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Global Climate Models Violate Scaling of the Observed Atmospheric Variability
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We test the scaling performance of seven leading global climate models by using detrended fluctuation
analysis. We analyze temperature records of six representative sites around the globe simulated by the
models, for two different scenarios: (i) with greenhouse gas forcing only and (ii) with greenhouse gas
plus aerosol forcing. We find that the simulated records for both scenarios fail to reproduce the universal
scaling behavior of the observed records and display wide performance differences. The deviations
from the scaling behavior are more pronounced in the first scenario, where also the trends are clearly
overestimated.
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Confidence in the simulation and prediction skills of
global climate models [coupled atmosphere-ocean general
circulation models (AOGCMs) [1,2] ] is a crucial precon-
dition for formulating climate protection policies. The
models provide numerical solutions of the Navier Stokes
equations devised for simulating mesoscale to large-scale
atmospheric and oceanic dynamics. In addition to the ex-
plicitly resolved scales of motions, the models also con-
tain parametrization schemes representing the so-called
subgrid-scale processes, such as radiative transfer, turbu-
lent mixing, boundary layer processes, cumulus convec-
tion, precipitation, and gravity wave drag. A radiative
transfer scheme, for example, is necessary for simulating
the role of various greenhouse gases such as CO2 and the
effect of aerosol particles. The differences among the mod-
els usually lie in the selection of the numerical methods
employed, the choice of the spatial resolution [3], and the
subgrid-scale parameters.

Two scenarios (apart from a control run with fixed CO2

content) have been studied by the models, and the results
are available from the Intergovernmental Panel on Climate
Change data distribution center [4]. In the first scenario,
one considers only the effect of greenhouse gas forcing.
The amount of greenhouse gases is taken from the observa-
tions until 1990 and then increased at a rate of 1% per year.
In the second scenario, also the effect of aerosols (mainly
sulphates) in the atmosphere is taken into account. Only di-
rect sulphate forcing is considered; until 1990, the sulphate
concentrations were taken from historical measurements
and were increased linearly afterwards. The effect of sul-
phates is to mitigate and partially offset the greenhouse
gas warming. Although this scenario represents an im-
portant step towards comprehensive climate simulation, it
introduces new uncertainties — regarding the distributions
of natural and anthropogenic aerosols and, in particular,
regarding indirect effects on the radiation balance through
cloud cover modification, etc. [5].
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All of the models are capable, to varying extents, to
reproduce the current mean state of the atmosphere [6].
The models have been validated by comparing to historical
data and by intercomparison of the models [7,8]. The
efforts have been restricted to traditional time series analy-
sis which generally assumes that the statistical properties
of a signal remain the same throughout the entire period.
This assumption of stationarity, however, is certainly not
valid for climate records due to imposed effects such as
global or urban warming.

In our evaluation of the models, we apply detrended
fluctuation analysis (DFA) [9,10] which can distinguish be-
tween trends and correlations and thus reveal trends as well
as long term correlations very often masked by nonstation-
arities. Recently, Koscielny-Bunde et al. [11,12] applied
DFA and wavelet techniques (see, e.g., [13]) to investi-
gate temporal correlations in the atmospheric variability.
Considering maximum daily temperature records of vari-
ous stations around the globe, they analyzed the tempera-
ture variations from their average values and found that the
persistence, characterized by the correlation C�s� between
temperature variations separated by s days, decays with a
power law,

C�s� � s2g , (1)

with roughly the same correlation exponent g � 0.7 for
all stations considered. The range of this persistence law
exceeds ten years, and there is no evidence for a breakdown
of the law at even larger time scales. Indications for the
long-term persistence through spectral analysis have also
been obtained [14,15]. Since the persistence scaling law
appears to be universal, i.e., independent of the location
and climatic zone of the stations, we use it in the following
for assessing the performance of the AOGCMs.

For the test, we consider monthly averages of the
daily maximum temperature from seven AOGCMs:
GFDL-R15-a (Princeton), CSIRO-Mk2 (Melbourne),
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ECHAM4/OPYC3 (Hamburg), HADCM3 (Bracknell,
U.K.), CGCM1 (Victoria, Canada), CCSR/NIES (Tokyo),
NCAR PCM (Boulder, U.S.A.) (see [4] for details). We
extracted the data for six representative sites around the
globe (Prague, Kasan, Seoul, Luling/Texas, Vancouver,
and Melbourne). For each model and each scenario, we
selected the temperature records of the four grid points
closest to each site and bilinearly interpolated the data to
the location of the site. We analyze both scenarios, but we
focus more on the better established first scenario.

We analyze for each site the variations DTi of the
monthly temperatures Ti from the respective monthly
mean temperature Ti that has been obtained by averaging
over all years in the record. Quantitatively, persistence in
DTi can be characterized by the (auto) correlation func-
tion, C�s� � �DTiDTi1s� � 	1��N 2 s�


PN2s
i�1 DTiDTi1s,

where N is the total number of months in the record. A
direct calculation of C�s� is hindered by the level of noise
present in the finite temperature series and by possible
nonstationarities in the data. Following Refs. [16,17],
we do not calculate C�s� directly, but instead study the
fluctuations in the temperature “profile” Yn �

Pn
i�1 DTi .

To this end, we divide the profile into (nonoverlapping)
segments of length s and determine the squared fluctua-
tions of the profile (specified below) in each segment. The
mean square fluctuations, averaged over all segments of
length s, are related to the correlation function C�s� (see
below). In our test, we employ a hierarchy of methods
that differ in the way the fluctuations are measured and
possible nonstationarities are eliminated (for a detailed
description of the methods, we refer to [10]):

(i) In the (standard) fluctuation analysis (FA), we calcu-
late the difference of the profile at both ends of each seg-
ment. The square of this difference represents the square
of the fluctuations in each segment.

(ii) In the “first order detrended fluctuation analysis”
(DFA1), we determine in each segment the best linear fit
of the profile. The standard deviation of the profile from
this straight line represents the square of the fluctuations
in each segment.

(iii) More generally, in the “nth order DFA” (DFAn), we
determine in each segment the best nth-order polynomial
fit of the profile. Again, the standard deviation of the
profile from these polynomials represents the square of the
fluctuations in each segment.

The fluctuation function F�s� is the root mean square of
the fluctuations in all segments. For the relevant case of
long-term power-law correlations given by Eq. (1), with
0 , g , 1, the fluctuation function F�s� increases ac-
cording to a power law [18],

F�s� � sa , a � 1 2
g

2
. (2)

For uncorrelated data (as well as for short-range corre-
lations represented by g $ 1 or exponentially decaying
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correlation functions), we have a �
1
2 . For long-term cor-

relations we have a .
1
2 .

By definition, the FA does not eliminate trends, similar
to the Hurst method and the conventional spectral analysis
[19]. In contrast, DFAn eliminates polynomial trends of
order n 2 1 in the original data. Thus, from the compar-
ison of the various fluctuation functions F�s� obtained by
these methods, we can learn both about long-term correla-
tions and types of trends, which cannot be achieved by the
conventional spectral analysis.

For testing the performance of the models we plot, in
a double logarithmic presentation, F�s� versus s for FA
and DFA1–DFA5 for each of the six sites and compare
the curves with those obtained from the real data. Figure 1
shows representative results of the fluctuation functions for
Kasan (Russia) and Luling (Texas) for both the real data
and the data from six of the climate models with scenario
(i) (three models for each location). The data from the
models are taken (a) until 1990 (full symbols), which is
the simulation period corresponding to the observed data
and (b) for the entire simulation period including future
data (open symbols).

Every panel shows, from top to bottom, the fluctuation
functions F�s� obtained from FA and DFA1–5. We also
have drawn two straight lines with slopes 0.5 (correspond-
ing to uncorrelated data) and 0.65, corresponding to the
correlation exponent obtained for the real data. Figure 1
shows that for the real data, for both Kasan and Luling, all
the F�s� curves are parallel straight lines with slope close
to a � 0.65, beyond 1 year. This indicates (i) the absence
of trends and (ii) the existence of long-term power-law cor-
relations consistent with earlier findings [11].

The simulated records show a quite different behavior.
For Luling, CSIRO-Mk2 and ECHAM4/OPYC3 yield FA
curves that are not parallel to the DFA curves, having a
larger asymptotic slope, while the DFA curves show a
crossover towards uncorrelated behavior �a � 0.5� after
roughly 2 years. This indicates (i) an overestimation of
the trends and (ii) the loss of long-term correlations in the
models. The HADCM3 model performs slightly better,
with DFA curves approaching a slope of a � 0.62 at long
times. However, when compared to real data, the FA curve
bends slightly upwards at long times (for the past data), re-
vealing also an overestimation of the trend. For Kasan, the
CGCM1 model yields uncorrelated behavior at long times.
CCSR/NIES and NCAR PCM show long-term persistence,
with an exponent a slightly below 0.6 in both cases. In all
cases, the FA curves are straight lines, with slightly larger
exponents than the DFA curves for CGCM1 and NCAR
PCM. This again points to an overestimation of the trends
by the models.

For reviewing the scaling performance of the models
we concentrate now on the results of DFA3, since DFA3,
DFA4, and DFA5 yielded the same scaling exponents for
all cases. We find that the fluctuation function in DFA3–5
remained unchanged while FA is changed dramatically
028501-2
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FIG. 1. Results of FA and DFA for the monthly averages of
the daily maximum temperature of Luling (a)–(d) and Kasan
(e)– (h). In each panel, the curves from top to bottom repre-
sent the fluctuation function F�s� obtained from FA (�� and
DFA1–DFA5 (o), respectively. Full symbols represent past data
and open symbols are for the entire simulation period. The scale
of F�s� is arbitrary. The maximum value of s is 1�4 of the length
of the considered record. The two lines shown at the bottom are
theoretical lines with slope 0.65 (upper line) and 0.5 (lower line).
Note that FA (which does not remove trends) overestimates the
fluctuation exponent as can be seen when comparing to DFA.
As seen in the panels, the differences in the exponents obtained
by DFA3 and higher orders of DFA are negligible, which means
that in DFA3 all trends are removed from the data. For this rea-
son, when focusing on the correlation exponent, it is sufficient
to use DFA3 (as is done in Fig. 2).

when including also future data (see Fig. 1). This feature
shows some internal consistency of the models, since past
and future differ mainly in the amount of trends created by
greenhouse gases (as shown by the FA curves), and trends
are well eliminated by higher order DFA [20]. Therefore,
we use the entire data for a more accurate estimation of
scaling exponents.

Figure 2 shows the results for the fluctuation function
obtained from DFA3 for all available real and model data
[all seven AOGCMs with scenario (i)] at the six sites con-
sidered, for the entire simulation period. To facilitate the
028501-3
10
1

10
2

10
3

s (month)

1

10

1

10

1

10

1

10

10
1

10
2

10
3

s (month)

(a)

(c) (d)

(e) (f)

(g) (h)

Pr

Me

Lu

Se

Ka

Va

F
(s

)/
s0.

5
F

(s
)/

s0.
5

F
(s

)/
s0.

5
F

(s
)/

s0.
5

GFDL−R15−a: 1958−2057

CSIRO−Mk2: 1881−2100 ECHAM4/OPYC3: 1860−2099

HADCM3: 1860−2099 CGCM1: 1900−2099

CCSR/NIES: 1890−2099 NCAR PCM: 1871−2045

REAL DATA (b)

FIG. 2. Results of DFA3 applied to the monthly averages of
the daily maximum temperature of (a) real data and (b)–(h)
simulated data [for scenario (i)] at the respective geographical
positions of Prague (Pr), Melbourne (Me), Luling (Lu), Seoul
(Se), Kasan (Ka), and Vancouver (Va), for the seven AOGCMs
considered. In each panel, curves from top to bottom represent
the result for the six sites. For better evaluation of the models,
F�s� is divided by s0.5. The scale of F�s� is arbitrary. The
theoretical line at the bottom has a slope of 0.15.

evaluation of the models, we have divided F�s� by s1�2. A
plateau now indicates loss of long-term correlations. The
straight line in each panel has a slope of 0.15, correspond-
ing to the universal exponent in the original curves. While
the real data yield, for long times, parallel lines with a slope
of 0.15 for all sites in agreement with the earlier findings,
the virtual data display wide performance differences and
fail to reproduce the universal features of the benchmark
time series. Direct inspection of the figure shows that about
half of the model curves are very close to a plateau, yield-
ing uncorrelated behavior above approximately 2 years.

The actual long-term exponents a for the greenhouse
gas only scenario obtained by the seven models for the
six sites are summarized in a histogram in Fig. 3a. The
histogram shows a pronounced maximum at a � 0.5. For
best performance, all models should have exponents a

close to 0.65, corresponding to a peak of height 42 in the
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FIG. 3. Histogram of the fluctuation exponent �a� values
obtained for the six sites simulated by the seven AOGCMs
(a) scenario (i) and (b) scenario (ii) for the entire records. The
entries in each box represent “model-site.”

window between 0.62 and 0.68. Actually more than half
of the exponents are close to 0.5, while only six exponents
are in the proper window between 0.62 and 0.68.

Figure 3b shows the histogram for scenario (ii), where
in addition to the greenhouse gas forcing, also the effects
of aerosols are taken into account. For this case, there is a
pronounced maximum in the a window between 0.56 and
0.62 (more than half of the exponents are in this window),
while only five exponents are in the proper range between
0.62 and 0.68. This shows that although the second sce-
nario is also far from reproducing the scaling behavior of
the real data, its overall performance is better than the per-
formance of the first scenario.

To summarize, we have presented evidence that
AOGCMs fail to reproduce the universal scaling behavior
observed in the real temperature records. Moreover, the
models display wide differences in scaling for different
sites. When comparing the two scenarios, our results
suggest that the second scenario (CO2 plus aerosols)
exhibits better performance regarding the values of the
scaling exponents as well as the trends. The effect of
aerosols not only decreases the trends but also modifies
the fluctuations, to more closely resemble the real data.
This confirms in a way independent of the evaluations
made so far [5] that the incorporation of aerosols is
necessary to approach reality.

It is possible that the lack of long-term persistence is due
to the fact that certain forcings such as volcanic eruptions
or solar fluctuations have not been incorporated in the mod-
els. However, we cannot rule out that systematic model
deficiencies (such as the use of equivalent CO2 forcing to
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account for all other greenhouse gases or inaccurate spatial
and temporal distributions of sulphate emissions) prevent
the AOGCMs from correctly simulating the natural vari-
ability of the atmosphere. Since the models underestimate
the long-range persistence of the atmosphere and overesti-
mate the trends, our analysis suggests that the anticipated
global warming is also overestimated by the models.
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