PHY 499S
 EARTH OBSERVATIONS FROM SPACE
 Spring Term 2005
 Problem Set \#2

DUE: Thursday, March 24, 2005 (in class).
Late penalty $=5$ marks/day, up to 1 week, after which problem sets will not be accepted.
NOTES: Marks, shown in brackets, will be given for workings, as well as for final answers. Total marks will be scaled to 100 . Show all workings and units. You may find useful reference data in the Appendices of The Physics of Atmospheres by Houghton (1986).

QUESTIONS:

1. Absorption in the atmospheric window between 8 and $13 \mu \mathrm{~m}$ is mostly due to the water vapour dimer. This has an absorption coefficient of the form $\mathrm{k}_{2} \mathrm{e}$ where e is the water vapour pressure (in $\mathrm{kPa}), \mathrm{k}_{2} \approx 0.1\left(\mathrm{~g} \mathrm{~cm}^{-2}\right)^{-1} \mathrm{kPa}^{-1}$. Given that the water vapour pressure near the surface is 1 kPa .
[5] (a) Calculate the transmission of a horizontal path 1 km long near the surface.
[5] (b) Calculate the transmission of a vertical column of water vapour, assuming that the distribution of water vapour pressure is proportional to pressure (in units of atmospheres) raised to the fourth power.
Note: The mass mixing ratio of water vapour is $\rho\left(\mathrm{H}_{2} \mathrm{O}\right) / \rho($ air $)=0.622 \mathrm{e} / \mathrm{p}$. The density of dry air at 273 K and 101.325 kPa is $1.293 \mathrm{~kg} / \mathrm{m}^{3}$.
2. (a) Assume that the atmosphere follows the Ideal Gas Law, with the density decreasing as
[5] $\quad \rho(z)=\rho(0) \exp (-z / H)$, where $H=R T / M g=$ scale height $\approx 8 \mathrm{~km}$. If the Lorentz line width is 100 times larger than the Doppler line width at ground level, at what altitude are both line widths equal?
[5] (b)Show that the relative importance of Doppler broadening compared to Lorentz broadening can be expressed as

$$
\frac{\alpha_{D}}{\alpha_{L}} \approx 10^{-12} \frac{v_{o}}{p}
$$

where v_{o} is in Hz and p is in mbar. Explain any assumptions. At approximately what pressures are the Doppler and Lorentz line widths equal for CO_{2} at $15 \mu \mathrm{~m}$ and for an O_{2} at 2.5 mm ?
3. Using the following expression for the Rayleigh scattering coefficient and data in Appendix 1 of
[10] Houghton, calculate the extinction due to Rayleigh scattering for a vertical column of atmosphere at wavelengths of $0.3,0.6$, and $1 \mu \mathrm{~m}$. Comment.

$$
\mathrm{k}_{\mathrm{R}}(\lambda)=\frac{32 \pi^{3}}{3 \lambda^{4}} \frac{\left[\mathrm{n}_{\mathrm{o}}(\lambda)-1\right]^{2}}{\mathrm{~N}_{\mathrm{o}}{ }^{2}}
$$

4. The Angstrom turbidity factor for an atmosphere that contains aerosol is defined as the optical depth of a vertical column due to aerosol scattering.
(a) Assuming that the scattering cross section of the aerosol particles is twice their geometric cross
[6] section, what number density of particles of diameter $1 \mu \mathrm{~m}$ would be needed in the lowest kilometre of the atmosphere to produce a turbidity factor of 1 ?
(b) It is commonly assumed that the Angstrom turbidity factor varies with wavelength as $\lambda^{-1.3}$. For
[6] an atmosphere with an optical depth due to aerosol of 0.3 at $0.6 \mu \mathrm{~m}$, what is the value of the turbidity factor at $0.3 \mu \mathrm{~m}$ and at $1 \mu \mathrm{~m}$?
(c) Given that the extinction due to Rayleigh scattering for a vertical column of atmosphere is [8] 0.637 at $0.3 \mu \mathrm{~m}$, what is the total optical depth and what is the total extinction due Rayleigh and aerosol scattering for such an atmosphere at this wavelength?
5. (a) The hydrostatic equation, $\mathrm{dp}=-\mathrm{g} \rho \mathrm{dz}$, describes the change in atmospheric pressure with altitude. Combine this with the ideal gas law for a gas of molecular weight M at temperature T , $\rho=\mathrm{Mp} / \mathrm{RT}$, where $\mathrm{R}=8.3143 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, to show that the density can be written as

$$
\rho(\mathrm{z})=\frac{\mathrm{p}\left(\mathrm{z}_{0}\right)}{\mathrm{gH}} \exp \left[-\frac{\left(\mathrm{z}-\mathrm{z}_{0}\right)}{\mathrm{H}}\right]
$$

where $\mathrm{H}=\mathrm{RT} / \mathrm{Mg}$ is the scale height, the increase in altitude required to reduce the pressure by a factor of e.
[7] (b) A satellite-mounted radiometer is observing the limb of the atmosphere at tangent height h. Show that the path of atmosphere traversed through the limb (i.e., $\int \rho(x) d x$, where x is along the line-of-sight) is approximately 75 times that in a vertical path ($\int \rho(z) d z$) above the tangent point of the path. Assume that $\mathrm{H}=7 \mathrm{~km}$ and is approximately constant with altitude. Hint: You will need to use the equation derived in (a) and $\int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{u}^{2}} \mathrm{du}=\sqrt{\pi}$.
6. In class, we derived an expression for the weighting function $K_{\bar{v}}(p)$ in terms of $p / p_{\text {max }}$ for a nadir-
[10] viewing radiometer designed to measure infrared emission in the far wings of a Lorentz-broadened line. We also sketched $K_{\bar{v}}(p)$ vs. $p / p_{\text {max }}$ and claimed that although $p_{\text {max }}$ depends on \bar{v}, the full width at half maximum (FWHM) of the weighting function is independent of \bar{v}. Prove this by determining $\mathrm{K}_{\overline{\mathrm{v}}}\left(\mathrm{p}_{\text {max }}\right)$, $\mathrm{p} / \mathrm{p}_{\text {max }}$ at the half-maximum points, and hence the FWHM. Assuming that the atmosphere is isothermal, then what is the FWHM in terms of altitude? Comment.
7. Given a nadir-viewing radiometer designed to measure infrared emission in order to retrieve atmospheric temperature profiles using Schwarzchild's Equation. Assume that the absorption coefficient, $\mathrm{k}_{\mathrm{a}}(\overline{\mathrm{v}})$, of the line used for sounding is constant for a given $\overline{\mathrm{V}}$.
[4] (a) Derive an expression for the atmospheric transmission from altitude z to the altitude of the satellite, $\tau_{\overline{\mathrm{v}}}(\mathrm{z}, \infty)$ with $\mathrm{z}_{\text {satellite }} \equiv \infty$, in terms of the mass mixing ratio $\mathrm{Q}=\rho_{\text {gas }} / \rho_{\text {air }}$ (assumed to be constant with altitude) and the atmospheric pressure $\mathrm{p}(\mathrm{z})$.
[3] (b)Derive an expression for the weighting function $K_{\bar{v}}(p)$ for such a line, using $y=-\ln (p)$.
[3] (c) At what pressure $\mathrm{p}_{\text {max }}$ does $\mathrm{K}_{\overline{\mathrm{v}}}(\mathrm{p})$ have a maximum?
[5] (d)Express $\mathrm{K}_{\overline{\mathrm{v}}}(\mathrm{p})$ in terms of p and $\mathrm{p}_{\max }$ and plot $\mathrm{K}_{\overline{\mathrm{v}}}(\mathrm{p})$ vs. $\mathrm{p} / \mathrm{p}_{\max }$. Explain the physical significance of $K_{\bar{v}}(p)$ and how weighting functions are relevant to the retrieval of vertical profiles of temperature.
8. Figure 1 below shows emission spectra from Mars.
[3] (a) What do the fine features between 50 and $25 \mu \mathrm{~m}$, especially in the South Polar spectra, indicate? Explain your reasoning.
[3] (b) What is responsible for the large feature centred on $15 \mu \mathrm{~m}$? Explain your reasoning.
[6] (c) What can be said about the surface and atmospheric temperatures for each of the three geographical regions? Explain your reasoning.
[3] (d) What can be learned from a comparison of the terrestrial mid-latitude spectrum (see Figure 2 below) and the Martian mid-latitude spectrum? Explain your reasoning.

