PHY 140Y - FOUNDATIONS OF PHYSICS 2001-2002
 Tutorial Questions \#7 October 29/30

Note: As requested, answers are given in brackets. Try getting full solutions before the tutorials!

Work, Energy, and Power

1. A particle of mass m is suspended from a massless string of length L. The particle is displaced along a circular path of radius L from $\phi=0$ to $\phi=\phi_{0}$, as shown below, by applying a force \vec{F} that is always horizontal (for example by pulling horizontally with another string attached to the particle). The particle is thus displaced a vertical distance h. Assume that there is no acceleration, so that the motion is very slow.
(a) What is the magnitude F ? [$\mathrm{mg} \tan \phi$]
(b) What is the work done by the applied force as the mass moves from $\phi=0$ to $\phi=\phi_{0}$? [mgh]
(c) What is the work done by the applied force as the mass moves from $\phi=0$ to $\phi=\phi_{0}$ if \vec{F} is always directed along the arc rather than horizontally? [mgh]

2. By measuring oxygen uptake, sports physiologists have found that the power output of long-distance runners is given approximately by $\mathrm{P}=\mathrm{m}(\mathrm{bv}-\mathrm{c})$, where m and v are the runner's mass and speed, respectively, and b and c are constants given by $b=4.27 \mathrm{~J} \mathrm{~kg}^{-1}$ m^{-1} and $\mathrm{c}=1.83 \mathrm{~W} \mathrm{~kg}^{-1}$.
(a) Determine the average power output and work done by a $65-\mathrm{kg}$ runner who runs a 10 km race at a speed of $5.2 \mathrm{~m} / \mathrm{s}$. [1.3 kW, 2.5 MJ]
(b) If the same runner starts at speed $\mathrm{v}_{\mathrm{o}}=4.8 \mathrm{~m} / \mathrm{s}$ and accelerates to $6.1 \mathrm{~m} / \mathrm{s}$ over a $25-\mathrm{s}$ interval, what is the runner's power output as a function of time? $\left[\mathrm{m}\left\{\mathrm{b}\left(\mathrm{v}_{\mathrm{o}}+\mathrm{at}\right)-\mathrm{c}\right\}\right]$
(c) How much work does the runner do during the acceleration period in part (b)? [35 kJ]

Conservation of Energy

3. A block of mass M is released from rest near the top of a frictionless incline, as shown below. The angle of the incline is θ. The block comes to rest momentarily after it has compressed a spring by a distance L . The spring constant is k .
(a) How far has the block moved down the incline when the spring is compressed by distance L? [eqn...]
(b) What is the speed of the block just as it touches the spring? [eqn...]
(c) What is the distance along the incline between the point of first contact and the point where the block's speed is the greatest? $[(\mathrm{mg} / \mathrm{k}) \sin \theta]$

4. A block slides along a track from one level to a higher level by moving through an intermediate valley. The track is frictionless until the block reaches the higher level. At the higher level a friction force stops the block in a distance d. If the block's initial speed is V_{o}, the height difference is h, and the coefficient of kinetic friction is μ_{k}, what is d ? [eqn...]

