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ABSTRACT

In ensemble Kalman filter (EnKF) data assimilation, localization modifies the error covariance matrices to

suppress the influence of distant observations, removing spurious long-distance correlations. In addition to

allowing efficient parallel implementation, this takes advantage of the atmosphere’s lower dimensionality in

local regions. There are two primary methods for localization. In B localization, the background error co-

variance matrix elements are reduced by a Schur product so that correlations between grid points that are far

apart are removed. In R localization, the observation error covariance matrix is multiplied by a distance-

dependent function, so that far away observations are considered to have infinite error. Successful numerical

weather prediction depends upon well-balanced initial conditions to avoid spurious propagation of inertial-

gravity waves. Previous studies note that B localization can disrupt the relationship between the height

gradient and the wind speed of the analysis increments, resulting in an analysis that can be significantly

ageostrophic.

This study begins with a comparison of the accuracy and geostrophic balance of EnKF analyses using no

localization, B localization, and R localization with simple one-dimensional balanced waves derived from the

shallow-water equations, indicating that the optimal length scale for R localization is shorter than for B

localization, and that for the same length scale R localization is more balanced. The comparison of locali-

zation techniques is then expanded to the Simplified Parameterizations, Primitive Equation Dynamics

(SPEEDY) global atmospheric model. Here, natural imbalance of the slow manifold must be contrasted with

undesired imbalance introduced by data assimilation. Performance of the two techniques is comparable, also

with a shorter optimal localization distance for R localization than for B localization.
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1. Introduction

The ensemble Kalman filter (EnKF; Evensen 1994)

is a Monte Carlo approximation to the traditional filter

of Kalman (1960) that is suitable for high-dimensional

problems such as numerical weather prediction (NWP).

One of the strengths of ensemble Kalman filters is the

ability to evolve in time estimates of forecast error co-

variance, using the flow-dependent information inherent

in an ensemble of model runs.

Localization is a technique by which the impact of

observations from distant regions upon an analysis is

suppressed. There are two categories of localization

techniques (discussed in detail in section 2b): those that

operate on background error covariances B, which we call

B localization; and those that operate on observation error

covariances R, which we call R localization. Adaptive

localization techniques, such as the hierarchical filter of

Anderson (2007) and ensemble correlations raised to a

power (ECO-RAP) of Bishop and Hodyss (2009a, 2009b),

are beyond the scope of this work.

It is the error covariances between model variables,

along with the observation error characteristics, that

ultimately describe the impact pattern of an observation

upon the analysis via the Kalman gain K. In practice, the

accuracy of the background error covariance estimate is

limited by the size of the ensemble, which must be kept

small for computational feasibility (typically of order

20–100 for NWP). Empirically, at larger geographical

distances background error covariance estimates tend to

be dominated by noise rather than signal (Hamill et al.

2001); it is this ‘‘distance-dependent assumption’’ that

motivates the technique of (nonadaptive) localization to

eliminate correlations that are deemed to be spurious.

The background error covariance determined from an

ensemble of P members has at most P 2 1 degrees of

freedom to express uncertainty. However, in local regions

of large error growth the atmosphere has been shown to

exhibit low dimensionality (Patil et al. 2001). When using

localization, the ensemble needs to account for the insta-

bilities in a local region. Additionally, if local analyses can

choose different linear combinations of ensemble members

in different regions, this allows the analysis to greatly reduce

the previously noted dimensionality limitation (Hunt et al.

2007). Lorenc (2003) notes that the assimilation of a perfect

observation removes a degree of freedom from the en-

semble, but that localization with a Schur product allows for

extra degrees of freedom in the analysis.

Localization can also lead to significant savings in

computational resources. The analysis at each grid point

only needs to consider local observations and the values

at nearby model grid points that are linked to these

observations by the observation operator. Analyses for

local regions can thus be considered independently, allow-

ing for more efficient parallelization of the code (Hunt et al.

2007; Szunyogh et al. 2008).

Successful NWP depends upon well-balanced ini-

tial conditions to avoid the generation of spurious

inertial gravity waves such as those that ruined the 1922

Richardson forecast. By balanced, we mean an atmo-

spheric state in the slow manifold that approximately

follows physical balance equations appropriate to the

scale and location, such as the geostrophic relationship.

In practice, there are initialization techniques for im-

proving the balance of an analysis, such as nonlinear

normal mode initialization and digital filters (Lynch and

Huang, 1992). However, once an analysis is filtered the

resulting atmospheric state cannot be guaranteed to be

optimal. Daley (1991, chapter 6) notes that there is no

unique balanced state corresponding to a given unbalanced

state; a filter may merely ignore the increment and move

the solution back toward the balanced background state.

Thus, an ideal data assimilation system should avoid or

reduce the initialization by filtering and try to create a

well-balanced analysis.

The impact of localization on the balance of an anal-

ysis is discussed in Cohn et al. (1998) who noted an un-

realistically high ratio of divergence to vorticity as a

consequence of local observation selection. Mitchell et al.

(2002) show that the optimum localization distance (in

terms of improving analysis error) grows with ensemble

size, and that balance is improved with longer localization

distances. Lorenc (2003) provides an example of how

localization produces imbalance. Consider the assimila-

tion of a single height observation located at the origin

(x 5 0) of Fig. 1. The solid lines in Fig. 1 represent a

perfect scenario where the height h and meridional wind y

are in geostrophic balance in the context of the shallow-

water equations (see section 2 for details). The black line

is proportional to the error covariances between h at the

location x and h at the origin, while the gray line is pro-

portional to the error covariances between y at x and h at

the origin. In the assimilation of a single h observation,

these lines are also proportional to the respective ele-

ments of the Kalman gain matrix K, and therefore the

analysis increments. Localization is then applied to these

error covariances by multiplying them by a Gaussian func-

tion with length scale 250 km based upon distance from

the observation, so that the error covariances decay to

zero for larger x (dashed lines). In the region of x 5

250 km, the analysis increment of y is reduced by locali-

zation. If geostrophic balance is to be maintained, then

the magnitude of the height gradient with respect to x

should also be smaller. However, the height gradient is

actually increased by localization and therefore the wind

becomes significantly ageostrophic in this region (dash–dot
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line). In general, EnKF covariance localization modifies

the elements of either the B matrix or the R matrix, which

in turn reduces the elements of K as one moves farther

from the observation. Thus, as in this example, the anal-

ysis increments asymptote to zero as the analysis con-

verges to the background in the absence of observation

information. During this transition the geostrophic balance

of the analysis increment is disrupted.

Kepert (2009) demonstrates how assimilation of wind

and height observations with localized covariances pro-

duce imbalanced analyses with excess divergence, and

proposes assimilation in terms of streamfunction c and

velocity potential x rather than u and y wind compo-

nents. This technique results in a smaller (and more

natural) ratio of divergence to rotation in the analysis,

and hence balance is improved, but these improvements

are less noticeable after initialization.

The purpose of this paper is to compare the B and R

localizations and their impact on balance. Following a de-

scription of the EnKF and localization techniques (section

2), we first compare the localizations using a simple model

(section 3), and then apply them to a global atmospheric

model (section 4).

2. Methods

a. Ensemble Kalman filter data assimilation

The data assimilation cycle consists of a forecast stage,

where the estimate of the state is evolved in time using

a model, and an analysis stage, where the estimate of the

state xa is improved through optimal combination of

forecast xb and observations yo:

x
a

5 x
b

1 K[y
o
� h

op
(x

b
)]. (1)

The optimal weight matrix K, or Kalman gain, is given

by

K 5 BHT(HBHT 1 R)�1, (2)

where B is the background error covariance matrix, R is

the observation error covariance matrix, and H is the

linearization of the observation operator hop. In en-

semble data assimilation methods, the background error

covariance matrix is estimated using an ensemble of P

forecasts:

B 5
1

P� 1
X

b
XT

b , (3)

where Xb is the matrix of background ensemble pertur-

bations from the ensemble mean with each row referring

to a model variable, and each column to an ensemble

member. The exact technique for updating the analysis

ensemble members depends on the version of EnKF.

b. Localization techniques

For B localization, the B matrix is multiplied element-

wise (i.e., through a Schur product) by another matrix C

whose elements represent some localization function floc

of distance d between grid points i and j (Houtekamer and

Mitchell 2001). Gaspari and Cohn (1999) describe a

Gaussian localization function:

f
Bloc

5 exp
�d(i, j)2

2L2

" #
, (4)

where L is a localization distance used for scaling the

width of the localization. Gaspari and Cohn (1999) also

introduced a piecewise polynomial approximation of

a Gaussian localization function with compact support

(this means it becomes zero beyond some finite distance,

in this case at about 3.65 times L). Physically, this means

that the background errors at model grid points that are

far apart should have no statistical relationship.

With R localization, modifications are made to the ob-

servation information. The simplest technique is through

FIG. 1. Example showing the introduction of imbalance by lo-

calization [after Lorenc (2003)]. Waveforms of height (black) and

meridional wind (gray) before (solid) and after (dashed) multipli-

cation by a Gaussian localization function (dotted). Values on the y

axis denote the size of the analysis increment (m; m s21) from the

assimilation of a height observation located at the origin. The

ageostrophic portion of the wind increment after localization is

dash–dotted.
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observation selection, by excluding observations that lay

beyond a cutoff radius from the analysis (as in Houtekamer

and Mitchell 1998). However, abrupt localization cutoff

can result in a noisy analysis. Hunt et al. (2007) proposed

a gradual R localization by multiplying the elements of

R by an increasing function of distance from the analysis

grid point. Here we use the positive exponential function:

f
Rloc

5 exp
1d(i, j)2

2L2

" #
. (5)

With uncorrelated observation error (which is a reason-

able assumption for many instruments), R is diagonal.

Then in (5), d is the distance between observation i and

model grid point j. Since d varies depending upon which

grid point the analysis is being performed at, the rows of

K [in (2)] must be computed independently because the

(HBHT 1 R) term will be different at each grid point

location. Physically, this means that far away observa-

tions can be considered to have infinite error, and thus

do not impact the analysis.

The R localization rather than B localization is nec-

essary for the local ensemble transform Kalman filter

(LETKF; Hunt et al. 2007), because as the calculations

are done in ensemble space, the B matrix is not repre-

sented explicitly in physical space. The formulation of

the Kalman gain (2) can be stated for the LETKF as

K 5 X
b
[(P� 1)I

p
1 (HX

b
)TR�1(HX

b
)]�1(HX

b
)TR�1,

(6)

where Ip is the P 3 P identity matrix. For this study, we

employ Gaussian localization [(4) and (5)] with a cutoff

distance of approximately 3.65 times L beyond which

there is no observation impact (the localization func-

tion is set to 0). The application of (5) to a diagonal R

using an observation cutoff radius of 3.65L puts an up-

per bound on the conditioning number for R at 103 for

the case of uniform observation errors. Localization can

also be applied by dividing the diagonal elements of R21

in (6) by fRloc. This reduces the size of the rightmost term

of the bracketed expression in (6); as this smaller term is

then added to the identity matrix, the inversion of the

bracketed expression remains a stable calculation. Note

that some studies (i.e., Houtekamer and Mitchell 2005)

report localization values in terms of cutoff distance

rather than L.

For NWP applications, B (N 3 N, where N is the di-

mension of x) is too large to be represented explicitly,

therefore the BHT and HBHT terms of (2) are calculated

directly from the ensemble, as in Houtekamer and Mitchell

(2001). For the serial ensemble square-root filters (EnSRF;

Whitaker and Hamill 2002), localization by a distance-

dependent function is performed upon BHT, where each

element represents the covariance between a model grid

point and observation. Because HBHT is a scalar, it does

not require localization. In the case of observations on

grid points (which is the case used in this study), this

form of localization (on BHT) is equivalent to B locali-

zation. When observations are located off grid points, or

relate to more than one grid point, this technique ex-

hibits hybrid properties of B localization and R locali-

zation. The problem of defining distance for vertically

integrated measurements, such as satellite observations

(Campbell et al. 2010), is equally challenging for BHT and

R-localization techniques, as both require a distance be-

tween an observation and model grid point, and this issue

is a motivation for adaptive localization (Anderson 2007;

Bishop and Hodyss 2009b). This study focuses on hori-

zontal localization with point observations; vertical local-

ization in the LETKF is addressed in Miyoshi and Sato

(2007).

3. Simple model experiments

The goal of this section is to demonstrate the impact of

EnKF localization on balance using a simple model con-

sisting of one-dimensional balanced waveforms. These

initially balanced wave solutions (which are not integrated

forward in time) serve as truth and background ensemble

states for identical twin data assimilation experiments; any

disruption to the balance of the resulting analysis is thus

easily detectable and attributable to the properties of the

EnKF technique.

a. Simple model description

Consider the shallow-water momentum equation in

the x direction for a rotating (constant Coriolis param-

eter f), inviscid fluid:

›u

›t
5�u

›u

›x
� y

›u

›y
1 f y � g

›h

›x
. (7)

The geostrophic balance between the pressure gradient

and Coriolis terms can thus be stated as

f y
g

5 g
›h

›x
. (8)

Here yg is the geostrophic wind. Assuming that the wave

structure is uniform in the y direction, harmonic form is

applied to the perturbation variables to achieve a wave

solution for h, with hdepth being the mean depth of the

fluid, hamp the amplitude of the height perturbation, k

the wavenumber, and xps a wave phase shift:
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h 5 h
depth

1 h
amp

cos[k(x� x
ps

)]. (9)

Assuming geostrophically balanced wind field, we arrive

at the wave solution for y:

y 5�g

f
kh

amp
sin[k(x� x

ps
)]. (10)

For the simple model, consider a one-dimensional non-

periodic domain of 5000 km along the x axis, with model

grid points spaced regularly at 50-km intervals. The Cori-

olis parameter f was selected to be 1024 s21, a reasonable

value for the midlatitudes.

b. Experiment design

The truth state and five background ensemble mem-

bers, plotted in Fig. 2, are defined for both height and

y component of the wind. Each ensemble member is

generated by randomly selecting a height perturbation

amplitude from a uniform distribution of [9, 11] m, a

wavelength from [1950, 2050] km and phase shift from

[250, 50] km. The truth waveform (amplitude 5 10 m,

wavelength 5 2100 km, offset 5 2100 km) is fixed in

order to avoid having a mean background state too close

to the ensemble mean. This would be undesirable, as an

analysis that moves farther from the background toward

an observation would be overly penalized, whereas one

that remained close to the background would be falsely

rewarded. The meridional wind waveform is then gen-

erated to be in geostrophic balance with the height

waveform. These waves are represented discretely as

height and meridional wind values at each of the 101

model grid points. Observations of both h and y at reg-

ularly spaced grid points 250 km apart are chosen based

upon the truth value at the corresponding model grid

point plus a random observation error equal to 10% of

the wave amplitude.

Ensemble mean analyses resulting from assimilation

using no localization, B localization, and R localization

using various localization distances L are compared. As

the wind can be partitioned into geostrophic and ageo-

strophic components (y 5 yg 1 ya), the RMS value of

ya over all grid points is used as a summary metric of

imbalance; accuracy is also assessed as the RMS dif-

ference from the truth. To obtain significant results not

dependent upon the peculiarities of a specific random

configuration of ensemble members and observation er-

rors, each configuration is repeated 100 times in a Monte

Carlo experiment. Note that the model is not advanced in

time, so boundary conditions are not needed.

c. Simple model results

Figure 3a shows the dependence of RMSE for each

analysis as a function of localization distance L. LETKF

rather than the generic EnKF formula is used for R local-

ization; the differences in accuracy and balance metrics

between LETKF and EnSRF R localization for this

experiment (not shown) are on the order of 1%, so the

comparison is fair. The R localization has an optimal

scale of L 5 500 km, whereas B localization is close to

optimal at around L 5 1000 km and larger for 5 ensemble

members. A scenario using 40 ensemble members and no

localization is also plotted as a best-case performance

scenario to which the localized 5-ensemble member anal-

yses aspire. Note that results for y-wind error (not shown)

are similar. An explanation for the disparity in optimal

length scales is provided in the appendix.

Figure 3b shows the dependence of RMS imbalance

(ageostrophic wind) for each analysis as a function of

localization distance L. Analyses without localization show

no ageostrophic wind, which is to be expected from the

design of the experiment. For the localized cases, as the

localization distance increases, the analysis becomes more

balanced. The R localization is always more balanced than

B localization for the same localization distance L, al-

though the levels of imbalance are comparable when

considering the optimal configuration of each method.

4. SPEEDY model experiments

a. Measuring balance in a realistic model

In a realistic atmospheric model we can no longer

assume that the background state is initially balanced,

since an atmosphere with purely geostrophic flow would

FIG. 2. Sample experimental setup for the simple model exper-

iment. The black curves represent the height waveform, while the

gray represent the meridional wind. Thick solid lines depict the

truth waveforms, whereas dashed lines are used for the ensemble

members. Black circles are height observations, whereas gray di-

amonds are wind observations.
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not allow for interesting weather such as intense baro-

clinic development and the vertical motion associated

with heavy precipitation. Therefore, although much of

the energy in the atmosphere is associated with the slow

mode (Daley 1991), there is a natural level of imbalance

in the atmosphere. The challenge is to differentiate be-

tween this background amount of imbalance, and addi-

tional spurious amounts introduced as an artifact of data

assimilation.

There are several metrics for evaluating atmospheric

imbalance. Section 3 (and Lorenc 2003) uses the mag-

nitude of the ageostrophic wind. While this metric is

straightforward to compute, it is not applicable at all lati-

tudes; there are also more sophisticated balance equations,

such as nonlinear balance (Raymond 1992), to consider.

High-frequency oscillations can be diagnosed directly by

examining the second derivative of the surface pressure

field in time (Houtekamer and Mitchell 2005). Finally, the

analysis can be compared to an initialized (filtered) version

of itself using a Lynch and Huang (1992) Lanczos digi-

tal filter [as in Mitchell et al. (2002)] that removes high-

frequency oscillations, and thus inertial-gravity waves, from

the model time series (not included in this study). Similarly,

Kepert (2009) used the magnitude of the nonlinear normal

mode initialization (NNMI) increment as a measure of

balance. The surface pressure and digital filter metrics

require model output from several time steps at a rela-

tively fine temporal resolution (smaller than 1 h).

b. Experiment design

The Simplified Parameterizations, Primitive Equation

Dynamics (SPEEDY) model (Molteni, 2003) is an atmo-

spheric global circulation model of intermediate com-

plexity designed for climate experiments. While containing

many of the physics components found in larger models

(including convection, condensation, cloud, radiation, and

surface flux parameterizations), it is computationally

inexpensive so it can be run on a single processor. There

are seven vertical levels using the sigma coordinate sys-

tem, with a horizontal spectral resolution of T30, which

corresponds to a standard Gaussian grid of 96 by 48 points.

The time scheme is leapfrog. There are five dynamical

variables included in the output: zonal wind u, meridional

wind y, temperature T, specific humidity, and surface

pressure ps. Miyoshi (2005) modified the SPEEDY model

for weather forecasting by creating output every 6 h,

and implemented several data assimilation techniques

on the SPEEDY model. Horizontal diffusion (of vor-

ticity, divergence, temperature, and specific humidity) in

the SPEEDY model is done with the fourth power of the

Laplacian, and is applied on the sigma surfaces. Maxi-

mum damping time is 18 h for temperature and vor-

ticity, and 9 h for divergence, with an additional 12 h

applied at the top level (representing the stratosphere).

There is also vertical diffusion that simulates shallow

convection in regions with conditional instability, as well

as water vapor and static energy vertical diffusion (Molteni

2003). Frequency damping with a Robert–Asselin filter

(with filter parameter equal to 0.05) is included in the

SPEEDY model to suppress the spurious computational

mode. Amezcua et al. (2011) has examined the use of a

Robert–Asselin–Williams (RAW) filter (which success-

fully dampens the computational mode without damping

the physical solution; Williams, 2009) with the SPEEDY

model, and found that there are very few changes to the

model climatology that pass a field significance test, and

the quality of the forecasts was slightly improved. This

change in the high-frequency damping did not seem to

affect the model balance. Note that the RAW filter is not

employed in the experiments presented in this paper.

The ultimate goal of using the SPEEDY model is a

realistic comparison of B localization and R localization

FIG. 3. (left) RMS error of the analysis from the truth for height (m) and (right) RMS ageostrophic wind (m s21)

using no localization, B localization, and R localization for five ensemble members and a variety of localization

distances L. For comparison, an analysis with no localization and 40 ensemble members is also plotted. Arrows depict

optimum values of L.
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in terms of balance and accuracy. Here, B localization

is employed with the EnSRF algorithm (Whitaker and

Hamill 2002), whereas R localization is used with LETKF

(Hunt et al. 2007). In addition, a third configuration using

the EnSRF with R localization is employed to investigate

whether any differences between the first two configu-

rations are primarily due to variation in localization

technique rather than assimilation algorithm (serial vs

simultaneous, etc.); see Holland and Wang (2010) for

an independent comparison of EnSRF and LETKF. All

systems use identical observations, which are generated

as random perturbations from the nature run, or true

state, in an identical twin experiment. The observation

network used for this study approximately follows the

rawinsonde locations (see Fig. 7), with all observations

located on model grid points. Observations are located

at each of the seven model levels. Observation error is

1 K for temperature, 1 m s21 for u and y wind magni-

tudes, 1 g kg21 for specific humidity, and 1 mb for sur-

face pressure. Multiplicative inflation of 2% is applied to

the background ensemble spread. Vertical localization

is by model level so that an observation corresponding to

one of the model’s seven levels does not impact any

other level; previous experience with the SPEEDY

model has shown that vertical correlations for wind and

temperature errors are minimal. The ensembles are

composed of 20 members, with initial conditions taken

from consecutive dates in January 1982.

The forecast-assimilation cycle is every 6 h over a pe-

riod of 48 days from 1 February to 20 March 1982. The

assessment of accuracy is made by comparing the en-

semble mean analysis of wind magnitude to the truth at

each 6-h period. Balance is assessed through the magni-

tude of the ageostrophic wind, as well as the second de-

rivative of surface pressure. These metrics are applied

during the month-long period of 20 February–20 March

following 20 days of spinup. Wind metrics are obtained

from model level 4 (;500 hPa). Results are reported as an

areal mean, either globally or over midlatitude bands

(;308–608) separately for the Northern Hemisphere (NH)

and Southern Hemisphere (SH).

c. SPEEDY model results

Figure 4 shows the accuracy of analyses (measured by

mean absolute wind error at ;500 hPa) for the EnSRF B

localization and LETKF R localization relative to the

true state as a function of localization distance param-

eter L [see the discussion surrounding (4) and (5)]. The

performance of the system is highly dependent upon the

choice of localization parameter. Too long a localization

distance and the system is dominated by spurious ob-

servation increments that prevent it from converging to

the truth, whereas too short a localization distance and

observations introduce imbalanced increments, as well

as fail to adequately impact their neighborhood of grid

points. An optimal localization distance parameter L

with respect to accuracy is 500 km for R localization,

and 750 km for B localization. Error is higher and the

optimal length scale is slightly longer for the SH com-

pared to the NH (not shown), as the former has a rela-

tive paucity of observations. The performance for R

localization in both LETKF and EnSRF is similar, par-

ticularly for L , 500 km where the results are essentially

identical. The results for wind error at other vertical levels

(not shown) reveal a similar dependence on localization,

with slightly higher errors as altitude increases. Note that

the areal mean ensemble spread (not shown) is also highly

sensitive to L, with shorter L corresponding to greater

ensemble spread. Observation information reduces the

uncertainty of an analysis; for shorter localization dis-

tances this reduction in analysis spread takes place over

smaller regions (nearest to the observations), and thus the

areal mean ensemble spread remains high.

Figure 5 reveals the performance of the two systems

with respect to balance, measured by the mean magni-

tude of the ageostrophic wind at ;500 hPa as a function

of the localization distance parameter L. There exists

a larger natural state of geostrophic imbalance in the

NH (;3 m s21) compared to the SH (;2 m s21) due to

the presence of the Himalayan plateau protruding into

the midlatitude belt as well as the fact that the experi-

ment occurred in the NH winter with its stronger wind

speeds. In all cases, the imbalance of the analyses is larger

than that of the true state, indicating that data assimilation

FIG. 4. Summary of SPEEDY accuracy statistics for B localiza-

tion vs R localization. Error bars denote standard deviation over

time. Arrows denote optimal values of localization distance L. For

L , 500 km, EnSRF R localization and LETKF R localization give

essentially identical results.

FEBRUARY 2011 G R E Y B U S H E T A L . 517



has introduced artificial imbalance. Although the mag-

nitudes of the mean ageostrophic winds are higher for

the NH, the difference in imbalance between the nature

run and assimilation runs (assimilation-induced imbal-

ance) is greater for the SH. Short localization distances

(L , 300 km) are detrimental to balance, which agrees

with the results of section 3 using a simple model. For

very long localization distances (L 5 2000 km), pre-

sumed spurious correlations can lead to larger values of

both error and imbalance. Examination of performance

time series reveals that values of imbalance tend to

stabilize, along with the error, after 20 days of spinup,

although there are day-to-day fluctuations on the order

of 0.5 m s21 that are reflected in both the nature run

and assimilation analyses.

Figure 6 also depicts imbalance, but measured by the

second derivative of surface pressure at each model time

step. As in Fig. 5, short localization distances (L , 300 km)

are very harmful to balance. Here, the NH is significantly

more balanced than the SH, which agrees with the result

for assimilation-induced imbalance in Fig. 5. Optimal

values of L are slightly larger using this metric compared

to Fig. 5; averaging the optimal L values for both metrics

of imbalance results in an optimal L that agrees with

the results for accuracy in Fig. 4. The occasional lack of

smoothness in the relationship curves between imbal-

ance and L in Figs. 5–6 reveal that an evaluation time

period of at least one month is required to overcome

sampling error for these techniques.

Figure 7 reveals the spatial distribution of imbalance

as a time mean over the period from 20 February to

20 March. For short localization distances, imbalance is

large in the immediate vicinity of observations. For long

localization distances, imbalance is smaller and spread

over broader areas. This finding agrees with the Lorenc

(2003) explanation using Fig. 1 in that imbalance can be

introduced in the region where the impact of an obser-

vation moves toward zero. The circular patterns of im-

balance surrounding the Southern Ocean islands in the

case of L 5 250 km demonstrate the detrimental impact

of strong localization resulting from a sharp transition

between a region with strong observation impact and

a region with little observation impact. Imbalance is

greatest along the Pacific coast of South America; the

lack of observations in the South Pacific leads to large

observation increments in the region. Inaccurate back-

ground fields, which require larger subsequent analysis

increments resulting in greater potential for imbalance

introduced by data assimilation, may explain the some-

what unexpected increase in imbalance for large L in

Figs. 5 and 6.

5. Conclusions

This study has examined the impact of EnKF locali-

zation techniques upon the accuracy and balance of

analyses. Localization is used to combat spurious cor-

relations due to sampling error from finite ensemble

size, to take advantage of low-dimensionality in local

regions, and for efficient computation. Localization tech-

niques can be classified into two methods: B localization,

where the background error covariance is modified by

FIG. 5. Summary of SPEEDY imbalance statistics for B locali-

zation vs R localization as measured by the ageostrophic wind

(m s21). Natural levels of imbalance are noted as horizontal lines.

Error bars denote standard deviation over time. Arrows denote

optimal values of localization distance L.

FIG. 6. Summary of SPEEDY imbalance statistics for B locali-

zation vs R localization as measured by the second derivative of

surface pressure (Pa s22). Arrows denote optimal values of local-

ization distance L.
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a distant-dependent localization function, and R locali-

zation, where observation error variances are increased

as distance from the analysis grid point increases. Var-

iations of the B-localization technique are appropriate

for EnSRF where the entire domain is updated with

each observation, whereas R localization is used for

LETKF as the background error covariances are spec-

ified in ensemble space and each model grid point is

updated independently. In addition to accurately de-

picting the state of the system, atmospheric data as-

similation should produce a balanced analysis so that

information is not lost through spurious inertial-gravity

wave propagation.

We first described experiments with simple, one-

dimensional waveforms based upon the shallow-water

equations. As the background ensemble is initially bal-

anced, imbalance introduced by data assimilation is easy

to measure as the magnitude of the ageostrophic wind.

The two techniques have differing optimal localization

distances L with respect to analysis accuracy; approxi-

mately 500 km for R localization, and 1000 km or larger

for B localization. For the same localization length R

localization is more balanced than B localization, but

the balance of both techniques improves as L grows

larger.

We then made a more realistic comparison between

EnSRF B localization and LETKF R localization in-

volving the global SPEEDY model in identical twin

experiments. Here, the background state can no longer

be assumed to be in balance. Two methods for evaluating

FIG. 7. Time average spatial distribution of imbalance measured by the second derivative of surface pressure (Pa s22) for (left) short

(100 km) and (right) long (2000 km) localization distances using (top) EnSRF B localization and (bottom) LETKF R localization.

Observation locations are depicted by black dots.
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imbalance are used: the magnitude of the ageostrophic

wind and the second derivative of surface pressure. The

two localization techniques are roughly comparable in

performance with respect to localization and balance

when the optimal length scale of L is selected: 500 km

for R localization, and 750 km for B localization. This

result is consistent with the discussion in the appendix,

which demonstrates that B localization is more severe

than R localization for the same L. We conclude that

the differences in data assimilation algorithm (LETKF

vs EnSRF) are smaller than differences in localization

technique when identifying the optimal localization

distance L.

Both types of localization introduce imbalance; as the

solution reverts toward the background at long distances

from observations, the damping of the height and wind

increments results in a smaller wind increment, but a

larger height gradient, which does not satisfy the geo-

strophic relationship. Localization can also introduce

excess divergence to an analysis (Kepert 2009). The lo-

calization parameter L should be tuned depending on the

particular scale and application of data assimilation, as

well as the size of the ensemble. Tuning inflation values

for each localization parameter L may result in improved

performance. Future studies should consider balance in

the context of the adaptive localization methods, as these

techniques do not necessarily require a specification of L.
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APPENDIX

Mathematical Analysis of B and R Localizations

The relative strength of B-localization and R-localization

techniques are verified mathematically using a simple

example with model variable x1 and x2 at grid points 1

and 2, respectively. Consider a single observation of x1,

with H 5 [1, 0]. Using (2), the Kalman gain matrix

(without localization) can be specified as follows:

K
1

K
2

� �
5

B
11

B
12

� �
(B

11
1 R

1
)�1, (A1)

where Bij is the background covariance between xi and

xj, and R1 is the observation covariance.

Consider the application of the B-localization func-

tion fBloc (4) to (A1). Using fBloc(dij) 5 1, where dij is the

distance between grid points i and j, K1 remains the same

but K2 becomes

K
2

5 f
Bloc

(d
12

)B
12

[ f
Bloc

(d
11

)B
11

1 R
1
]�1

5 f
Bloc

(d
12

)B
12

(B
11

1 R
1
)�1. (A2)

Note that since we are assimilating a single observation

located on a grid point, (A2) is identical for both B lo-

calization and the BHT localization described at the end

of section 2. Now we apply the R-localization function

fRloc (5). Again, K1 remains the same as in (A1). Using

the fact that f Bloc 5 f�1
Rloc, K2 becomes

K
2

5 B
12

[B
11

1 f
Rloc

(d
12

)R
1
]�1

5 f
Bloc

(d
12

)B
12

[f
Bloc

(d
12

)B
11

1 R
1
]�1. (A3)

Comparing (A2) and (A3), the R localization (A3)

has an extra localization term in the denominator. The

localization function fBloc ranges from 1 to 0. Therefore,

the amplitude of K2 (and hence the corresponding anal-

ysis increment) will be larger at grid point 2 for R lo-

calization than for B localization. This means that with

B localization, the analysis reverts to the background

(ignores observation information) more quickly with

distance compared to R localization. In this respect, B

localization can be considered more ‘‘severe’’ than R

localization for the same localization distance parame-

ter L; see discussion of (11) and (12) in Miyoshi and

Yamane (2007).

Now consider the same example but with two obser-

vations (one at each of the grid points) with uncorrelated

errors (i.e., H is a two-dimensional identity matrix). The

Kalman gain would be written as

K
1

K
2

� �
5

B
11

B
12

B
21

B
22

� �
B

11
B

12

B
21

B
22

� �
1

R
1

0

0 R
2

� �� ��1

,

(A4)

where R1 and R2 represent the error variances of the

two observations. Because the analysis process is the

same for x1 and x2 by permuting the indices 1 and 2, we

consider the impact of the localizations on x1 (i.e., K1)

only. The application of the B-localization function

leads to
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The application of the R-localization function with f
Bloc

5 f�1
Rloc gives
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Comparing (A5) and (A7) in terms of the B-localization

function fBloc, we note that the BHT terms are identical.

However, the HBHT terms differ. Using this formu-

lation, we arrive at an HBHT matrix for R localization

in (A7) that is no longer symmetric, although the

original formulation of R localization in terms of the

R-localization function had symmetric covariance matri-

ces (A6). Consequently, it is not straightforward to com-

pute a priori the quantitative difference in localization

strength between the techniques in the case of multiple

observations. With localized serial EnSRF, the resulting

analysis depends upon the order in which the observations

are assimilated; this is not true for the simultaneous as-

similation of LETKF. For this study we focus on R lo-

calization with the LETKF algorithm, performing EnSRF

R localization in order to confirm that differences in the

results are primarily due to difference in localization

technique rather than algorithm. Note that EnSRF R lo-

calization requires a unique R (and hence a separate

computation) for every gridpoint–observation pair.
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