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v, = kI'x = xTk, giving the (noise-free) measuremefilfy, i.e. i-th coordinate of the
corresponding vector in measurement space.

Given y and K the inverse problem, or the solution of linear equations, is a
matter of determining a mapping back from measurement space into state space
Fach equation y; = k!'x states that the point x lies in a space of points whose vectors
projected onto k; give the value y;. This subspace is of dimension n — 1 and it lies
at right angles to k;. For example in two dimensions the equation y = k'x; + k%1,
defines a line in (x), 29) space at right angles to the vector (k', k2). Solutions to the
set of linear equations lie in the intersection of all of these subspaces, which may be
a point, a space of one or more dimensions, or may not exist.

We will have to deal with cases where m may be greater than, less than, or equal
to n, and consider the appropriate solution method in each case. The reader may
be familiar with the description of the case m < n as underdetermined (undercon-
strained or ill-posed), and expect the case m = n to be well-determined and m > n
to be overdetermined. Unfortunately this simple description is not always correct,
as a simple example will illustrate. Consider the 2 x 2 case:

1tz = 1
Ty +x = 2 A>Mv

Here we have two equations for two unknowns, but they are both overdetermined
and underdetermined. They give us contradictory information about the combi-
nation z, + z2, and so are overdetermined, and give no information about the
linearly independent combination z; — z2, and so are underdetermined. This situ-
ation, which is normally not so blatantly obvious, is called mized-determined. The
following set is also mixed-determined, but less obviously:

1 —2x2+ 323 = 4
2ry —x9 +4x3 = 3
—xy —4x9 +23 = 7 (A.3)

because the difference between the first two equations contradicts the difference
between the last two. Given these hints, it should be quite clear how to construct
linear systems with more equations than unknowns which are underdetermined,
well-determined, mixed-determined or overdetermined.

Equations A.3 describe three planes in a 3-dimensional space, each pair of which
intersects in a line, but the three lines to not intersect in a point to give a solution,

asin the case of a well-determined problem. They are all parallel
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A.2 Eigenvectors and Eigenvalues

The eigenvalue problem associated with an arbitrary square matrix A of order n is
to find eigenvectors r and scalar eigenvalues A which satisfy

Ar =)r (A.4)

If A is regarded a coordinate transformation, then r has the same representation
in the untransformed and transformed coordinates, apart from a factor A\. This
looks like a strange thing to want to know, but eigenvectors turn out to have some
extremely useful features. This equation is the same as (A = AI)r = 0, a homoge-
neous equation, which can only have a solution other than r = 0 if A — AI has rank
less than n, i.e. if its determinant is zero. This leads to a, polynomial equation of
degree n in A, with n solutions for the eigenvalues. Each A can be substituted back
in Eq. (A.4) and a solution for the corresponding eigenvector found. Eigenvalues
may be real or a member of complex conjugate pair. An eigenvector can be scaled
by an arbitrary factor, and still satisfy Eq. (A.4), so it is conventional to normalise
them so that r”r = 1 or, in the case of complex eigenvectors, r'r = 1, where 1 is
the Hermitian adjoint, or transpose of the complex conjugate.
The eigenvectors can be assembled into a matrix R:

AR = RA (A.5)

where the columns of R are the eigenvectors, and A is a diagonal matrix, with the
eigenvalues on the diagonal.

We can find the vectors and values of AT by transposing (A.5):
RTAT = ART (A.6)
then premultiplying and postmultiplying by L = (R7)~!
ATL =LA (A7)

Thus L is the matrix of normalised eigenvectors of AT and the eigenvalues are the
same as those of as A. They are called the left eigenvectors, because they operate
on A (rather then AT) on the left: LTA = ALT, while R are called the right

eigenvectors. By postmultiplying Eq. (A.5) by LT we can express A in terms of its
eigenvectors as

A =RALT =3 " \rdT (A.8)

which is described as a ‘spectral decomposition’ of A .

In the case of a ,;.S:;::é.:. matrix S, where S = S| we must have R = L
by symmetry, so that LTL = LL7 I or L7 L ' and the eigenvectors are
orthonormal. In this case the eigenvalues are all real. If the matrix is positive

definite the eigenvalues are all greater than zero. and stmilarly for a negative definite
matrix
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The following is a summary of useful relations involving eigenvectors:

Asymmetric Matrices

Qm.::::.?:? Matrices

AR = RA (A.9) SL = LA (A.21)
L"A = AL” (A.10) L”S = ALT (A.22)
L"T=R ! RT=L"! (A.11) LT =L! (A.23)
LRT =L"TR =1 (A.12) LLT =LTL =1 (A.24)
A =RAL”T =3, A7 (A.13) S=LALT =3, \L1T (A.25)
AT =LART = ¥ A LrT (A14)

A '=RA'LT (A.15) S™! =LA'LT (A.26)
A" = RA"L” (A.16) S™ = LA"LT (A.27)
LTAR = A (A.17) L7SL =A (A.28)
LTA"R = A" (A.18) LTS"L = A" (A.29)
L"TA"'R=A"" (A.19) LTS 'L =A"" (A.30)
A =TT, M (A.20) IS| =TT, A\ (A.31)

Square roots of matrices

The relation A™ = RA™LT can be used for arbitrary powers of a matrix, in pai-
ticular the square root such that A = AZA?%. This square root of a matrix is
not unique, because the diagonal elements of A% in RAZLT can have either sign,
leading to 2™ possibilities.

We only use square roots of covariance matrices in this book. In this case
we can see that S3 = LAZLT is symmetric. As well as these roots, symmetric
matrices can also have non-symmetric roots satisfying S = AmeﬂmW, of which
the Cholesky decomposition, S = TTT where T is upper triangular, is the most
useful, see section 5.8.1.1 and Exercise 5.3. There are an infinite number of non-
symmetric square roots. If S is a square root, then clearly so is XS? where X is
mormal matrix. The inverse symmetric square root is S™% = LA :L’,
and the inverse Cholesky decomposition is S™' = T~'T~7. The inverse square
root T~! is triangular, and its numerical effect is implemented efficiently by back

substitution.

A.3 Principal Axes of a Quadratic Form

Consider the scalar equation:
xTSx =1 (A.32)
where S is symmetric. This is the equation of a quadratic surface centered on the

origin, in n-space. S might be for example an inverse covariance matrix, when the

cquation might represent a surface of constant probability density. The normal to
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the surface is the vector Viu(x"8x) = 28x, and x is the radius vector, so

Sx = A\x (A.33)

is the problem of finding points where the normal and the radius vector are parallel.

These are clearly where the principal axes intersect the surface. At these points,
xTSx =1 too, so xTA\x = 1 or:

A= — (A.34)

Thus the eigenvalues of a symmetric matrix are the reciprocals of the squares of the
lengths of the principal axes of the associated ellipsoid. The lengths of the axes are
independent of the coordinate system, so will also be invariant under an arbitrary
rotation, that is one in which (distance)? = xTx is unchanged.

Consider using the eigenvectors of S to transform the equation for the quadratic
surface:

x"LALTx =1 or xTAX' =1 or Mv:_a\w =1 (A.35)

where x’ = LTx’ or x = Lx’. The result is a quadratic surface in which the principal
axes coincide with the coordinate axes.

A.4 Singular Vector Decomposition

The standard eigenvalue problem is meaningless for non-square matrices because
Ar will be of a different dimension from r, and Eq. (A.4) is invalid.
However an eigenvalue problem can be constructed by considering the symmetric

problem:
(e 0) (7) 2 (3) a9

where K is an arbitrary non-square matrix with m rows and n columns and v

is of dimension n and u is of dimension m. We use the symbol K, because the

main application in this book is for the weighting function matrix. The vectors u

and v are called ‘singular vectors’ of K, and \ is a singular value. The symmetric

eigenvalue problem is equivalent to the ‘shifted’ eigenvalue problem (Lanczos, 1961):
Kv = \u

K'u = v (A.37)

From Eq. (A.37) we can obtain by substitution:

K 'Kv AK u = Ay (A.38)

KK'u \Kv  \u (A 39)
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-
showing that u and v are the eigenvectors of KK’ (m x m) and K"K (n x n)
respectively, which consequently both must have the same set of eigenvalues, and
that the singular value is real. Furthermore, if (u,v) are a pair of singular vectors
with singular value ), then so is (u, —v), with singular value —A. Thus we need
only consider pairs with positive singular values.

A little care is needed in constructing a matrix of singular vectors, because indi
vidual u and v vectors correspond to each other, yet there are potentially different
numbers of v and u vectors. However, if the rank of K is p, then there will be p
non-zero singular values, and both KK and KT K will have p non-zero eigenvalues
Thus the surplus eigenvectors will have zero eigenvalues, and can be discarded and

A%s Mv Amv = Amv\, (A.40)

where A is p x p, Uis m x p, and V is n x p. There will be n + m — p more
eigenvectors of the composite matrix, all with zero eigenvalue. The singular vectors
and values have the following properties:

we can write:

KV = UA (A.41)
KU = VA (A.42)
UKV = VTKTU = A (A.43)

K = UAVT = 5. \uv?! (A.44)

K” = vaAu7T (A.45)
viv = UTu =1, (A.46)
KK'U = UA? (A.47)
K'KV = VA? (A.48)

For VVT and UUT to yield unit matrices, they must be extended to be square
using the remaining zero eigenvectors of KTK or KK7. Because UTKV = A we
describe U as left singular vectors, and V as right singular vectors.

Note that a square matrix has both singular vectors and values, and eigenvectors
and values. In the case of symmetric matrices they will be the same, but not in the
case of unsymmetric matrices.

The right vectors V form an orthonormal basis (coordinate system) in the row
space and the left vectors form a basis in the column space. The matrix K maps the
row space basis vector v into a corresponding column space basis vector u (apart
from a scale change given by \), and K7 maps u back into v. Thus U and V are

a natural pair of coordinate systems for the two spaces
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A.5 Determinant and Trace

The determinant and the trace are both important quantities in quantifying infor-
mation content. The following elementary properties are useful:

tr(A) = Y, Au (A.49)
tr(AAT) = 3. 4% (A.50)
tr(kA) = ktr(A) (A.51)
tr(A+B) = tr(A) +tr(B) (A.52)
tr(CD) = tr(DC) (A.53)
tr(ab”) = bTa g4~ (A.54)
tr(B~'AB) = tr(A) (A.55)
tr(A) = SN & (A.56)
tr(A7Y) = T (A.57)
|AT| = A (A.58)
|kA| = k"A| (A.59)
|AB| = [BA| = |A||B| (A.60)
AT = |AlT! (A.61)
IBIAB| = |A| (A.62)
Al = TLX (A.63)
I+Al = [LO+MN) (A.64)
I+ab”| = 1+bTa (A.65)

where A and B are square matrices of the same order, J; is the i-th eigenvalue of
A, n is the order of A, C and D are rectangular matrices such that CT and D are
the same size and shape, a and b are vectors of the same order, and % is a scalar.

A.6 Calculus with Matrices and Vectors

The differential dx is often used to indicate an infinitesimal vector. Throughout

this book it is used quite differently. In integral expressions the following meaning
is intended:

\\C&;%H\...\\?u_,a?..;a:vmf dz, ... dz,, (A.66)

Le. dx is an element of volume of state space. In derivatives, the notation dy /0x
means the Fréchet derivative, whose value is a matrix:

Ay,
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We often need to find the minimum or maximum of some matrix expression. ver:
often with respect to a vector. For example what value of x minimises x" Ax
AbTx? It is convenient to have a set of rules corresponding to the familiar 1l
of calculus with scalars so that we do not have to carry out such manipulation. 1
components each time.

The derivative of a scalar valued expression with respect to a vector yicldt
vector, because it represents the set of derivatives of the scalar with respect to ¢ i,
element of the vector. The vector may be expressed as a row or a columun, at vour
convenience. In components, the i-th element of the above example gives:

17, 0
wmAxs>x+§ﬁxL = amMaE;ﬁ +>MUF,$V (N oo
T 3

3
= M&u\»ﬁnTMU\»%&»IT\/? (A
j k
There is a slight subtlety in returning this to a matrix notation, because the I

term would produce a row vector and the other two terms would produce colinn
vectors if done blindly. The result can be expressed either as a row or a colunin

%) :
m|?q>x+§sx_n>qx+>x+§ (A1
x
or ’
9 r T T TAT T
®|xﬁ Ax+Ab'x]=x"A+x"A" + )b (A
Confirming that:
7] 9 r .
= = — e N
mxfwxv A and mxAN A=A {

is left as an exercise to the reader.
Note that the symbol V, may also be used as equivalent of -

Ox





