becomes simply
E�t 2 L�yg� after propagating a distance L. As discussed
many years ago by Sommerfeld and Brillouin [1], a group
velocity greater than c does not violate causality because
it is not the velocity of signal transmission. They noted
that the “front velocity,” the velocity at which an infinitely
sharp step-function-like disturbance of the light intensity
propagates, should be used as the velocity of information
transmission [1,3,4].

On the other hand, for a smoothly varying pulse that is
an analytic continuation of the incident pulse E�t 2 L�c�
[5], the signal velocity is not well defined. Because an
analytic signal is entirely determined by its very small
leading edge, there is no new information being carried
by the peak. Furthermore, this leading edge of the pulse
can in principle extend infinitely far back in time, making it
impossible to assign a point marking the onset of a signal.

These considerations are not immediately applicable in
the laboratory. There is first of all the impossibility in prin-
ciple of realizing the infinite bandwidth associated with a
0031-9007�01�86(18)�3925(5)$15.00
step-function “front.” But more subtle questions arise from
the fact that a tiny leading edge of a smooth pulse deter-
mines the entire pulse. For one thing, it is not obvious how
to define the “arrival time” of the signal [6]. In practice,
one cannot extend the “arrival time” to any time before the
detection of the first photon. Furthermore, if the tiniest
leading edge of a smooth “superluminal” pulse determines
the entire pulse, we must account for the effect that quan-
tum fluctuations at the leading edge might have on the de-
tection of the pulse [7,8].

We suggest here an operational definition of the signal
velocity and apply it to the recently observed superluminal
propagation of a light pulse in a gain medium [9]. This ex-
periment showed not only that a superluminal group veloc-
ity is possible without any significant pulse distortion, but
also demonstrated that this can occur with no appreciable
absorption or amplification [9,10]. Previous considerations
of quantum noise in this context focused on the motion of
the peak of a wave packet, and on the observability of the
superluminal velocity of the peak at the one- or few-photon
level [7,8]. Here we show, based on operation definition
of signal velocity, that quantum noise associated with the
amplifying medium acts in effect to retard the observed
signal. Hence, in order to achieve a given signal-to-noise
© 2001 The American Physical Society 3925
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ratio (SNR) at the output of an amplifying medium, a
larger signal is required, resulting in a retardation of the
signal. This retardation is found in numerical simulation
to be larger than the propagation time reduction due to
anomalous dispersion, leading to a signal velocity #c. The
operational definition given and the conclusions reached
here are independent of the intensity of the input pulse.

The experimental situation of interest is illustrated
in Fig. 1 [9]. A gas of atoms with a L-type transition
scheme is optically pumped into state j1�. Two cw Raman
pump beams tuned off-resonance from the j1� ! j0� tran-
sition with a slight frequency offset 2Dv, and a pulsed
probe beam acting on the j0� ! j2� transition, propagate
collinearly through the cell. The common detuning D0
of the Raman and probe fields from the excited state j0�
is much larger than any of the Rabi frequencies or decay
rates involved, so that we can adiabatically eliminate
all off-diagonal density-matrix terms involving state j0�.
Then we obtain the following expression for the linear
susceptibility as a function of the probe frequency [9,10]:

x�v� �
M

v 2 Dv 1 ig
1

M
v 1 Dv 1 ig

, (1)

where g . 0 and M . 0 is a two-photon matrix element
whose detailed form and numerical value are not required
for our present purposes. We note only that the dispersion
relation (1) satisfies the Kramers-Kronig relations and
therefore that a medium described by it is causal.

Consider now the detection of a signal corresponding to
a light pulse as indicated in Fig. 1(a). In a binary state
communication scheme, we assign a time window T cen-
tered about a prearranged time t0 at the detector and moni-
tor the photocurrent produced by the detector. In general,
there is a background level of irradiation that causes a con-
stant average photocurrent i0 even when no light pulse is

FIG. 1. (a) Schematic of the setup to create transparent anoma-
lous dispersion; (b) atomic transition scheme for double-peaked
Raman amplification; (c) refractive index and gain coefficient as
a function of probe beam frequency.
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transmitted; a nonvanishing i0 due to spontaneous emis-
sion exists whenever the medium exhibits gain. An in-
creased photocurrent i1�t� is registered when a light pulse
is received, and we assert that a signal has been received
when the integrated photocurrent

R
dt i1�t� rises above the

background level by a certain prescribed factor. The time
at which this preset level of confidence is reached is then
defined to be the time of arrival of this signal as recorded
by an ideal detector.

The observable corresponding to this definition of the
arrival time is the integrated photon number

Ŝ�L, t� � h
Z t

t02T�2
dt1 Ê�2��L, t1�Ê�1��L, t1� , (2)

where Ê�1��L, t1� and Ê�2��L, t1� are, respectively, the
positive- and negative-frequency parts of the reduced elec-
tric field operator at the exit point �z � L� of the medium.
t0 � Tc 1 L�c where Tc is the time corresponding to the
pulse peak. T�2 is half the time window assigned to
the pulse, typically a few times the pulse width. h is
a constant containing the quantum efficiency, and will
be taken as unity for the rest of the analysis. The ex-
pectation value �Ŝ�L, t�� is proportional to the number of
photons that have arrived at the detector at the time t.
If �Ŝ1�L, t�� and �Ŝ0�L, t�� are, respectively, the expecta-
tion values of Ŝ�L, t� with and without an input pulse,
then the photocurrent difference for an ideal detector is
�Ŝ1�L, t�� 2 �Ŝ0�L, t��. Since the second-order variance of
the integrated photon number, �D2Ŝ�L, t��, characterizes
the noise power due to quantum fluctuations, we define an
optical signal-to-noise ratio in accord with standard signal
detection practice [11]

SNR�L, t� �
��Ŝ1�L, t�� 2 �Ŝ0�L, t���2

�D2Ŝ�L, t��
. (3)

As discussed above, we define the arrival time ts of a
signal as the time at which SNR�L, t� reaches a prescribed
threshold level determined by the allowed error rate.

The positive-frequency part of the reduced electric field
operator can be written as

Ê�1��z, t� �
e2ivo �t2z�c�

p
2p

Z `

2`
dv â�v�e2iv�t2z�yg�, (4)

where vo is the carrier frequency of the pulse, and
�â�v�, ây�v0�� � d�v 2 v0�. Equation (4) assumes
plane-wave propagation in the z direction and that the
group-velocity approximation is valid.

In the experiment of interest the anomalously disper-
sive medium is a phase-insensitive linear amplifier for
which [12]

âout�v� � g�v�âin�v� 1
p
jg�v�j2 2 1 b̂y�v� , (5)

where âin and âout refer, respectively, to the input (z � 0)
and output (z � L) ports of the amplifier and the opera-
tor b̂�v� is a bosonic operator [ �b̂�v�, b̂y�v0�� � d�v 2

v0�] that commutes with all operators âin�v� and â
y
in�v�
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and whose appearance in Eq. (5) is required among other
things to preserve the commutation relations for the field
operators âout and â

y
out. jg�v�j2 is the power gain factor

given by Eq. (1).
Now we derive a rather general expression for the optical

signal-to-noise ratio. Consider first the case of propaga-
tion over the distance L in a vacuum where g�v� � 1.
We assume that the initial state jc� of the field is a
coherent state such that â�v� jc� � a�v� jc� for all v,
where a�v� is a c number. For such a state we may
write Ê�1��0, t� jc� � a�t�e2iv0tjc�, where a�t� �
p21�4�Np�t�1�2 exp�2�t 2 Tc�2�2t2�, Np is the average
number of photons in the initial pulse of duration t. We
obtain after a straightforward calculation that

SNRvac�L, t� � �Ŝ1�L, t��vac � SNRvac�0, t 2 L�c� .
(6)

Clearly, the point SNRvac�L, t� � const propagates at the
velocity c without excess noise.

Next we treat the case of pulse propagation over the
distance L in the anomalously dispersive medium, using
Eq. (5) with g�v� fi 1 and the same initially coherent
field. We obtain in this case

�Ŝ1�L, t�� 2 �Ŝ0�L, t�� � jg�0�j2�Ŝ1�0, t 2 L�yg��vac ,
(7)
where �Ŝ0�L, t�� � �1�2p�
Rt

t02T�2 dt1

R
dv �jg�v�j2 2

1� is the photon number in the absence of any pulse
input to the medium. The fact that �Ŝ0�L, t�� . 0 is due
to amplified spontaneous emission (ASE) [11]; in the
experiment of interest the ASE is due to a spontaneous
Raman process.

For a probe pulse with sufficiently small bandwidth, the
gain factor becomes

jg�0�j2 � e4pMg��Dv21g2�?L�l, (8)

and the effective signal �Ŝ1�L, t�� 2 �Ŝ0�L, t�� is propor-
tional to the input signal �Ŝ1�0, t 2 L�yg��vac with time
delay L�yg determined by the group velocity yg. In the
anomalously dispersive medium yg � c��n 1 vdn�dv�
and can be .c or even negative, resulting in a time delay

L
yg

�

∑
1 2 v0M

Dv2 2 g2

�Dv2 1 g2�2

∏
L
c

, (9)

which is shorter than the time delay the pulse would expe-
rience upon propagation through the same length in vac-
uum, or can become negative. In other words, the effective
signal intensity defined here can be reached sooner than in
the case of propagation in vacuum.

In order to determine with confidence when a signal
is received, however, one must evaluate the SNR. Again
using the commutation relations for the field operators, we
obtain for the fluctuating noise background
�D2Ŝ�L, t�� � �Ŝ2�L, t�� 2 �Ŝ�L, t��2 � jg�0�j2�Ŝ1�0, t 2 L�yg��vac 1 �Ŝ0�L, t��

1 2jg�0�j2 Re

∑Z t

t02T�2
dt1

Z t

t02T�2
dt2 a��t1 2 L�yg�a�t2 2 L�yg�F�t1 2 t2�

∏

1
Z t

t02T�2
dt1

Z t

t02T�2
dt2jF�t1 2 t2�j2. (10)
Here

F�t� �
1

2p

Z `

2`
dv �jg�v�j2 2 1�e2ivt (11)

is a correlation function for the amplified spontaneous
emission noise. The four terms in Eq. (10) can be
attributed to amplified shot noise, spontaneous emission
noise, beat noise, and ASE self-beat noise, respectively
[13]. Figure 2 shows the evolution of these noise terms
within the time window T . Clearly, amplified shot noise
dominates when the input pulse is strong.

Using Eqs. (7) and (10), we compute SNR�med��L, t�
for the propagation through the anomalously dispersive
medium. In Fig. 3 we plot the results of such computa-
tions for SNR�med��L, t� as a function of time on the output
signal. For reference we also show SNR for the identical
pulse propagating over the same length in vacuum. It is
evident that the pulse propagating in vacuum always main-
tains a higher SNR. In other words, for the experiments of
interest here [9,10], the signal arrival time defined here is
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FIG. 2. Evolution of quantum noise terms. Curves 1 to 5 in-
dicate noise associated with terms 1 to 4 in Eq. (10), and the
total noise, respectively. Parameters used in the figure are
adopted from the experiments reported in Refs. [9] and [10].
There are 106 photons per pulse. Noise retards the detection of
the signal by reducing the SNR.
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FIG. 3. Signal-to-noise ratios for light pulses propagating
through the gain-assisted anomalous dispersion medium
SNRmed�L, t�, and through the same distance in a vacuum
SNRvac�L, t�.

delayed, even though the pulse itself is advanced compared
with propagation over the same distance in vacuum.

To further examine the signal velocity, we require that
at a time t0 the SNR of a pulse propagating through the
medium be equal to that of the same pulse propagating
through a vacuum at a time t:

SNR�med��L, t0� � SNR�vac��L, t� . (12)

Hence, we obtain a time difference dt � t0 2 t that marks
the retardation due to quantum noise. Dt � t0 2 t 1 L�c
gives the propagation time of the light signal, and L�Dt
gives the signal velocity. In Fig. 4 we plot dt � t0 2 t as
a function of gain for �t 2 Tc��t � 23 and 21. This
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FIG. 4. Delay in signal arrival time dt � t0 2 t as a function
of the gain coefficient. Curves (a) and (b) are for �t 2 Tc��t �
23, and 21, respectively. Curve (a) is delayed more because at
the early stage of the pulse, ASE-self-beat noise produces noise
much greater than the shot noise level.
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corresponds to cases where the signal point is set at 3
and 1 times the pulse width on the leading edge of the
pulse. We also plot for reference the pulse advance L�yg.
It is evident that the retardation in the SNR far exceeds the
pulse advance. In other words, the quantum noise added in
the process of advancing a signal effectively impedes the
detection of the useful signal defined by the signal-to-noise
ratio.

In this Letter, we have presented what in our opinion is a
realistic definition, based on photodetection, of the veloc-
ity of the signal carried by a light pulse. We analyzed this
signal velocity for the recently demonstrated superluminal
light pulse propagation, and found that while the pulse and
the effective signal are both advanced via propagation at a
group velocity higher than c, or even negative, the signal
velocity defined here is still bounded by c. The physi-
cal mechanism that limits the signal velocity is quantum
fluctuation. Namely, because the transparent, anomalously
dispersive medium is realized using closely placed gain
lines, amplified quantum fluctuations introduce additional
noise that effectively reduces the SNR in the detection of
the signals carried by the light pulse. This is related to the
“no cloning” theorem [14,15], which was attributed to the
quantum fluctuations in an amplifier, and which is a di-
rect consequence of the superposition principle in quantum
theory.

Finally, we note that it is perhaps possible to find other
definitions of a “signal” velocity for a light pulse, different
from that we presented here. But such a definition should
in our opinion satisfy two basic criteria. First, it must be
directly related to a known and practical way of detecting a
signal. Second, it should refer to the fastest practical way
of communicating information. While it may be hard to
prove that any definition meets the second criterion, it can
be hoped that the recent interest in quantum information
theory might lead to a generally accepted notion of the
signal velocity of light pulses.
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