Lecture 10, Nov, 11, 2015
The Kalman Filter (Polavarapu: Chapter 6.1-6.5)

Why we use a filter: “To obtain an ‘optimal’ estimate of a
desired quantity from data provided by a noisy
environment” [Maybeck, 1979]

The Kalman filter:
 “combines all available measurement data, plus prior
knowledge about the system and measuring devices, to
produce an estimate of the desired variables in such a
manner that the error is minimized statistically” [Maybeck,
1979]

 “In a Bayesian context, it propagates the conditional
probability density of the desired quantities, conditioned on
knowledge of the actual data coming from the measuring
devices” [Maybeck, 1979]

Based on slides presented at the C-SPARC Summer School 2007




b e The Minimum Variance Estimator
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FIG. 1.4 Conditional density of position based on measured value z;.

Analysis error variance is always smaller than

the a priori (background) and measurement
variance
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FIG. 1.5 Conditional density of position based on measurement z, alone.
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[MaybeCk, 1 979] FIG. 1.6 Conditional density of position based on data z, and z,.




Propagation of the error covariance
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FIG. 1.7 Propagation of conditional probability density.

[Maybeck, 1979]

w = noise (model error)
u = velocity




Derivation of the discrete linear Kalman Filter

Consider the following stochastic-dynamic system:
Model dynamics nxn
nx1 state vector Xg41 = kak + Wk, Model error nx1

mx1 obs. vector 7z, — Hgxp + vg. Obs. Error mx1

Assumptions: for all k and [,  Forward model = Instr.+rep. errors
mxn
< Wi >= 0, < Wk(Wl)T >= delk
<vg>=0, <vip(v)T >= Ryof
< Wk'(Vl)T >= 0. (3)
These assumptions are not critical.

The KF problem is: given a prior estimate, >‘<£ what is the update or analysis, X,

based on the measurements, z;? Assume a linear, recursive form:

(4)

Initial conditions:

<xo>=%,, Pl=<&® —x)&,-x0)T >.




This initial estimate is assumed uncorrelated with the model and observation errors
for all time. The analysis and forecast errors are:

e,]; = )/i]): — Xk
Subtract the truth from both sides of (4):
= Ek(i]]: + xp — x3) — X3, + Kz,
Ekel]; —|— I:kxk — XLk —I— Kk(Hka —|— Vk)
(Lg + RpHy, — Dxi + Lpef + Ryvy.
Since
<e% > = (ik-l—Kka—I) < Xp >,
if we want an unbiased estimate, then
L, =1-K.H;
so that the estimator (4) becomes

% = %] + Ky(zy, — Hixl).
and the estimation error is
ef = (I-KuHpel + Kyvy.

K. is the weight given to observations.




= <(e)EeH)" >
= (I-KH)PLI - K Hy) T + KRRy (11)
To update the estimate, we use our forecast model:
%1 = Mz (12)
Thus we can subtract the true evolution (12) - (1) to get the forecast error:

el ; = Myel—wy. (13)

If the analysis is unbiased, then the forecast is unbiased since our model error was
assumed to be unbiased. The forecast error covariance is by definition,

f _ f f T
Prii = <(eppi)(epyq) >
< (Mpef — wy)(Mpel —wy) ' >
= Mg < (e)Ee)" >MI+ < (w)(wp) T >
predictability error = MkPZMZ + Q. (14)

~—
Proof that analysis and obs errors are uncorrelated at all times is by induction using

the fact that the initial state and model errors are uncorrelated.

Note that P and P/ are independent of obs, background and analyses.




The Kalman Filter algorithm

Enter initial guess
%), P

Compute Kalman Gain
ﬁ/—_:> K, = P/HT (H,P/H, + R;)"}

forecast step:
%], = MY
Pliy = MPIM] +Q;

g Compute analysis error cov. <:_J/
P¢ = (I — K,H,)P/

Update estimate with obs.
%7 = %] + Ky (2, — HyRY)




The Extended Kalman Filter

Stochastic-dynamic system:

Xp+1 = Mp(xp) +ef
2, = Hy(xg) + e},

Nonlinear model and obs operator
OM(X)

OHp(X)

)
0x %

Hk()_( + 5X) ~ Hk(}_{) -+

OMp(X)
ox

OHR(X) _

M
k> %

Hy,

Analysis step:

X,J: + Ky (zg — Hk(Xi:))
P/HT (H,PJHT + Ry)~1
(1 - KHy)P],

Forecast step:

Xjp1 = Mp(xf)

pf

k41 M PEM + Qy

with x& = xg and P& = P,




Summary of discrete Kalman filter equations
system model:
Xp+1 = Mpxp +wp, < Wi, >=0,< Wk(Wl)T >= Qk5lk
measurement model:
7z, = Hpxp + v, < v >=0,< Vk(Vl)T >= delk

other assumptions: <wi(v))T >=0
initial conditions: < xg >= Sié, P{; =< (?{é — xo)(ig —xg) " >
forecast step:

M Xj
MPiM + Qy,
analysis step:
D
=~ Kka)Pi
Kalman gain:

K, = P/H] (H,P/H; + R;) "




Assimilation of Simulated Wind Lidar Data with a Kalman Filter

PIERRE GAUTHIER,* PHILIPPE COURTIER, AND PATRICK MOLL
CNRM, Météo-France, Paris, France

(Manuscript received 12 May 1992, in final form 30 November 1992)

ABSTRACT

The object of this paper is to present some results obtained with an extended Kalman filter (EKF). First, a
discussion is given of the way that the EKF has been impiemented and tested for a global nondivergent barotropic
model spectrally truncated at T21. In the present paper, the assimilation experiments focused solely on the time
evolution of the forecast error covariances that are influenced by two factors: 1) their time integration performed
here with the tangent linear model obtained from a linearization around the true trajectory and 2) the accuracy
and distribution of the observations. Data from a simulated radiosonde network have been assimilated over a
24-h period. The results show that even though no model error has been considered, there can be a substantial
forecast error growth, especially in regions where the flow is unstable and no data are available. The error growth

“is attributed to instability processes that are embedded within the complex flow configuration around which
the nonlinear model is linearized to obtain the tangent linear model. The impact of different initial conditions
for the forecast error covariance is also looked at. In an experiment where the time integration of the forecast
error covariance is suppressed, the results show that error growth is suppressed, causing the analysis error
variance to differ substantially from the variance field obtained with the EKF. Especially in regions where
instability is present and no data are available, this “improved” optimal interpolation considers the forecast to
be more accurate than it actually is.

In a second set of experiments, a mini-observing system simulation experiment has been conducted for
which wind data from a proposed satellite-based lidar instrument have been simulated and added to the radiosonde
data of the previous experiments. Two configurations of the instrument have been considered where the satellite
1s set on a polar orbit, at an altitude of 400 km in the first scenario and 800 km in the second. Compared to
the results obtained with the radiosonde data alone, the global data coverage leads to an improvement in the
analysis, especially in the Southern Hemisphere. Data being available in the regions of instability, the assimilation
is now capable of putting a stop to the unlimited error growth observed in the previous experiments. Due to a
degradation of the measurement when the instrument is at an altitude of 800 km, the analysis is more accurate
for the 400-km case, but the low-altitude orbit (400 km) leaves holes in the tropical belt that the data assimilation
scheme is not quite able to compensate for.

[Monthly Weather Review, 121, 1803-1820, 1993]
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In situ observations used in OSSE
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F1G. 1. Typical radiosonde network at 0000 UTC for TEMP and PILOT. This network is assumed to be the same every 6 h.
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F1G. 2. Initial conditions on 14 July 1990: (a) geopotential field and (b) vorticity field.



Analysis error
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F1G. 3. Analysis error variance resulting from an assimilation with the extended Kalman filter: (a) ¢ = 0 h, (b) 12

h, and (¢) 24 h. Units used are 1 X 10 "2 s7¢, with contour levels of 1 unit, and the characteristic length of the first-
guess error is 1200 km.
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Analysis error

B) ERROR VARIANCE AND GEOPOTENTIAL
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FIG. 4. Analysis error variance field at = 24 h superposed over (a) the vorticity field and (b) the geopotential field.
The domain is a close-up of the region west of South America.

Gauthier et al (1993)

Analysis error without time dependent forecast error

covariance
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FI1G. 5. Analysis error variance at the final time for an assimilation without the time integration
of the forecast error covariances. A contour interval of 0.5 X 107'? s72 has been used.



Vorticity mean error variance
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FiG. 7. Time evolution of the global mean analysis error variance
(solid line) for a characteristic length of the first-guess error of (a)
400 km and (b) 1200 km. In both figures, the contributions from
the Northem and Southern hemispheres have been plotted separately
to emphasize the differences existing between the two hemispheres.
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Pseudo data from Space

400 km Orbit 800 km Orbit

BT
e | e

-, 4 “—\-\A*\\;\
H LA L -
P IR A TN BRI T e
(s ’o‘J"':;f‘.‘"’-ll:f"".’v."-‘-."— T —
et o a o i i T , ; N
" "3“”7';"“".';;"”'(’:52’

3
i

Observation error: 4.3 m/s

Observation error: | m/s

FIG. 8. Typical data coverage for a satellite on a polar orbit at an
altitude of (a) 400 km and (b) 800 km. Distribution of the points

corresponds to those of a conical scan with a scanning period of
10 s. The shot frequency was set to 2 Hz.
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F1G. 9. As in Fig. 7 but for an assimilation using the Lidar data

coming from a satellite on a polar orbit at an al

titude of 400 km.

Results are shown for two experiments using a characteristic length
of the first-guess error of (a) 400 km and (b) 1200 km.
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FI1G. 11. Analysis error variance field at 1 = 24 h for an assimilation using Lidar data obtained from a satellite at an
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altitude of (a) 400 km and (b) 800 km. In both cases, a characteristic length of the first-guess error of 400 km has
been used. A contour interval of 0.5 X 107'% s72 has been used.



A simple example
Evensen (1992)

Model: 1-D linear advection equation in a periodic domain:

(9F+ BF_O
ot Ca:c_

e Truth = sinusoid traveling left to right

e perfect obs at x=>5 and x=20, every 5 time steps. Error variance
2% worse at x=20.

e background is F' =0

e background error variance is 1, correlation function ~ exp]—(r/ rc)?]

. Solution . Kalman gaip
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Fig. 1. Solution of the advection equation after one update with the Kalman filter. The upper left plot shows
the true solution as a dotted line and the estimated solution as the solid line. The circles are the values of the
measurements. The lower left plot shows the estimated error variance for each grid point (the diagonal elements
of P). The Kalman gain influence (columns of K) are shown in the upper right plot. The lower right plot shows
the time history of the mean square error, i.e., the normalized trace of P. )



Solution '

Squared error=diag(P) }VIean square error
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Fig. 2. The same as Figure 1 but after four updates with the Kalman filter.
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Fig. 3. The same as Figure 1 but after 11 updates with the Kalman. filter. E vensen C’ QQJ.)





