Appendix A: The Sherman-Morrison-Woodbury formula

The Sherman-Morrison-Woodbury formula is

$$
\begin{equation*}
\left(\mathbf{P}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}=\mathbf{P} \mathbf{H}^{\mathrm{T}}\left(\mathbf{H P} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right)^{-1} \tag{3.57}
\end{equation*}
$$

There are many ways to prove this, all involving matrix multiplications. Here is one possible proof. Expand the left hand side:

$$
\begin{aligned}
\left(\mathbf{P}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} & =\left(\mathbf{P}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)^{-1}\left[\mathbf{R}\left(\mathbf{H}^{\mathrm{T}}\right)^{-1}\right]^{-1} \\
& =\left[\left(\mathbf{R}\left(\mathbf{H}^{\mathrm{T}}\right)^{-1}\right)\left(\mathbf{P}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)\right]^{-1} \\
& =\left[\left(\mathbf{R}\left(\mathbf{H}^{\mathrm{T}}\right)^{-1} \mathbf{P}^{-1}+\mathbf{H}\right]^{-1}\right. \\
& =\left[\left(\mathbf{R}\left(\mathbf{H}^{\mathrm{T}}\right)^{-1}+\mathbf{H P}\right) \mathbf{P}^{-1}\right]^{-1} \\
& =\left[\left(\mathbf{R}+\mathbf{H P} \mathbf{H}^{\mathrm{T}}\right)\left(\mathbf{H}^{\mathrm{T}}\right)^{-1} \mathbf{P}^{-1}\right]^{-1} \\
& =\mathbf{P} \mathbf{H}^{\mathrm{T}}\left(\mathbf{R}+\mathbf{H P} \mathbf{H}^{\mathrm{T}}\right)^{-1}
\end{aligned}
$$

Appendix B: Proof of some derivative formula

Verify that

$$
\frac{d \operatorname{Tr}(\mathbf{A B})}{d \mathbf{A}}=\mathbf{B}^{\mathrm{T}}
$$

Let \mathbf{A} be $n \times r$ and \mathbf{B} be $r \times n$ since $\mathbf{A B}$ is symmetric. We can write the individual matrix elements as

$$
(\mathbf{A B})_{i j}=\sum_{k=1}^{r} a_{i k} b_{k j} .
$$

Thus we can write the trace of this matrix as

$$
\operatorname{Tr}(\mathbf{A B})=\sum_{i=1}^{n}(\mathbf{A B})_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{r} a_{i k} b_{k i} .
$$

Now we can write that

$$
\frac{d \operatorname{Tr}(\mathbf{A B})}{d \mathbf{A}}=\frac{d}{d a_{l m}}\left[\sum_{i=1}^{n} \sum_{k=1}^{r} a_{i k} b_{k i}\right]=b_{m l}=\mathbf{B}^{\mathrm{T}} .
$$

Appendix C: Eigenvalues of covariance matrices

A covariance matrix is real, symmetric and positive definite. Since it is real, symmetric, its eigenvalue decomposition may be written as

$$
\begin{equation*}
\mathbf{A}=\mathbf{E D E}^{\mathrm{T}} \tag{3.58}
\end{equation*}
$$

where \mathbf{D} is a diagonal matrix of eigenvalues and \mathbf{E} is a unitary matrix of eigenvectors. That is, $\mathbf{E}^{\mathrm{T}}=\mathbf{E}^{-1}$. Now if \mathbf{A} is positive definite, then for all vectors, \boldsymbol{x}, we have that

$$
\boldsymbol{x}^{\mathrm{T}} \mathbf{A} \boldsymbol{x}>0
$$

We can substitute for \mathbf{A} using (3.58):

$$
\boldsymbol{x}^{\mathrm{T}} \mathbf{E D E}^{\mathrm{T}} \boldsymbol{x}=\boldsymbol{y}^{\mathrm{T}} \mathbf{D} \boldsymbol{y}>0
$$

where $\boldsymbol{y}=\mathbf{E}^{\mathrm{T}} \boldsymbol{x}$. Expanding this we have that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}\right)^{2} \lambda_{i}>0 \tag{3.59}
\end{equation*}
$$

But this must be true for all \boldsymbol{x} and therefore for all \boldsymbol{y}. The only way to ensure this is when all eigenvalues, λ_{i} are positive. Another way to see this is to choose a particular \boldsymbol{y} since (3.59) must hold for all \boldsymbol{y}. Choose $\boldsymbol{y}=(0,0, \ldots, 0,1,0, \ldots, 0)$, i.e. the vector with all 0 elements except for the ith element (which is a 1). For this choice of $\boldsymbol{y},(3.59)$ becomes

$$
\lambda_{i}>0
$$

This can be repeated for all $i, 1 \leq i \leq n$.
The eigenvalues of a real, symmetric, positive definite matrix are real and positive. Thus covariance matrices have real and positive eigenvalues.

An excellent reference on eigenvalue problems is Wilkinson (1965).

