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Using the Extended Kalman Filter With a Multilayer 
Quasi-Geostrophic Ocean Model 

GEIP• EVENSEN 

Nansen Environmental and Remote $ensin• Center, Betyen, Norway 

The formulation of the extended Kalman filter for a multilayer nonlinear quasi-geostrophic 
ocean circulation model is discussed. The nonlinearity in the ocean model leads to an approxima- 
tive equation for error covariance propagation, where the transition matrix is dependent on the 
state trajectory. This nonlinearity complicates the dynamics of the error covariance propagation, 
and effects which are nonexistent in linear systems contribute significantly. The transition ma- 
trix can be split into two parts, where one part results in pure evolution of error covariances in 
the model velocity field, and the other part contains a statistical correction term caused by the 
nonlinearity in the model. Tbls correction term lead• to a linear unbounded instability, which is 
caused by the statistical linearization of the nonlinear error propagation equation. Different ways 
of handling this instability are discussed. Further, nonlinear small-scale instabilities also develop, 
since energy is accumulated at wavelengths 2Ax, owing to the numerical discretization. These 
small-scale oscillations are removed with a Shapiro filter, and the effect they have on the error 
covariance propagation is discussed. Some data assimilation experiments are performed using the 
full extended Kalman filter, to examine the properties of the filter. An experiment where only 
the first part of the transition matrix is used to propagate the error covariances is also performed. 
This simplified experiment actually performs better than the full extended Kalman filter because 
the unbounded instability associated with the statistical correction term is avoided. 

INTRODUCTION 

The concept "data assimilation" denotes methods which 
combine dynamical models of a system with observations 
in order to improve the knowledge of the system. These 
methods are motivated by the following' 

1. A mathematical model will never give an exact descrip- 
tion of the state of a dynamical system. It will be subject to 
errors from estimated model parameters, neglected physics, 
solution techniques, forcing data, and errors in initial and 
boundary conditions. The model will therefore only give an 
approximate description of the physical processes as func- 
tions of space and time. 

2. A set of measurements will never be complete. There 
will always be physics on some scales which are not re- 
solved by the measurements, and they will only be avai]able 
sparsely in space and ti•ne. A set of measurements is also 
subject to errors and will therefore only give an approximate 
description of the complete state as a function of space and 
time. 

A data assimilation system should improve the estimate 
of a state by extracting a xnaximum amount of informa- 
tion from both the measuremcnts and the dynamical model, 
and this information should be combined in an optimal way. 
The main objectives of a data assimilation system are to 
improve the forecasting capability, and to provide a sophis- 
ficated data an•ysis tool. It may be used to iinprove initi.•l 
and boundary conditions, to estimate badly known model 
parameters and to improve error estimates. The mcasure- 
ments are interpolated consistently with the model dynanl- 
ics, and more information is extracted froin the data. The 
model is constrained by the measurements and will not drift 
away from the observed state. 
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The importance of a reliable data assimilation system in 
oceanography is increasing, owing to the large amounts of 
oceanographic data which will be available in the future. 
It is mainly in the last decade that data assimilation has 
gained interest in the oceanographic community, although 
the method has been used in meteorology for some time. 

There are mainly two general concepts which have been 
discussed for data assimilation. The "variational/adjoint • 
method has been the most used scheme [e.g., Lewis and Der- 
bet, 1985; Talagrand and Courtier, 1987; Courtier and Tala- 
grand, 1987; 1990; Long and Thacker, 1989a, b; Thacker and 
Long, 1988; Thacker, 1988]. Given a set of measurements 
distributed in a certain time interval, the initial conditions 
and unknown parameters for the model which are sought, 
are those resulting in the model trajectory that best fits the 
measurements in some sense. This can be formulated as 

a constrained minimization problem where the ocean model 
operates as a strong constraint on a cost function measuring 
the distance between the model solution and the measure- 

ments in a time interval. The cost function will normally 
include terms which ensure smoothness of the model solu- 

tion, and it may also contain different weighting on different 
measurements. A drawback of the method is the difficulty 
of including model errors (system noise). This may result in 
bad solutions which depart significantly from the measure- 
ments, especially if the ocean model is unable to describe 
important phenomena which are contained in the measure- 
ments. 

Another class of methods are those described as "sequen- 
tial" data assimilation. Starting from some best guess ink 
tial condition, the model solution is sequentially updated 
in every time step where measurements are available. The 
model solution will, under certain conditions, approach the 
observed state. At the same time, it will propagate the 
previous information which has been assimilated forward in 
time to increase the knowledge of the system. This group 
of methods requires an updating scheme, which combines 
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the model solution and the measurements to find a better 

state estimate. "Better" normally means that the updated 
estimate is closer to the data then the previous estimate, 
and at the same time is smooth and physically acceptable. 
The methods of "direct insertion" and the "Kalman filter" 

represent the two extremes of updating schemes. Direct in- 
sertion means that the value from a measurement is directly 
inserted at the grid point corresponding to the location of 
the measurement. This may of course lead to spikes and dis- 
continuities in the model solution. The Kalma• filter [see, 
e.g., Gelb, 1974] is the other extreme, where the update is 
based on information about the statistical properties of the 
errors in both the measurements and the model state, and 
therefore the error covariance matrices of both the state es- 
timate and the measurements must be known. The Kalman 

filter gives the optimal linear update in a least squares sense, 
based on the known statistics. It also ensures a smooth up- 
date determined by the covariance functions describing the 
correlation of the errors between variables at different grid 
points. The full Kalman filter is extremely expensive to 
compute, both in number of numerical operations and stor- 
age. The propagation of the error covariance matrix requires 
an amount of computation, which is 2n times a pure ocean 
model integration, where n is the number of state variables. 
Further, the error covariance matrix of size n x n must be 
stored. 

There is also a number of methods in between these two 

extrema, which try to generate smooth updates by using 
more or less ad hoc correlation or influence functions in dif- 

ferent ways. An example is optimal interpolation (OI) which 
has been used by meteorologists for operational weather pre- 
diction. This method has recently been discussed in the con- 
text of a quasi-geostrophic mode] by Rienecker and Miller 
[1991] for oceanographic applications. In OI a constant er- 
ror covariance matrix is used in the standard Kalman filter 

equations to update the state vector when measurements 
are available. It is not propagated forward in time, and 
this results in major computational savings. Although the 
information from dynamical propagation of error statistics 
is lost, this method may give good results and it should be 
considered, maybe in connection with the full Kalman filter, 
where results may be compared. An excellent review on data 
assimilation has been given by Ghil and Malanotte. Rizzoli 
[19911 ß 

In a data assimilation system for mesoscale ocean circu- 
lation, there are some issues that should be considered. The 
ocean model must be able to describe the dominant physics 
in a re-Ill, tic manner, which requires it to be nonlinear. For 
most applications, it should also contain both barotropic and 
baroclinic instabilities. Since the data assimilation meth- 

ods for nonlinear dynamics are extremely complicated, the 
model should be as simple as possible. A second criteria is 
that a sophisticated error statistics scheme should be used. 
We believe that good estimates of the error statistics are 
necessary to provide reliable state estimates. The improve- 
ment of the state estimate at locations where measurements 

are assimilated, and also the advection of this information 
by the background velocity field, should be reflected when 
new measurements are assimilated. 

In this paper the extended Kalman filter is used with a 
nonlinear multilayer quasi-geostrophic (QG) model. This 
provides us with both a realistic ocean model and a very 
sophisticated error statistics scheme. The extended Kalman 

filter is an extension of the common Kalman filter and may 
be used when the model dynamics or the measurement equa- 
tion is nonlinear. It consists of an approximative equa- 
tion for the propagation of error covariances, and also ap- 
proximative filter equations if the measurement equation is 
nonlinear. 

When changing from a linear system to nonlinear dynam- 
ics the possible existence of a wide variety of phenomena 
which are nonexistent in the linear theory is introduced. 
Nonlinear systems may have solutions with multiple equilib- 
ria, where the solutions sometimes abruptly undergo transi- 
tions from one equilibrium to another as parameters change 
(bifurcations). Also chaotic behavior occurs in many de- 
terministic systems, where solutions exhibit an apparently 
random behavior. The Lorenz [1963] model is probably the 
best known example of chaotic systems. It has solutions 
which undergo "unpredictable" transitions between two dif- 
ferent equilibria (chaos). As discussed by Miller and Ghil 
[1990], a sequential data assimilation scheme should handle 
these abrupt transitions caused by bifurcations and indi- 
cate the correct qualitative state of the system. Further, it 
should also provide reliable error estimates, reflecting pos- 
sibly chaotic behavior in the system. The existence of such 
nonlinear phenomena in a QG model has been pointed out 
by Chao [1984]. 

In the following, some of the properties of the Kalman 
filter are discussed. A simple example, where the Kalman 
filter is used to assimilate synthetic measurements in a lin- 
ear one-dimensional advection equation, is used to illustrate 
the Kalman filter. Then the ocean model is discussed, the 
equation for evolution of the error covariance matrix is de- 
rived, and the equations for the extended Kalman filter are 
given. The effects of nonlinearities are discussed and ex- 
amples are included which illustrate the properties of the 
extended Kalman filter in a nonlinear QG model. Conclu- 
sions are given in the final section. 

Tt• KALMAN Fn.Tw•t 

The K alman filter has been derived in a number of books 

on control theory [e.g., Gelb, 1974; Jazwinski, 1970; Tzafes- 
tas, 1978; Bierman, 1977; Anderson, 1979; Stengel, 1986]. 
In oceanography the Kalman filter has been used by Budfell 
[1986, 1987] to describe nonlinear and linear shallow water 
wave propagation in branched channels, using one-dimen- 
sional cross-sectionally integrated equations. Miller, [1986] 
used a one-dimensional linear barotropic QG model to in- 
vestigate the properties of the Kalman filter. He also gave 
a derivation of the Kalman filter equations. In two more re- 
cent papers, Miller and Cane [1989] and Miller [1990] used 
the Kalman filter to assimilate wind data in a wind-driven 

numerical model of the equatorial Pacific. The physical 
model was the linearized equation of motion on an equato- 
rial fi plane. Bennett and Budfell[1987, 1989] have analyzed 
the Kalman filter and the Kalman smoother in connection 

with a spectral approximation for the barotropic potential 
vorticity equation in a doubly periodic domain. They stud- 
ied the convergence of the Kalman filter in the limit of high 
numerical resolution. Ghil [1989] discussed the Kalman ill- 
ter as a data assimilation method in oceanography, and used 
it with a simple linear barotropic model. The Kalman ill- 
ter for use in meteorology has recently been discussed by 
Cohn and Parrish [1991], who discussed the propagation of 
error covariances in a two-dimensional linear model. Dee 
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[1991] has introduced a simplified and numerically more ef- 
ficient method where the error covariances are propagated 
with simplified equations. 

A complete derivation of the Kalman filter can be found 
in the literature described above. This paper concentrates 
on some of the properties of the filter. First of all, the filter 
is linear and it is also optimal in a least squares sense, and 
therefore no other linear filter exists which is better. It is 
assumed that a state estimate vector •k (• •" and a vector 
of measurements zk (• •-o are given at time t•, where n is 
the number of unknowns in the state vector and no is the 
number of measurements. The elements in an updated or 
analyzed state vector • are then given by a linear combi- 
nation of all the elements in both the state estimate vector 

• and the measurement vector z•. This linear combination 
is determined so that the error in the update is minimized 
in a least squares sense. 

A discretized linear model without forcing can be formu- 
lated as 

• -- A•_•, (1) 
where A is the advection operator between each time step. 
The superscripts f and a denote the forecasted and ana- 
lyzed estimate, respectively. The underlying system evolves 
according to 

= A•_• + vk, (2) 

where •,• is the true state at t•, and v• contains the un- 
biased model system noise. The system noise takes ac- 
count of errors in the mathematical model, the numeri- 
cal approximation, and the boundary conditions. An er- 
ror covariance matrix for the state vector • is defined as 
•, = •[(•, - •[•,])(•, - •[•,])•], •he•e •[] me•n• •he 
expected value. An equation for the propagation of the error 
covariance matrix is derived from equation (2) as 

p• = AP•_•A T + Q•, (3) 

where Qk --œ[v•v•] E •"x" is the system error covariance 
matrix. 

The measurement vector z• is related to the true state 
vector through the measurement equation 

z• = H•k• + wk, (4) 

where H• • •noXn is the measurement matrix and w• is 
a vector cont•ning unbi•ed me•urement no•e. AH •nds 
of me•urements which may be related to the state variable 
by the •near operator H• can then be used. Me•urements 
which are nonenear functions of • can be treated in an 
appro•mative way by the extended K•man filter. The o• 
tim• estimate is 

where the K•man •n or influence matrix K• 6 •-x-o is 
•iven by 

•fH T f T - [H• P• H• + R•] • , (6) 

where R• = E[w•w•] 6 •-ox-o • the me•urement error 
cov•iance matrix. The K•man •n matrix cont•ns the 
influence from a me•urement on the different elements of 

• in the columns of K•, •d it cont•ns the influence on 
one element of • from • of the me•urements in the rows 
of K•. 

In the case with only one measurement, and when this 
measurement is exactly observing an element of the state 
vector, the matrix H• will reduce to a vector with zero at 
all elements except the one corresponding to the element • 
in • which is measured. The inverse matrix in the equation 
for the Kalman gain will then be a scalar which is the sum 
of the error variance to • and the measurement zk. The 
product P•H• is a vector containing the error covariance 
function for •. The Kalman gain will therefore be equal 
to the error covariance function to • divided by the sum 
of the error variances of • and the measurement z•. In the 
case when the measurement error is large, the influence of 
the measurement will be small. In the case when the mea- 
surement error is small the influence function will approach 
one, and the influence of the measurement becomes large. 

When the filter is used to improve an estimate, the er- 
ror is reduced and the error covariance matrix is updated 
according to the formula 

= Pl - 

Equations (5)-(7) constitute the Kalman filter update equa- 
tions. 

A SIMPLE EXAMPLE 

To illustrate some of the properties of the Kalman filter, a 
simple case with a linear one-dimensional advection equation 

+ = 0 (s) 
is discussed. This equation describes pure advection of the 
quantity •I/ with constant velocity c, without distortion of 
the shape or amplitude of •. When discretized with a one- 
step numerical scheme in time, this equation may be written 
on the form (1), and it has an error covariance propagation 
equation given by (3). 

A study of a simple linear system used for illustrational 
purposes has also been given by Ghil et al. [1981]. They 
discussed a simplified linear barotrophic model for one- 
dimensional atmospheric wave propagation, where a mod- 
ified Kalman filter, designed to remove fast wave modes, 
was compared to the standard Kalman filter. The time evo- 
lution and propagation of averaged errors in data-rich areas 
(land), and in data-sparse areas (ocean) were discussed to- 
gether with influence functions at different locations. Here a 
simpler one-dimensional advection equation has been used, 
and spatial maps of the error variances have been included, 
in addition to influence functions and time evolution of av- 

erage errors. 

As a test case for the advection equation, a periodic do- 
main is used, where a sinusoidal wave, traveling from left to 
right (i.e., c > 0), with wavelength equal to half the length 
of the domain is given as exact solution of the equation. 
Values of this solution at two locations z - 5 and z -- 20 
are taken as measurements. It is assumed that no initial 
information about the solution is available, and the integra- 
tion starts with the amplitude of the initial wave equal to 
zero. The initial error variance is also set equal to one and a 
correlation function of the form exp {-(r/re) 2 } is a•sumed, 
where r is the distance between grid points and rc is the 
e-folding scale of the correlation function. The solution is 
propagated with equation (8), and at every fifth time s•ep 
the solution is updated with the two measurements from the 
reference solution. Even though the measurements are per- 
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Fig. 1. Solution of the advection equation after one update with the Kahnan filter. The upper left plot shows 
the true solution as a dotted line and the estimated solution as the solid line. The circles are the values of the 

measurements. The lower left plot shows the estimated error variance for each grid point (the diagonal elements 
of P). The Kahnan gain influence (cohunns of K) are shown in the upper right plot. The lower right plot shows 
the time history of the mean square error, i.e., the normalized trace of P. 

fect, a certain error variance is assumed to decrease their 
influence. The measurement at x = 20, has twice as high 
error variance as the measurement at x = 5. 

Figure 1 shows the solutions after one filter update. The 
upper left plot displays the estimate of the correct solution 
as given by the Kalman filter (solid line), and the correct 
solution which is estimated as the dotted line. The upper 
right plot shows the two columns of the Kalman gain matrix 
Kk which describe the influence from the measurements on 
the estimate. Note the difference in amplitude of the in- 
fluence functions for the two measurements. The width of 

these functions is directly connected to the cross correla- 
tion between off diagonal elements in the error covariance 
matrix Pk. This ensures a spatially smooth update, and a 
measurement will normally have influence on a domain of a 
few characteristic lengths of the system, determined by the 
error covariance function. In the lower left plot the diagonal 
of Pa is plotted, where each element contains the square of 
the error (variance), for the state vector. After an update, 
the error is reduced in a spatial domain around the locations 
of the measurements. The lower right plot shows the trace 
of P• divided by the number of grid points, i.e., the mean 
square error, as a function of time. 

Figure 2 shows the solutions after four filter updates, i.e. 
20 time steps. The estimated solution is now approaching 
the form and amplitude of the exact reference solution. The 
errors have decreased further, and note that the informa- 

tion gained at the measurement locations has propagated 
with velocity c, and the errors downstream of each measure- 
ment point are therefore smaller than upstream. The aver- 
age error is decreasing each time measurements are used to 
improve the estimate. Between the updates, the average er- 
ror is slightly increasing due to the system noise Q•, which 
is added every time step. 

Figure 3 shows the solutions after 11 filter updates. The 
filter has now reached a state where the error increase be- 

tween measurement updates is matched by the error reduc- 
tion caused by the assimilation of measurements. The so- 
lution is very close to the reference solution and the errors 
are oscillating between a minima right after measurement 
updates, and a maxima right before measurement updates. 
Because of the system noise, the errors will always increase 
unless information is provided by measurements. The am- 
plitudes of the Kalman gain functions have decreased, since 
the errors in the model state have decreased, and the model 
predicted estimate is weighted more strongly. 

Similar results were also found by Miller [1986] using a 
one-dimensional linear barotropic QG model. 

EQUATIONS FOR TtIE LAYERED MODEL 

The ocean model is multilayered and describes conserva- 
tion of potential vorticity 0 (hereafter called just "vortic- 
ity") in each layer on an f plane. The mean layer thick- 
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nesses are Dl, and the density in each layer is pt, where I 
denotes layer number; I = 1 in the upper layer. Hi is the 
stream function in layer I. The horizontal length scale Rd 
is the internal Rossby radius of deformation of the upper 

layer, given by R• = {(p2 - p•)gD• } / { p0 f2 }, where g is 
the gravitational acceleration, p0 is averaged density and f 
is the Coriolis parameter. The characteristic horizontal ve- 
locity is denoted U, yielding a time scale T = Rd/U. The 
pressure scale is pofURd, and the stream function scale is 
URd. The nondimensional quasi-geostrophic equations [see 
Pedlosky, 1987] are 

0 0 •) ½,=0, 
where n• is the number of layers and the velocities are the 
geostrophic approffimations 

O•t O•t (10) u• = Oy v• = Oz ' 
The vorticity in each layer is given by 

= + - 

0 = ••- fr•,• (•- •_•)+ 
- - 

which constitutes a set of Helmholtz equations for ß when ( 
is known. The Laplacian is V • = 0•/0• +O2/O2y, and the 
constants fr•,• and fr•,2 are "nondimensionM Froude num- 
bers" 

D• p• - p• (12) [rt,• = D• p• - p•_• 
and 

D• p2 - p• (13) fr•,• = D• m+• - t•' 
The bottom topography term is 

_• h 
rl -- e (14) 

with e as the Rossby number and h as bottom topography. 
These equations have been used extensively for mesoscale 
ocean modeling by, among others, Ikeda [1981], Ikeda and 
Apel[1981], Ikeda et al. [1989], and Haugan et al. [1991]. The 
reason for using this model instead of a more complex primi- 
tive equation model, is the simple dynamics of the model. It 
describes conservation of vorticity in each layer, and the only 
physics included are relative vorticity (X72 term), stretching 
or compression of a vorticity column and topographical in- 
fluence in addition to barotropic and baroclinic instabilities. 
This leads to solutions which are relatively simple to inter- 
pret, and the model may be characterized as the simplest 
circulation model which is able to give a "realistic" repre- 
sentation of mesoscale variability in the ocean. It has only 
one dependent variable for each grid point, and this limits 
the size of the matrices used in the Kalman filter. 

The model constitutes a well formulated problem when 
boundary conditions are specified as proposed by Charhey et 
al. [1950], i.e., the stream function is specified at all bound- 
ary points and the vorticity is specified at inflow boundaries. 
Some restrictions to the well posedness occur when the flow 
is parallel to the boundary as pointed out by, among others, 
Miller and Bennett [1988]. 

DISCRETIZATION 

The stream function is chosen as the state variable. If the 

vorticity was used, the transition matrix would be rather 
complicated to compute. Measurements are also normally 
given in terms of sea-level or velocities, which are hard to 
convert to vorticity information. The stream function H is 
discretized on a uniform grid of dimension n• x n• in 
layers, and stored in the vector •k • •Rn in some convenient 
order, where n = nzn•n• is the total number of grid points. 
Hereafter the vectors •k and • of dimension n denote the 
stream function and the potential vorticity, respectively, at 
time t = t•. When starting with the stream function •, the 
solution algorithm for the model equations is as follows: 

1. Calculate the vorticity • at all internal grid points 
from the equations (11) by using a five-point second-order 
finite difference formula for the horizontal Laplacian opera- 
tor V •. To be able to use the same advection scheme for all 

internal grid points, a simple scheme is used to estimate the 
vorticity at the boundaries. The accuracy of this scheme is 
not important when closed boundaries are used, as is the 
case in this paper. 

2. Advect the vorticity at the internal grid points accord- 
ing to equation (9) with velocities calculated from the strea• 
function according to equation (10). 

3. Apply appropriate boundary conditions for the stream 
function at time tk+•, and solve the system of Helmholtz 
equations (11) to find the stream function at time 

For an advection scheme which is one step in time, the 
equation for the stream function at time t•+• may be written 

+ n= + n. 

L' • •)• niXr& is the operator resulting from the discretized 
Laplacian plus the coupling terms between the layers in the 
system of Helmholtz equations (11), ni is the number of in- 
ternal grid points; ni = n•(n• - 2)(nv - 2); r/' • •R "i is the 
bottom topography at all internal grid points; and r/6 •R" 
contains the bottom topography at all internal grid points 
and zero elements at the boundary points. The matrix L" 
is the same as L' except that L" includes extra rows for 
the estimation of boundary vorticity. F(•p•) • •-ix- is the 
advection matrix which updates the vorticity at all the inter- 
nal grid points. Equation (15) is then a system of ni linear 
equations for n unknowns and it can not be solved uniquely 
for •p•+• without additional n- ni equations to close the 
system. These additional equations are the boundary con- 
ditions for the stream function, and they can be formulated 

I'•Pk+• = C'b•p•, (16) 

where I', C'b • •(--)x- The matrix I', when operating 
on •p•+• results in a vector containing the boundary stream 
function at t•+•. The matrix C'b relates the value of the 
stream function at the boundaries to the stream function 

from the last time step. 
The stream function on open boundaries may be kept 

constant in time, or it may be determined from a radiation 
condition. On closed boundaries the stream function will 

normally be constant in time. If a linear and explicit scheme 
for the radiation condition is assumed, the equations for the 
boundary stream function can be contained in the rows of 
C'b corresponding to the different boundary points. 
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By using the boundary conditions (16) in equation (15), 
and by moving r/' to the riglit-hand side, a system of hn- 
early independent equations which have a unique solution 
for •Pk+• results. The ni vector function 

f'(•Pk) = r(•)(•"½• + .) 

which contains the vorticity at all internal grid points, is de- 
fined. Further the n vector function f(•Pk) is defined, which 
includes f'(•Pk)- r/' at locations corresponding to internal 
grid points and the boundary conditions (16) for •Pk+• at lo- 
cations corresponding to boundary points. A compact ma- 
trix equation for the ocean model is 

= 

where L contains the Helmholtz operator at rows corre- 
sponding to internal grid points, and one on the diagonal 
at elements corresponding to boundary points. 

To advance the ocean mode] in time, a numerical ad- 
vection scheme must be specified for stepping the vortic- 
ity field forward in time. This scheme is discussed in the 
appendix. A linear equation solver must be used to update 
the stream function from the system of Helmholtz equations 
(18). A block cyclic reduction algorithm which is based on 
the methods discussed by Sweet [1977], is developed and 
adapted to the matrices resulting from the coupled systems 
of Ilelmholtz equations (11). It can be used for rectangular 
grids of arbitrary size and dimension. This solver will be 
discussed in a forthcoming paper on the numerical imple- 
mentation of the extended Kalman filter. Next the complete 
system of equations which constitutes the implemented data 
assimilation method is discussed. 

PROPAGATION OF ERRORS 

The numerical model (15) and (16) is purely determin- 
istic. The initial, boundary, and governing equations are 
assumed to be known with certainty. However, initial and 
boundary conditions are never exactly known. The numeri- 
cal model contains errors due to neglected physics and esti- 
mated parameters, and also due to numerical approximation 
and truncation errors. These errors can be included in the 

model as follows: 
ß 

L'•/'k+• + •/'= f'(•/'k)- L'v•+•, (19) 
and 

= + (20) 
where the vectors v i and v b contain unbiased noise due to 
all errors in the model equations, added to the state vector 
during a time step. 

Taking the expectation of the equations (19) and (20) 
results in equations for propagation of the expected value 

L'œ[•pk+• ] + r/' = œ[f'(•Pk)], (21) 
and 

I'œ[•Pk+•] = Gbœ[•Pk]. (22) 
Expanding the nonlinear function f'(•Pk) about œ[•Pk] yields 

f'(•k) = f'(œ[•k]) + Of'(•) (•k - œ[•k]) +"'. (23) 
0• 

Ta•ng the expectation of the expansion (23) gives 

œ[f'(•k)] - f'(œ[•k]) + 0 +.... (24) 

When substituting the expansion (23) into equation (19) and 
the expansion (24) into equation (21), and subtracting (21) 
from (19), an approximative equation for the propagation of 
errors for the internal grid points is found, 

- = r,:(,/,, - - (25) 

r; = a + n) I . O• q,=s[q,k] 

A similar equation can be found for the boundary point.• • 

I'(•Pk+• - œ[•Pk+•]) = Gb(•Pk -- œ[•J'k]) + v•b+• ß (27) 
By inserting these equations into appropriate locations in 
the error propagation equation for the internal grid points 
(25), an approximative equation for the propagation of the 
error covariance matrix P = œ[(•/,- œ[•/,])(•/,- œ[•/,])T] is 
found to be 

LPk+• L T = FkPkF• + LQk+• L T, (28) 

where Fk is the transition matrix which contains the rows 

of F• for the internal grid points and the rows of Cb for the 
boundary points. Note the difference between this equation 
and the error propagation equation for the linear advection 
equation (3). Here the transition matrix Fk is a linearized 
approximate function of the state estimate. We also have to 
solve 2n elliptic systems to step the error covariance tnatrix 
forward in time. 

For linear systems, the propagation of the error covari- 
ance is described by the linear dynamical model without 
reference to higher moments. In an optimal nonlinear fil- 
ter the inclusion of an infinite number of equations for the 
moments, is required. The extended Kalman filter results 
from neglecting all moments of third and higher order. It has 
been proven to give good results in the extensive engineering 
literature (some of which is referenced above), and also in 
Budgell [1986] for oceanographic applications and Lacarra 
and Talagrand [1988] in meteorology, when the advective 
nonlinearity is not combined with too strong instability. 

EQUATIONS FOR THE EXTENDED KALMAN FILTER 

Now the complete set of equations which describes the ex- 
tended Kalman filter for the QG model is discussed. When 
the superscript a denotes the analyzed estimate, f the fore- 
casted estimate, and t the true state, the following equations 
constitute the extended Kalman filter for the QG model: 
The nonlinear equation for the propagation of the state es- 
timate 

L•b• = f(•p•_•). (29) 
The equation for propagation of the error covariance matrix 

LP•L • = rk_•P•_•r•_• + LQkL •. (30) 
The measurement equation which describes how measure- 
ments are related to the true state vector 

(31) 

The Kalman gain matrix gives the influence of the measure- 
ments on the state vector during a filter update, 

Kk = f T . P;Hk [HkP•H• + Ski-' (32) 
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The analyzed estimate, 

= - (33) 

The analyzed error covariance matrix, 

P• = [I - Kk Ht]P• 

= [i- KkHk]P•[I- KkHk] T + KkRkK•. (34) 

The last expression in equation (34) should be used for nu- 
merical stability since the first expression contains the dif- 
ference between two positive definite matrices, which may 
become nondefinite, but the last expression is a sum of two 
positive definite matrices. This is especially important in re- 
gions with low variance, which may become negative due to 
numerical errors. The vectors and matrices in the equations 
are listed in Table 1. 

TABLE 1. Matrices and Vectors 

Dimension Definition 

•b k •n State vector 
L •n x n Elliptic operator 
fk •n RHS in discretized model 
Vk •n System noise 
Fk Rn xn Transition matrix 
Q k Rn X n Model error covariance matrix 
Pk •n x n State error covariance matrix 
Kk Rn x no Kalman gain matrix 
Hk Rno x n Measurement matrix 
Z k Rnø Measurement vector 
wk R nø Measurement noise 
Il k Rno x no Measurement error covaxiance matrix 

The matrices and the vectors in the equations for the extended 
Kalman filter. 

The main numerical tasks in solving these equations are 
the matrix multiplications and the elliptic systems which 
must be solved during each time step in order to propagate 
the error covariance. The storage of the full error covariance 
matrix Pk also li•nits the size of the problem to be solved. 
Note that the same elliptic solver can be used both for the 
ocean model and for the propagation of error covariances. 

For the examples in this paper only closed boundaries has 
been used. This is satisfactory since the purpose of the pa- 
per is to give a general discussion of the formulation and 
the properties of the extended Kalman filter with a nonlin- 
ear QG model. The inclusion of open boundary conditions 
significantly complicates the boundary treatment, both for 
the ocean model and the error covariance propagation equa- 
tion. A discussion of a more general boundary treatment 
will therefore be given in a forthcoming paper. By using 
closed boundary conditions the problem is well posed both 
for the ocean model and the error covariance propagation 
equation and no special problems occur. 

EFFECTS OF N ONLINEARITIES ON ERROR PROPAGATION 

With a nonlinear model the dynamics of the error co- 
variance propagation becomes much more complicated than 
what it would be if the model was linear. In general, very 
little can be said about the properties of a nonlinear filter, 
and every special case must be studied separately. The QG 
model results in equations with "modest" nonlinearity, since 
the only nonlinearity occurs on the right-hand side of the 
equation. It is not necessary to solve extra systems of equa- 
tions resulting from a linearized nonlinear left-hand side, as 
was done in Budgell [1986]. 

The transition matrix for the internal grid points, (26) 

may be separated into two matrices. When the derivative is 
evaluated, it may be written as 

= + I + n. (35) 
The first term describes pure evolution of error covari- 

ances according to the model velocity field, where the ve- 
locity field is calculated from the model predicted state es- 
timate. The second part includes the additional effect re- 
sulting from the error caused by evaluating the transition 
matrix as a function of the model predicted estimate in- 
stead of using the exact stream function. In a linear prob- 
lem the second part is avoided since the transition matrix 
is independent of the model solution, and the first part will 
therefore exactly describe the evolution of error covariances. 
The second term contains the derivatives of the advection 

operator with respect to the stream function field, multiplied 
with the vorticity, and it is responsible for some important 
effects discussed below. 

In a nonlinear numerical model, small-scale oscillations 
will occur in the solutions since energy is transferred be- 
tween wave modes at different wave numbers. Energy is 
accumulated at waves with wavelength 2Ax, which is the 
shortest wavelength resolved by the grid. This energy must 
be removed to avoid nonphysical small-scale instabilities in 
the solutions, and this is normally done by using a Shapiro 
filter of some order (see the appendix). When the extended 
Kalman filter is used to propagate error covariances, these 
instabilities will be important for two reasons. First, the 
transition matrix is directly dependent on the vorticity field 
through the second term in (35), and since the small-scale 
noise in the stream function is actually amplified in the vor- 
ticity field, this has strong effects on the error propagation. 
Secondly, since the same "advection" scheme is used for 
the propagation of error covariances as for advection of the 
model solution, small-scale instabilities will be created also 
in the error covariances by the first part of equation (35). 
This noise must be removed in both the model solution and 

the error covariance functions. Actually, if the model solu- 
tion is filtered by the Shapiro filter [Shapiro, 1970], which is 
a linear operator, formulated as 

the error covariance matrix should be updated according to 

P2" = $PnS •, (37) 

which is derived in the same way as the error covariance 
propagation equation (28). The effect of adding these two 
equations to the total data assimilation system is illustrated 
in the next section. 

The bottom topography term is not included in the first 
part of the error covariance propagation. It will only work 
through the nonlinear correction term where it gives a con- 
tribution to the potential vorticity. This would also be the 
case for a f/term if it was included in the model. This means 
that the bottom topography can give a contribution to the 
error covariance propagation through the second term even 
if the model velocity field is zero. Occurrence of such an 
effect can be illustrated in the following way: Suppose there 
are errors of some level in the state vector. This will lead 

to an incorrect advection matrix, which in this case assumes 
zero velocity field. The second term therefore corrects for 
this error based on the statistical knowledge of the system. 
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DATA ASSIM•ATION EXPERIMENT 

Now a few cases which illustrate the use of the extended 

Kalman filter in the nonlinear QG model are discussed. The 
examples axe chosen to illustrate the nonlinear effects on the 
error covaxiance propagation as well as the data assimilation 
process itself. 

Parameters in the Ocean Model 

For all the examples below, closed boundary conditions on 
a square 17 x 17 grid in two layers have been used. The in- 
ternal Rossby radius is 5835 m, and the nondimensional grid 
spacing is Az = 0.5. The velocity scale U = 0.3 m s -•, and 
the initial condition in the reference case has ß-maadmum 

nondimensional velocity equal to 1. The nondimensional 
time step is calculated from the CFL condition; typically 
At = 0.5. The total depth is 300.0 m and an upper layer 
of 50.0 m and a lower layer of 250.0 m have been used with 
a density difference of Ap = 1.0 kg m -a. This results in 
Froude numbers frz, 2 = 1.0 and fr2,z = 0.2, and the Rossby 
number U/fRd becomes approximately 0.5. These param- 
eters are typical for mesoscale processes in the Norwegian 
coastal waters. The QG model has proven to give good re- 
suits in this parameter regime as discussed in [Haugan et ai., 
1991; Ikeda et ai., 1989] even though the Rossby number is 
quite large. 

Initial State Noise 

As has been mentioned above, the Kalman filter requires 
knowledge of the error statistics to give reliable results. It is 
likely that the choice of a correct initial error covaxiance field 
is not crucial, at least for a dissipative system as is discussed 
here. After some time the error covaxiance matrix will be 

mostly determined by the information which is previously 
assimilated according to measurement updates, the addition 
of system noise, and the error covariance propagation. A bad 
choice of the initial error covaxiance matrix will influence 

the first data sets which are assimilated, by using incorrect 
influence from the data on the surrounding stream function 
ValUes. 

In many cases special knowledge of the solution is avail- 
able, e.g., at a closed boundary where the stream function 
can be chosen as constant in time [see Holland, 1978]. The 
measurements should not generate a significant inflow or 
outflow through a boundary which is actually closed, and 
this information must be included in the initial error field. 

By choosing both the initial and the system error variance 
to be zero at the closed boundaries, the influence from mea- 
surements taken inside the domain on these boundaries is 

avoided. The boundary strea•n function is then kept con- 
stant during the update in equation (33). However, for nu- 
merical stability a finite but low error vaxiance should be 
used. With zero vaxiance in a point, numerical truncation 
errors can result in negative variance at that point, and the 
error covaxiance matrix becomes nondefinite. The initial er- 

ror field is defined for each of the grid points (i, j) from the 
function 

r(•,)) = rm• - (rm• - rm•,) • (-d•), (SS) 
where Emin has been chosen as a small number at the closed 
boundaries where the error should be zero, to ensure nu- 
merical stability. As long as Emin is small enough, this will 
not influence the solutions significantly. Em•x is a maximum 

error which is approached in the center of the grid, and dcb 
is the distance to th e nearest boundary. The initial error 
covaxiance field is now calculated according to the formula 

•r(i• , i•, j•, i2, i2,j2) 2 = E(i• , j• )E(i2, j2 ) 

x exv -IIr• - r•11] exv (-(i• - i•) •r.) (39) 
where the subscripts 1 and 2 are used to distinguish between 
the grid points to which the covariance is calculated. The 
lir•-r•[l• is the horizontal distance between the grid points, 
rh is the horizontal correlation scale, i• and 12 denote the 
layers for the two points, and rv is a vertical correlation 
factor between the layers. The horizontal and vertical cor- 
relation scales have been chosen as rh ---- 1.75 and rv = 0.7 

in all the following cases. 

System Noise 

In this paper no attempt has been made to estimate the 
correct system noise for the model. Here the same correla- 
tion function which is used for the initial noise above, and 
with the same horizontal and vertical scales, but with differ- 
ent values for E•,x and E•i, has been used. There may of 
course exist other choices which give better results, but an 
elaborate discussion on the subject will not be given here. 

Pure Error Propagation 

As has been discussed, the transition matrix F• as de- 
fined in equation (35) contains one part which describes 
pure evolution due to the model velocity field, and another 
part which contains a statistical correction caused by the 
nonlineaxity. I• is of interest to examine the effect and the 
importance of this nonlinear correction term. This can be 
done using a steady state stream function field. The velocity 
field will then be constant in time and so will the transition 

matrix, although both the velocity field and the transition 
matrix are still determined from the reference stream func- 

tion. Since the velocity field is time independent, this case 
may be described by a linear model. This linear model will 
have a transition matrix equal to the first part of (35), with 
the nonlinear correction equal to zero. Note that when ne- 
glecting the second term of the transition matrix (35), the 
vorticity of the covariance functions is advected like a passive 
quantity in the model velocity field. It will then be possible 
to examine the effect of the second term in a consistent way. 
The following two cases will be discussed: 

Case 1A: Steady baxotropic eddy, using only the first part 
of the transition matrix (35) for error covaxiance prop- 
agation. 

Case lB: Steady barotropic eddy, using the full transition 
matrix (35) for error covaxiance propagation. 

A steady baxotropic anticyclonic eddy on a flat bottom is 
used. This stream function is also used as the initial con- 

dition in the reference case for the data assimilation exper- 
intents to be discussed next, and it is shown in Figure 8 for 
t = 0.0. In the left and right column of Figure 4 the evolu- 
tion of the error variance field in cases 1A and lB are shown, 
respectively. The initial error variance field has been set to 
one over the entire domain to clearly illustrate the effect of 
the velocity field on the error variance evolution. No system 
noise has been added. 
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Fig. 4. Error vaxi•nces in layer one for case 1A (left column) axed case lB (right column). For case 1A we have 
used contour intervals of 0.1, axed for case lB we have used contour intervals of 1.0. 

In case 1A, the error variance field would stay constant 
in time if the error covariance propagation were described 
by exact numerical equations. It turns out that the error 
variance is fairly constant at the locations where the fluid 
velocities are small. In the area where the velocities in the 

eddy are high, the error variance decreases. This reduction 
of errors is caused by numerical diffusion in the advection 
scheme. The effect of diffusion on the error covariance field 

is quite strong, partly because of the coarse resolution which 
is used. Note that it is not the pure error variance field which 
is advected, since the advection operator works separately 
on each of the covariance functions for the elements in the 

state vector. If higher resolution or a less diffusive advection 
scheme was used, this should give better results for the error 
propagation. The use of wider covari•nce functions would 
also decrease the diffusion. Figure 5 shows the error variance 
through the center of the domain in c•se 1A. 

In case lB the errors increase strongly at the locations 
where the eddy velocities are high. From the second term 
in (35) it can be seen that this effect requires a nonzero vor- 
ticity field, which is equivalent to requiring shear or curved 
flow. Thus, this instability may be interpreted as a shear 
flow instability for error covariance propagation. Figure 6 
shows the error variance through the center of the do]nain 
in case lB. Note the difference in scales in Figure 5 and 6. 

In Figure 7 the mean square error is plotted, i.e., the trace 
of the error covariance matrix divided by the number of grid 
points, in the two cases 1A and lB. For case 1A the average 

error variance decreases in the beginning, since the most dif- 
fusive wavelengths are damped first. Thereafter the average 
error variance decreases more slowly with a much smaller 
effect of the diffusion. In case lB the average error variance 
has an exponential growth. This result is actually quite 
pessimistic for the use of the extended Kalma• filter with 
the QG model. It suggests the existence of •n unbounded 
instability resulting from the linearization of the nonlinear 
error propagation equation. If the exact error propagation 
equation were solved, these instabilities would probably be 

Case IA, error variance at t=50 
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Fig. 5. The estimated error vaxiax•ce in layer one at the grid points 
j = 9 axed i = 1... 17, at t = 50 for case 1A. 
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Fig. 6. The estimated error variance in layer one at the grid points 
j -- 9 and i -- 1 ...17, at t = 50 for case lB. 
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Fig. 7. The estimated mean square errors as a function of time 
for cases 1A and lB. 

saturated and damped, and this effect is lost through the 
linearization process. At this stage the following three ap- 
proaches for handling this unbounded instability are pro- 
posed: 

1. Using only the linear part of the transition matrix. This 
may work well if the estimated solution is close to the exact 
solution, and the errors are small. The contribution from 
the second term will then be small too. If this approach is 
used, the system noise should be increased to account for 
some of the error growth which is eliminated. 

2. Controlling the instability with measurements. The in- 
stability is rather weak but will be exponential for long time 
integrations. If enough measurements are available, the er- 
rors will not be allowed to increase too much. Every time 
the errors in some domain are growing, the measurements 
will have increased influence in that domain, and the errors 
are reduced again. 

3. Using higher order approximations for the error propa- 
gation equation. By using some higher order closure theory, 
which includes a damping or saturation term, it should be 
possible to control the instability. This must be done in an 
approximative way to be computationally affordable. 

In this paper, only the first and second approach are dis- 
cussed. 

Data Assimilation Using the Extended Kalman Filter 

Now some cases where measurements are assimilated us- 

ing the extended Kalman filter are discussed. First a refer- 
ence run is generated where the pure ocean model is inte- 
grated in time. A time series of the reference case is shown 
in Figure 8. The initial condition in the reference run is the 
same barotropic anticyclonic eddy which was used in case 1. 
The difference from case I is the introduction of a sloping 
bottom topography with linearly increasing depth in the y 
direction. This forces the eddy to propagate in the posi- 
tive x direction along isolines of constant depth, and with 
a small component in the positive y direction. Behind the 
initial eddy a cyclonic eddy develops and after some time 
the eddies start to interact with the closed boundaries and 

each other. 

The initial and system error variance is determined from 
the formulas (38) and (39). For the initial noise, Era•x = 1.0, 
and Erain = 0.01, and for the system noise, Era•x = 0.09, and 
Erain = 0.01. 

Measurements are picked from the reference solution as 
stream function values at four different locations in layer 
one, (grid points (1, 6, 6), (1, 6, 12), (1, 12, 6), (1, 12, 12)), 
with time intervals of t = 2. The measurements are perfect 
and no noise has been added. In the actual data assimilation 

runs the measurement error variance is set to •o 2 = 0.05, to 
reduce the weighting on the measurements. An eighth order 
Shapiro filter has been used every time step, as described by 
equations (36) and (37). The following two cases have been 
run: 

Case 2A: Data assimilation experiment using only the first 
part of (35) for the error covariance propagation. 

Case 2B: Data assimilation experiment using the full ex- 
tended Kalman filter where both terms in (35) are 
used for the error covariance propagation. 

In all experiments the initial stream function is set identi- 
cally to zero. Figure 9 shows a time sequence of the stream 
function, the error variance field, and the potential vorticity 
for case 2A, and Figure 10 shows the same time sequence for 
case 2B. The structure of the stream function evolution is 

quite similar. The difference between the estimated stream 
functions and the reference stream function at T = 60 for 

case 2A and 2B, are shown in Figure 11. Table 2 gives the 
maximum norms and the average mean square errors in each 
layer for the same differences. 

The simplified error covariance propagation used in case 
2A performs better than the full extended Kalman filter. 
A reason for this may be the unbounded instabilities which 
develop in case 2B. If the time series of the error variances 
for the two cases are compared (Figure 12), the difference 
is obvious. In case 2A the variances are decreasing steadily 
toward a minimum, just as in the one-dimensional example 
case. The errors are reduced every time measurements are 
assimilated, and the error increases between the assimilation 
times because of the system noise. 

In case 2B it can be seen how the unbounded instabilities 

increase the average error, until measurements "kill" them, 
and the error is reduced again. When the errors are increas- 
ing because of these instabilities, the measurements will get 
too strong influence on the estimated solution in the areas 
with high errors. The strong error growth must be avoided 
if the extended Kalman filter shall give reliable results in a 
data assimilation scheme. Since the instabilities are local- 



17,916 EVENSEN: EXTENDED KALMAN FILTER FOR A QUASI-GEOSTROPHIC MODEL 

10- 

- 

5- 
-- 

_ 

t=o.o t=4o.o 

I I I I I I I I I I I I I I I 

5 10 15 

x-axis 

t=20.O 

lO 

x-axis 

15 I 

t=60.O 

15 

5 10 15 5 10 15 

x-axis x-axis 

Fig. 8. Streaxn function for the reference case in the upper layer. The contour intervals axe 0.1. The thick llne is 
the zero contour, the solid lines axe positive contours, and the dashed lines axe negative contours. 

ired to subdomains on the grid, very dense data coverage is 
required to prevent them from growing. 

There is a significant difference between the exact values 
for mean square errors in Table 2 and the estimated mean 
square errors from Figure 12. This is caused by the use of 
incorrect system and measurement noise. The generation of 
measurements and the data assimilation experiments are us- 
ing the same model. Since no artificial noise has been added, 
neither to the measurements nor the ocean model, both the 
system and measurement noise should be set to zero. In the 
examples, a nonzero variance is assumed both for the ocean 
model and the measurements for illustrational purposes. It 
also ensures numerical stability, since zero measurement and 
system noise results in zero error variance at the locations 
where the measurements are assimilated. This can lead to 

numerical instabilities if the error variance becomes negative 
owing to numerical truncation errors. The estimated error 
vaxiance is therefore based on incorrect error statistics. 
Note that the influence of measurements is determined from 

the relative magnitudes of the state, system and measure- 
ment variances. These vaxiances should therefore be scaled 

properly, if they are used to estimate the exact state error 
variance. The covariance functions (not shown in a figure), 
will evolve dependent on the assimilation of measurements, 
the velocity field, and the error variance field. Their influ- 
ence radii stay fairly constant (typically a few chaxacteristic 
length scales), independent of the amplitude which is deter- 
mined by the error variance field. The vorticity plots are 
discussed in connection with case 3. 

Nonlinear Small-Scale Instabilities 

The effect of nonlinear small-scale instabilities on the 

propagation of error covariances will now be illustrated, and 
the same parameters and example as in case 2B, with full 
error covariance propagation is used. The following modifi- 
cations to case 2B are discussed. 

Case 3A: Data assimilation experiment using the full ex- 
tended Kalman filter, where no smoothing with the 
Shapiro filter (see appendix) has been applied neither 
for the stream function nor for the error covariances. 

Case 3B: Data assimilation experiment using the full ex- 
tended Kalman filter, where a Shapiro filter of 0(8) 
has been applied every time step for the stream func- 
tion, but not for the error covariance functions. 

Figure 13 shows a time sequence of the stream function, 
the error variance field, and the potential vorticity for case 
3A, where no Shapiro filter has been used. Figure 14 shows 
the same time sequence for case 3B, where the Shapiro filter 
has been used only for the stream function. 

The effect of not using a filter to eliminate the small-scale 
noise is totally corrupting the results. In case 3A, insta- 
bilities occur both due to the noise in the streaxn function 

solution through the second term in (35), and also due to 
the nonlinear small-scale instabilities in the first term. The 

stream function solution is very bad with some additional 
structures which did not exist in the reference solution. The 
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Fig. 10. Upper layer stream function (left column), error variance (middle column), and potential vorticity (fight 
column) for case 2B. The contour intervals are 0.1 for the stream function, 0.2 for the error variances, and 0.25 
for the potential vorticity field. 

tion nor the error cov•.ri•.nce functions, the potentiaJ vor- 
ticity field becomes extremely noisy (Figure 13). When the 
stre•.m function is smoothed in case 3B, the most signific•.nt 
noise is removed a.nd the vorticity field a.ppea.rs to be quite 
realistic (Figure 14). The effect of filtering the error cov•.ri- 
a.nce functions is seen by compa.ring the vorticity fie]ds for 
c•.se 2B •.nd case 3B in Figures 10 •.nd 14. It provides •. 
smoother vorticity fie]d, since the noise in the error cov•.ri- 
a.nce functions no longer affects the strea.m function field 
when measurements •.re assimil•.ted, using equ•.tion (33). 

A conclusion from the dat•. assimi]•.tion experiment is 
th•.t case 2A, using only the first p•.rt of (35) for error cov•.ri- 

a.nce evolution, and where both the stream function and the 
error cova. riance functions are smoothed, gives the solution 
which is closest to the reference solution at t = 60. 

CONCLUSIONS AND DISCUSSION 

The formulation of the extended K•lm•.n filter with 

a. nonlinear multilayer quasi-geostrophic ocean circulation 
model has been discussed, including the nonlinear effects 
on the error cov•.riance propagation, like the unbounded in- 
stability caused by the linearization of the error cov•.riance 
propagation equation. A multilayer ocean model have been 
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Fig. 11. The difference obtained when the stream function in cases 2A and 2B is subtracted from the exact 
reference solution for t = 60. The contour intervals are 0.05. In case 2A the errors are rather small, but in case 
2B the amplitudes of both the cyclon and anticyclon are underestimated in layer 2. 

TABLE 2. Error Estimates 

Max. Error MSE 

Upper layer case 2A 0.15 0.0019 
Lower layer case 2A 0.15 0.0033 
Upper layer case 2B 0.27 0.0054 
Lower layer case 2B 0.47 0.0166 
Upper layer case 3A 1.50 0.1257 
Lower layer case 3A 0.82 0.1343 
Upper layer case 3B 0.26 0.0081 
Lower layer case 3B 0.41 0.0221 

The true errors in the estimated stream functions from cases 2 
and 3 at t = 60. The first column contains the maximum error. 

The mean square error (MSE) is shown in the second column. 

used, even if this reduces the horizontal resolution which is 
possible on existing computers. The main reason for this is 
that the baroclinic instabilities should be included in most 

mesoscale simulations to give reasonably good results. No 
verification of the validity of the approximative error covari- 
ance propagation equation has been given, and this is an 
important subject which requires further study. 

The transition matrix can be expressed as two parts, 
where one part contains pure evolution due to the model 
velocity field, and the second part is the statistical correc- 
tion term resulting from the nonlinearity in the error prop- 
agation equation. This makes it possible to test the data 
assimilation scheme both with and without the statistical 

Mean square error, case 2 

0.6 ,•../'"! . case 2•A• 
0.55 [ .?': i/: i case 2.B ........ ß 

h /' '... 
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0.1 ' ' ' ' ' 
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Fig. 12. The estimated mean square error as a function of time 
for cases 2A and 2B. 

correction, and to totally remove the unbounded instability 
connected to it. 

The unbounded instability has actually proven to be 
rather strong for the QG model. If the full extended Kalman 
filter shall be used, it requires either an extensive data cov- 
erage which is able to control the instability, or some higher 
order closure equations which introduce damping of the in- 
stability. The inclusion of higher moments in the approx- 
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Fig. 13. Upper layer stream function (left column), error variance (middle column), and potential vorticity (right 
colunto) for case 3A. The contour intervals are 0.1 for the stream function, 0.2 for the error variances, and 0.25 
for the potential vorticity field. The Shapiro filter has not been used, for either the stream function or the error 
covariance matrix. 

imative error propagation equation will make the Kalman 
filter very computationaJly expensive, •nd an approximative 
method should be used. 

Fortunately, pure error covariance evolution in the model 
velocity field has given quite good results in our cases. It 
also has some other advantages which should be taken into 
account. The coding is very simple, and the existing rou- 
tines in the ocean model c•n be used with only slight mod- 
ifications. This simplified propagation is probably the best 
that can be done without the inclusion of equations which 
damp the unbounded instability. It contains error propa- 
gation based on the estimated state, and if the estimate is 

close to the exact solution it should perform very well. 
With good knowledge of the error statistics, both for the 

dynamical model and the measurements, the inclusion of 
error covariance propagation should certainly improve the 
estimate. An important issue will be to examine if the ex- 
tended Kalman filter, with some version of the error propa- 
gation equation, gives good enough results compared to op- 
timal interpolation (OI), to defend the considerably greater 
computational cost. 

Data assimilation using the extended Kalman filter in re- 
alistic ocean circulation models requires super computers 
with large memory and extremely fast CPUs. The compu- 
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Fig. 14. Upper layer stream function (left column), error variance (middle column), and potential vorticity (right 
column) for case 3B. The contour intervals are 0.1 for the stream function, 0.2 for the error variances, and 0.25 
for the potential vorticity field. The Shapiro filter has been used for the stream function but not for the error 
covariance matrix. 

tational load has been used as an argument against the use 
of the Kalman filter in data assitnilation, and most of the re- 
search has so far been focused on adjoint methods, nudging, 
and OI. Fortunately, computers are becoming more power- 
ful, and there are now super computers available which can 
handle data assimilation using the extended Kalman filter 
with a QG model for reasonably large grids. The error co- 
variance propagation equation is also very well suited to be 
computed on the massive parallel computers like the Mas- 
Par 1200 series and the Connection Machines (CM2). The 
examples have been run on a Cray X-MP, and each case 
required about 20 min of CPU. 

APPENDIX 

The Time Step Scheme 

Since the transition matrix F• from (26) is strongly de- 
pendent on the choice of advection scheme, it is important 
to find a convenient scheme for the advection of vortiCity, 
which also implies a simple transition matrix with as few 
bands as possible. The following criteria have been Used to 
choose the scheme: 

1. The scheme should be explicit to avoid the Solution of 
extra systems of equations when updating the error covari- 
ance matrix. 
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2. It should only reference function values at the points 
in the square [i - 1: i -I- 1, j - 1: j -I- 1] to minimize the 
number of bands in the transition matrix. 

3. The scheme should have high accuracy for smooth flow. 
4. it should be stable for as large time steps as possible. 
5. As has been pointed out in the text, it should be a 

one-step scheme in time. 
Here a short discussion of the advection scheme which has 

been used in the ocean model is given. A Taylor expansion 
of the vorticity •(zi, yj, t) in time about the point (xi, yj, tk) 
denoted by subscript 0, gives 

½(•,, •, • + zx•) = Co 

- .0+T •;o-"ø•0-•ø•0 • •0 

At Ov Ov Ov At •yy - vø+T •70-"ø•0-•ø•0 0 

I 2 Oz2 o o o 
+ O((•at)•; (•at)•), (40) 

where the advection equation (9) has been substituted for 
the temporal derivatives. 

When the velocity field is dependent on both space and 
time, the velocities are estimated at the point 

(z;- «uoAt, Y1- «voAt, tk + •At) (41) 

by a first-order Taylor expansion. This is the midpoint be- 
tween the point (zi, yj, t•+•), which • to be updated, and 
the point 

(•', •', •) = (•, - •at, y• - •at, t•), (4a) 

which is an estimate of the point cont•ning the vorticity at 
time t•, which • conserved when it moves Mong the fluid 
path into (zi, yj) at time ta+•. 

First a scheme • developed and d•cussed in the hnear 
c•e when the velocities are constant in time and sp•e. 
When defining 

a = and fi = Az ' 
and using a second-order centered appro•mation for the 
spati• derivatives, a "genera" scheme may be written • 

-• 2 

1 - ß (•2-,,•+, - C-,,•-,)) + 2 

I 2 • 
+• (•,,•+• - 2• + •,,•_•) 

+o((•a•)•; (•ay)•). (44) 

in this formula s = I is the standard case where the first 

derivatives are calculated from points on a line and therefore 
do not include any information of the two-dimensionality 
of the field. For values of s • 1 the first derivatives are 
calculated by some averaging of the derivatives on a plane, 
as discussed by Smolarkiewicz[1982]. 

The Linear Stability of the Advection Scheme 

The linear stability and accuracy of this scheme are exam- 
ined by assuming a solution on the form • = e i(•:-•-•v), 
where the frequency is allowed to be complex w = Wr '1-iWi, 
which results in the wave 

( = e-•i:e i("•"t-sx-t'st). (45) 
This is substituted in the scheme (44) and the nondimen- 
sional variables 

O• = •Az /•Ay , :oAt --, 0•-- , • =--. (46) 

are defined. This results in the two equations 

•-•: •o• •'• = •(•) (•7) 
and 

•-": •i. •'• = Im(•), (•s) 
where A is given by 

• = 1 - • ( 1 - •o• • •) - f ( 1 - •o• •. ) 
- a fi sin • •: sin • • y 

+ i[• •i. •(• + (1 - •)•o• •.) 

+ • •i. •(• + (1 - •) •o• • )]. (•9) 

i 

Solving for wi and wr from (47) and (48) results in the two 
equations 

(e-":) 2 = Re(X) 2 + Im(X) 2 (50) 
and 

, 1 im(X) 
Wr=--arctan , . (51) •r Re(•) 

From (45), stability is ensured if w, _• 0, which from (50) 
is equivalent to the condition Re(),)2 + Ira(A) 2 _• 1 The 
accuracy of the scheme is given by the dispersion relation 
(51). These schemes are discussed by $mo•,,rk•ea,•½z [1982], 
and he suggested the use of s = 0.5, which results in a 
scheme which is stable under the condition 

(.2 + f)1/2 < 1, (52) 
which is a great improvement from the standard case with 
s = 1, which is stable when 

(,,2 + f)•/2 _< 0.5. (5a) 

The Nonlinear Case 

The proposed scheme satisfies the first four conditions, 
but because the time derivatives of the velocities occur in 

the scheme (40), information from a minimum of two time 
levels is needed. With the assumption of a slowly vary- 
ing velocity field in time, nondimensional O(u,v)/Ot g: 
O(u,v)/Oz, O(u,v)/Oy, the time derivatives may be ne- 
glected. That results in a scheme which is second order 
in Az and Ay, and it is second order in At if the velocity 
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field really is slowly varying in time; if not, it is first order 
in At. 

In this paper the discretized scheme (44) is used with 
s--0.5 and velocities calculated from 

Ou{ Ou] (54) - = -o - «-oAt • o - «roAr •,• o' 

v=•o-«uoAt•o «•oAt•o. 
Nonlinear Instability 

Energy is accumulated at high wave numbers (wave- 
lengths of order O(2Az)), and has to be removed. The 
Shapiro filter (which is developed and discussed in Shapiro 
[1970]) has the properties that it totally removes the waves 
with wavenumber 2As, and at the same time it restores 
infinitely long waves to their original value. A plot of 
the amplitude reduction factor for different orders of the 
Shapiro filter, as a function of nondimensional wavenum- 
bers is shown in Figure 15. A simple general formula for the 
one-dimensional filter was given by Smolarkiewicz [1982]. 
Unfortunately, his formula contained a typing error, and we 
therefore give the correct formula for a one-dimensionM filter 
of order n as 

•I/'filt--' •I/i "• (-1)"-I • (-1)i(2n){ •i+,-i. ' i!(2--i)! 
j=0 

(56) 

In this expression, index i corresponds to the grid point to 
be updated, j is a counter running over the grid points which 
are used in the updating of grid point i. Note that the oper- 
ator (56) is symmetrical. It seems that the Shapiro filter of 
some order is the optimal smoothing and filtering technique 
for removing nonlinear small-scale instabilities without de- 
stroying the physics in the model. A recent review on re- 
cursire and implicit filters has been given by Raymond and 
Garder [1991]. 

When filtering data on a two-dimensional grid, the one- 
dimensional operator (56) can be used first for all the rows 
in the z direction, and thereafter for all the columns in the 
y direction. 

It has been chosen not to update the boundary points with 
the Shapiro filter. When updating grid points close to the 

Shapiro smoothing ratio 
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Fig. 15. The amplitude damping ratios for different orders of the 
Shapiro filter, as a function of nondimensional wave ntunbers k • = 
(kAz)/•r. Here, k' = 1 corresponds to waves with wavelength 
A = 2Az and k • = 0 is infinitirely long waves. 

boundaries, the operator (56) will reference points outside 
the boundary. The existence of ticfive grid points located 
outside the boundary, with values which are symmetrical 
about the value of the boundary point, is assumed. That is, 
the value of the ith ticfive point outside the boundary will 
have the value given by a straight line through the value of 
the boundary point and the value of the ith point inside the 
boundary. By using these in the Shapiro filter close to the 
boundaries, boundary effects are avoided. 
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