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he ensemble Kalman filter (EnKF) [1] is a sequential Monte Carlo method
that provides an alternative to the traditional Kalman filter (KF) [2], [3]
and adjoint or four-dimensional variational 4DVAR) methods [4]-[6] to
better handle large state spaces and nonlinear error evolution. EnKF pro-
vides a simple conceptual formulation and ease of implementation, since
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there is no need to derive a tangent linear operator or adjoint equations, and there
are no integrations backward in time. EnKF is used extensively in a large com-
munity, including ocean and atmospheric sciences, oil reservoir simulations, and
hydrological modeling.

To a large extent EnKF overcomes two problems associated with the traditional
KE. First, in KF an error covariance matrix for the model state needs to be stored
and propagated in time, making the method computationally infeasible for mod-
els with high-dimensional state vectors. Second, when the model dynamics are
nonlinear, the extended KF (EKF) uses a linearized equation for the error covari-
ance evolution, and this linearization can result in unbounded linear instabilities
for the error evolution [7].
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model domain, it can be represented by the state vector
i, at each time instant f,. The cost function can then be
written as

T = @l =g T(CL) T k= yd)
+ (dp = M) "(C. ) ' (dy — M), (1)

where ¢ and i} are the analyzed and forecast estimates
respectively, d, is the vector of measurements, M, is the
measurement operator that maps the model state ¢, to the
measurements d,, (Cf,l,,) ¢ 1s the error covariance of the pre-
dicted model state, and (C,,), is the measurement error co-
variance matrix. Minimizing with respect to ¢} yields the
classical KF update equations

P= i+ K (d — M), (2)
(Cy)i=U—-KM,)(C,)} 3)
Kk = (C¢¢){ME(Mk(C¢¢)]{M]T + (Cee)k) _1; (4)

where the matrix K is the Kalman gain. Thus, both the
model state and its error covariance are updated.

Evensen [2009]

It is assumed that the true state 4 evolves in time accord-
ing to the dynamical model

¢1E - P‘wl/ltc—l + qk—ll (5)

where F is a linear model operator and g;_ is the unknown
model error over one time step from k — 1 to k. In this case
a numerical model evolves according to

Y= Fgi 6)

The error covariance equation is derived by subtracting
(6) from (5), squaring the result, and taking the expecta-
tion, which yields

Cy,(t) = FC,(t_ DF" + C,, (), (7)

99

where we define the error covariance matrices for the pre-
dicted and analyzed estimates as

Clu= W =4 W=y, ®)
Ciy = (W —¢") (Y* — ¢ ©)

The overline denotes an expectation operator, which is
equivalent to averaging over an ensemble of infinite size.



Extended Kalman Filter

We now assume a nonlinear model, where the true state
vector ¢} at time ¢, is calculated from

lplt\ = G(lrlllt\—l) + qk—ll (10)
and a forecast is calculated from the approximate equation
=G, an

The error statistics then evolve according to the equation

Cfx;.,/,(tk) - G;\'—l 3,¢;(tk—1)G;cT—1 +C (tk—l) Ty (12)

q9

where qu(tk_l) is the model error covariance matrix and

G,_; is the Jacobian or tangent linear operator given by

, G ()
G, , = (w‘” L (13)

Note that in (12) we neglect an infinite number of terms
containing higher order statistical moments and higher
order derivatives of the model operator. EKF is based
on the assumption that the contributions from all of the
higher order terms are negligible. By discarding these
terms we are left with the approximate error covari-
ance expression

Cly(t) = G 1C (t_ DG+ C (1 ). (14)

99

Higher order approximations for the error covariance evo-
lution are discussed in [31].

Evensen [2009]



A Monte Carlo Approach

Equations (11), (13), and (14) are the most commonly
used for EKF. A weakness of the formulation is that the
central forecast is used as the estimate. The central fore-
cast is the single model realization initialized with the
expected value of the initial state and then integrated
by the dynamical model and updated at the measure-
ment steps. For nonlinear dynamics the central forecast
may not be equal to the expected value, and thus it is
just one realization from an infinite ensemble of pos-
sible realizations.

Evensen [2009]
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Figure 1. An ensemble of possible initial states of the ocean model
can be represented in an n-dimensional phase space as a cloud of

points, where each point represents an individual state.
Evensen [1994]

It can be argued that for a statistical estimator it makes
more sense to work with the mean than a central forecast.
After all, the central forecast does not have any statistical
interpretation as illustrated by running an atmospheric
model without assimilation updates. The central forecast
then becomes just one realization out of infinitely many
possible realizations, and it is not clear how we can relate
the central forecast to the climatological error covariance
estimate. On the other hand the equation for the mean
provides an estimate that converges to the climatological
mean, and the covariance estimate thus describes the er-
ror variance of the climatological mean. All applications
of the EKF for data assimilation in ocean and atmospheric
models use an equation for the central forecast. However,
the interpretation using the equation for the mean sup-
ports the formulation used in EnKF.

>

Figure 2. The time evolution of an ensemble of initial states in phase
space is illustrated.



Representation of Error Statistics

The error covariance matrices Cf,,d, and Cj, for the
predicted and analyzed estimate in the Kalman filter are
defined in terms of the true state in (8) and (9). How-
ever, since the true state is not known, we define the en-
semble covariance matrices around the ensemble mean
i according to

(C5) = (' —yf) (f —yHT, (17)
(Ci)* = (P = 4®) (g — ¢, (18)

where now the overline denotes an average over the ensem-
ble. Thus, we can use an interpretation where the ensemble
mean is the best estimate and the spreading of the ensem-
ble around the mean is a natural definition of the error in
the ensemble mean.

Evensen [2009]

Analysis Scheme
d]- =d + €, (22)

where j counts from one to the number N of ensemble
members. By subtracting any nonzero mean from the N
samples €, it is ensured that the simulated random mea-
surement errors have mean equal to zero and thus the ran-
dom perturbations do not introduce any bias in the update.
Next we define the ensemble covariance matrix of the mea-
surement errors as

CL =ee€’, (23)

The analysis step in EnKF consists of updates performed
on each of the ensemble members, as given by

Yo =y +(Cy,) M (M(Cy,) ) M+ C2) ~' (d;— Mys}) . (24)
Equation (24) implies that
b=yt + (C5,) MY (M(C,)'M" + ¢~ (d — Myt), (25)

where d =d since the measurement perturbations have
ensemble mean equal to zero. Thus, the relation between
the analyzed and predicted ensemble mean is identical
to the relation between fthe analyzed and predicted state in
the standard Kalman filter, apart from the use of (C;,)"
and Cg, instead of Cf,,:,, and C,.. Note that the introduction
of an ensemble of observations does not affect the update
of the ensemble mean.



Yr—y¢= I -KM) i —yH +K(d—d), (26)

where we use the Kalman gain

K. = (C,)'M"(M(C;,)'M" + C2,) . (27)

The error covariance update is then derived as

(€5, = (=) (g — )T
= ((I-KM) (" —yh +K.(d—d))
X ((I—K.M) (f—¢H) + K (d—d))'

= (I - KM) (=45 (g = DT - KM)T
+K(d—d)(d—d)K!
= (I-KM) (C5,)(I - M'K!) + K,C:K!

e €ee e

= (C;,) —KM(C;,)" - (C;,)'M'K]
+ K, (M(Cj,))'M" + C:)K;
= (I- KM) (C,)". (28)

The last expression in (28) is the t&aditional result for the mini-
mum error covariance found in the KF analysis scheme. Thus,
(28) implies that EnKF in the limit of an infinite ensemble size
gives the same result as KF. It is assumed that the distributions
used to generate the model-state ensemble and the observa-
tion ensemble are independent. Using a finite ensemble size,
neglecting the cross-term introduces sampling errors. Note
that the derivation (28) shows that the observations d must
be treated as random variables to introduce the measurement
error covariance matrix Cg, into the expression. That is,

C.=ee'=(d—-d)(d—-d)". (29)

Evensen [2009]
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An ensemble Kalman filter experiment. For this experiment a linear advection
equation illustrates how a limited ensemble size of 100 realizations facilitates estimation
in a high-dimensional system whose state vector contains 1000 entries. The plots show
the reference solution, measurements, estimate, and standard deviation at three different
times, (a)t=5s,(b)t =150s, and (c) t = 300 s.
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correlation based on difference
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SPURIOUS CORRELATIONS,
LOCALIZATION, AND INFLATION
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Variance reduction of a random ensemble due to spuri-
ous correlations, as a function of analysis updates. The ensemble
Kalman filter (EnKF) with 100 realizations is compared with EnKF
with 250 realizations as well as the square root scheme using 100
realizations. EnKF with 100 realizations is repeated using different
seeds to ensure that the results are consistent.

In many dynamical systems, the variance decrease
caused by spurious correlations may be masked by strong
dynamical instabilities. The impact of the spurious correla-
tions may then be less significant. On the other hand, in
parameter-estimation problems, the spurious correlations
clearly lead to an underestimate of the ensemble variance
of the parameters.

Evensen [2009]



FEBRUARY 2011 GREYBUSH ET AL. 511

SPECIAL

4D-Var ++ EnKF )

Balance and Ensemble Kalman Filter Localization Techniques

STEVEN J. GREYBUSH
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

EUGENIA KALNAY

Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, and Institute
for Physical Science and Technology, University of Maryland, College Park, College Park, Maryland

TAKEMASA MIYOSHI
Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

KAYO IDE

Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, and Institute
for Physical Science and Technology, and Center for Scientific Computation and Mathematical Modeling,
University of Maryland, College Park, College Park, Maryland
BRIAN R. HUNT
Institute for Physical Science and Technology, and Department of Mathematics, University
of Maryland, College Park, College Park, Maryland

(Manuscript received 28 December 2009, in final form 20 September 2010)



a. Simple model description

Consider the shallow-water momentum equation in
the x direction for a rotating (constant Coriolis param-
eter f), inviscid fluid:

ou ou ou oh

L S 7
o Yax Ve TIvTsn (7)

The geostrophic balance between the pressure gradient
and Coriolis terms can thus be stated as

fo, =g, ®

h=h depth T hamp cos[k(x — xps)]. (9)

Assuming geostrophically balanced wind field, we arrive

at the wave solution for v:

v = —§ kh,,, sinfk(x —x )], (10)

[Greybush et al., 201 1]
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FIG. 2. Sample experimental setup for the simple model exper-
iment. The black curves represent the height waveform, while the
gray represent the meridional wind. Thick solid lines depict the
truth waveforms, whereas dashed lines are used for the ensemble
members. Black circles are height observations, whereas gray di-
amonds are wind observations.
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FIG. 1. Example showing the introduction of imbalance by lo-
calization [after Lorenc (2003)]. Waveforms of height (black) and
meridional wind (gray) before (solid) and after (dashed) multipli-
cation by a Gaussian localization function (dotted). Values on the y
axis denote the size of the analysis increment (m; m s_l) from the
assimilation of a height observation located at the origin. The
ageostrophic portion of the wind increment after localization is
dash—dotted.

Localization in the background error covariance matrix

—d(i, j)?
2172

fBl()c — EXp ’ (4)

L ocalization in the observation error covariance matrix

+d(i, j)°

Y )

leoc = €Xp

[Greybush et al., 201 1]



Localization Methods and h Error from Truth Localization Methods and Balance (Ageostrophic wind)

0.8 0.25
0.7 5 ensemble members :"T
= - E 02
E 06 \ / ©
S 05 No Loc é ' No L
= . . ocC
- i B LOC 2 0.15
g 0.4 S —#— B Loc
g e R L_OC o 0.1 RL
— — . —h— oC
5 03 NolocP=40 v |
o 02 )
s < 0.05
o 0.1 g
\4 \4 “
0 0
250 500 1000 1500 2000 250 500 1000 1500 2000
Localization Distance L (km) Localization Distance L (km)

F1G. 3. (left) RMS error of the analysis from the truth for height (m) and (right) RMS ageostrophic wind (m s~ ")
using no localization, B localization, and R localization for five ensemble members and a variety of localization
distances L. For comparison, an analysis with no localization and 40 ensemble membersis also plotted. Arrows depict
optimum values of L.

[Greybush et al., 201 1]

The two approaches are consistent when the appropriate localization scales are selected



The potential of the ensemble Kalman filter for NWP - a comparison with 4D-Var,

A Lorenc, Q. J. R. Meteorol. Soc. (2003), 129, pp. 3183-3203.

TABLE 1.

SUMMARY OF THE COMPARATIVE EASE OF IMPLEMENTATION OF THE ENSEMBLE

KALMAN FILTER (EnKF) AND 4D-VAR

Incremental 4D-Var

EnKF

Forecast model

Linear model

Adjoint model

Covariance model

Observation operators

Analysis algorithm

Suitability for parallel
computers

Limited-area modelling

Predict evolution of mean.
No switches.

Predict average evolution of finite
perturbations from the mean.
May be simplified.

Needed for (simplified) linear
model.

Significant effort needed for
covariance model, and for suitable
linear approximations to nonlinear
model. Adjoint code needed.

Linear and adjoint operators needed,

but these are not usually difficult.

Descent algorithm available as
‘off the shelf” software.

Require parallel simplified and
adjoint models.

Error covariance models can be
extended to specify boundary-value
errors

Predict evolution of typical state.
May have stochastic physics
and switches.

Not needed.

Not needed.

Little effort, other than to keep
the ensemble spread matching
the error.

Only uses forward operators.

Little effort for a sequential
algorithm such as the EnSRF.
Simultaneous box algorithms
are more complicated.

Ensemble members can run on
individual processors, but then
sequential processing of
observations requires
inter-processor communication for
each, and simultaneous processing
in boxes requires a costly data
transposition for the covariances.

Requires an ensemble of global
forecasts to provide boundary
conditions.

See section 4 for discussion.



The potential of the ensemble Kalman filter for NWP - a comparison with 4D-Var,
A Lorenc, Q.]. R. Meteorol. Soc. (2003), 129, pp. 3183-3203.

ENSEMBLE KALMAN FILTER COMPARISON WITH 4D-VAR

TABLE 2.

3185

SUMMARY OF THE ASSIMILATION CHARACTERISTICS OF THE ENSEMBLE KALMAN FILTER

(EnKF) COMPARED WITH THOSE OF 4D-VAR!

Incremental 4D-Var

EnKF

Forecast covariances

Analysis method

Ability to fit detailed
observations.

Balance constraints

Nonlinear observation
operators

Non-Gaussian
observational errors

Modelled at 7y (usually isotropic),
time evolution represented by
linear and adjoint models.

Variational minimization using
model increments. with full model

outer loop.

Limited by resolution of simplified
model.

Can be imposed through a
dynamical design to the variable
transform, or a separate balance
penalty.

Allowed if differentiable. (Results
uncertain if pdf is bimodal in range
of interest.)

Allowed if differentiable. (Results

uncertain if pdf is bimodal in range
of interest.)

Sampled by ensemble (flow-dependent).
Noisy: must be modified to have
compact support using Schur product.

Simple sequential method such as the
EnSREF, or simultaneous observation

space Kalman filter equation.

Limited to fewer data (in a region) than
ensemble members.

Only imposed if each forecast in the
ensemble 1s balanced. Lost slightly in
Schur product.

Allowed, but resulting pdf modelled by
Gaussian.

Not allowed. Prior QC step is needed.

pdf is the probability density function.

I'Lorenc (2003).



Ozone profile retrieval from Global Ozone Monitoring
Experiment (GOME) data using a neural network approach
(Neural Network Ozone Retrieval System (NNORSY))
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[1] The inverse radiative transfer equation to retrieve atmospheric ozone distribution from
the UV-visible satellite spectrometer Global Ozone Monitoring Experiment (GOME)
has been modeled by means of a feed forward neural network. This Neural Network
Ozone Retrieval System (NNORSY) was trained exclusively on a data set of GOME
radiances collocated with ozone measurements from ozonesondes, Halogen Occultation
Experiment, Stratospheric Aerosol and Gas Experiment II, and Polar Ozone and Aerosol
Measurement III. Network input consists of a combination of spectral, geolocation, and
climatological information (time and latitude). In the stratosphere the method globally
reduces standard deviation with respect to an ozone climatology by around 40%.
Tropospheric ozone can also be retrieved in many cases with corresponding reduction of
10-30%. All GOME data from January 1996 to July 2001 were processed. In a number of
case studies involving comparisons with ozonesondes from Hohenpeissenberg, Syowa,
and results from the classical Full Retrieval Method, we found good agreement with our
results. The neural network was found capable of implicitly correcting for instrument
degradation, pixel cloudiness, and scan angle effects. Integrated profiles generally agree to
within +5% with the monthly Total Ozone Mapping Spectrometer version 7 total ozone
field. However, some problems remain at high solar zenith angles and very low ozone
values, where local deviations of 10—20% have been observed in some cases. In order to
better characterize individual ozone profiles, two local error estimation methods are
presented. Vertical resolution of the profiles was assessed empirically and seems to be of
the order of 4—6 km. Since neural network retrieval is a mathematically simple, one-step
procedure, NNORSY is about 10°—10° times faster than classical retrieval techniques
based upon optimal estimation.  INDEX TERMS: 0340 Atmospheric Composition and Structure:
Middle atmosphere—composition and chemistry; 0355 Atmospheric Composition and Structure:
Thermosphere—composition and chemistry; 0394 Atmospheric Composition and Structure: Instruments and
techniques; 1610 Global Change: Atmosphere (0315, 0325); 1640 Global Change: Remote sensing;
KEYWORDS: ozone profile retrieval, Global Ozone Monitoring Experiment, nonlinear regression, neural
computing, neural networks, ozone remote sensing

Citation: Miiller, M. D., A. K. Kaifel, M. Weber, S. Tellmann, J. P. Burrows, and D. Loyola, Ozone profile retrieval from Global
Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)),
J. Geophys. Res., 108(D16), 4497, doi:10.1029/2002JD002784, 2003.



assume that a mapping between spectral data and ozone
exists, which can be approximated by the neural network
model R according to

x = R(y,c,w) + €, (1)

where x 1s the ozone profile, y the spectral GOME data, ¢ a
vector of supplementary input parameters, € an error vector,
and w contains the network model parameters, also called
weights. When certain preconditions are observed, it has
been proven that the neural network can theoretically
approximate any given mapping with arbitrary accuracy

Hidden
Input

Output

Used: 122 input neurons, 45 hidden neurons,
and 60 output neurons

Table 1. Neural Network Input Parameters for Ozone Profile

Retrievals®
Input Parameter ~ Number of Neurons Purpose
270-325 nm 74 O3 Hartley/Huggins band
380-385 nm 13 atmospheric window
598-603 nm 6 O3 Chappuis band
758-772 nm 9 0, A-band: cloud detection
Satellite and - slant column correction
solar zenith angles
line-of-sight flags 3 slant column correction
Latitude and season 2 ozone climatology background
In-orbit time 1 instrument degradation corr.
UKMO T-profile 10 atmospheric state info

*The wavelength ranges refer to Sun-normalized and logarithmized
radiances measured by the GOME instrument.

Train the network using sonde and satellite data to get weights w

nonlinear optimization with respect to w to find the mini-
mum of the error function

l . P D\ 2
EZE;(R(yI.c’.w)—x’). (2)
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Integrated partial column 0 - 10 km gph (bias: 0.5 DU, 1.6%)
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Figure 5. Timeline of partial ozone cplumns from NNORSY (diamonds) and collocated Hohenpeissenberg (47.8°N,
11.0°E) ozone sondes (pluses). Multiple collocations within 160 km were averaged into single points. The FK

climatology is plotted for comparison as a dashed curve.
[Muller et al., 2003]



Ozonsonde [DU]

Ozonsonde [DU]

Partial oolumn 0- 5 km gph

T T

[c1=0902 +

L c1=0.661 )

L c2=0628 T .

I .
& @ o

r Ve

% @ O s
% /

I <> /
o0l N

- o O

I Q

<O

o s o -

O

R
e 2t = RS S
15 20 25
NNORSY / climatology [DU]
Partial column 10- 15 km gph

100 F L R A

20 40 60 80
NNORSY / climatology [DU]

100

Ozonsonde [DU]

Ozonsonde [DU]

Partial column 5- 10 km gph

el =0771 B R -
F c2 = 0.284 o
: + o R
40_ —
© o 0
/ ]
- o S ]
X -/ 1
o - O ]
s;oE <><§Q> /<§<> :
: X500 E
- q‘i A /@ ]
20 : & < .
X O ]
r < o o 5
& ]
10k .
| PTIRT RTINS S N N S BT AT | I A A | I
10 20 30 40
NNORSY / climatology [DU]
Partial column 15-20km gph
10l c1'="0935 j T <'><>,',/
2 = 0.648 7
€ ++ 0, ©~
120" % o & i
S ]
T o LK -
100 [ S © .
I +
B O i
soor 4
O
n & ]
m— —
aob + .
j PR AN ;tl PR SRR N | NN TR SRR SO Y TR SR SN NN SR S
40 60 80 100 120 140

NNORSY / climatology [DU]

Ozonsonde [DU]

110¢

100

90

80

70

60

Partlal oolumn 20- 25 km gph

F el = 0810 Pl
 c2 = 0.706 )
3 BES <
3 o8
- o
: o%%

e © ++

: +

SRS 25 o n

D

o / O

£/ ot +

?nlnnn ol 1l l|_|+_|||| |
60 70 80 90 100

NNORSY / climatology [DU]

Ozonsonde [DU]

Partial column 25- 30 km gph

701

c2 = 0.704 +
+9 <
o 2
o %
O N0
g < N
E:_ i
© et
o o + ¥
R 008) <> £§_+ +
o n ]
$ § 2
|.||I<|>||.|.<'>.‘|.I |||||| I:ﬂlrllll ........ |
40 50 60 70

NNORSY / climatology [DU]

Figure 6. Scatterplots of NNORSY versus Hohenpeissenberg ozonesondes (diamonds) and the FK
climatology versus sondes (pluses). Here, cl is the Pearson correlation for NNORSY, and ¢2 is for FK.
Regression curves are printed dashed and dotted, respectively,
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Figure 10. Monthly mean comparison of TOMS v7 total ozone with integrated NNORSY ozone
profiles. All scales in DU.

[Muller et al., 2003]



Summary



Gaussian

P(xly)
P(xly)

XML = XMEAN XML XMEAN

Figure 2: Representativeness of maximum likelihood solutions for a Gaussian and
a non-Gaussian pdf P(x|y), that is the conditional probability of finding the model

state at x, given an observation y. In the non-Gaussian case, the mazximum likelihood
point may be a poor representative of the best solution.

[From ECMWF Lecture Notes by E. Holm, 2003]



Nonlinear J

» X

Figure 3: Iterative solution for a nonlinear costfunction. In each iteration the cost-
function is linearized around a previous estimale T;, which gives a quadratic cost-

Junction J;. The convergence depends on the accuracy of the first estimate of ¥ (the
background Iy ) and the nonlinearity of J.

[From ECMWEF Lecture Notes by E. Holm, 2003]



Case 1: Useless (or no) model

Here Xp 1S X,

» X
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Figure 4: Useless (or no) model. There is no background information available, and
the analysis is at the mazimum of P(z|y).

[From ECMWF Lecture Notes by E. Holm, 2003]
(figures adapted from Menke, 1984)



Case 2: Perfect model (Q=0)
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Figure 5: Perfect model. In this case the model error is zero, and the analysis
15 constrained to lie along the model trajectory. We see that because of this the
mazimum probability has moved to a state consistent with the model.

[From ECMWF Lecture Notes by E. Holm, 2003]
(figures adapted from Menke, 1984)



CaFe 2: Perfect model (Q=0) Case 2: Perfect model (Q=0)

y Y
M(®) =
o I }
H,(x,)~
I
|
|
T > X 7 »> X
Ap A A Xa
Accurate background Accurate observations
—> Large analysis residuals y, - H (Xx,) — Small y, - H (X,)

Figure 6: The relative accuracy of background and observations. If the background
is more accurate than the observation (left), then the analysis will be closer to the
background, giving large analysis residuals y, — H(Z,). Conversely, if the observa-

tions are more accurate (right), the analysis will be closer to the observation, giving
small analysis residuals.

[From ECMWEF Lecture Notes by E. Holm, 2003]
(figures adapted from Menke, 1984)



Case 3: Imperfect model (Q=0)
\’

» X

Figure 7: Imperfect model. Now the analysis does no longer have to lie exactly on the
model trajectory, but can deviate from the model. How much depends on the relative
size of the model error. The model error pdf shown has a mazimum at the model

trajectory (the same as in previous examples), and isolines of smaller probability run
parallel to the trajectory.

[From ECMWF Lecture Notes by E. Holm, 2003]
(figures adapted from Menke, 1984)



