PHY 140Y - FOUNDATIONS OF PHYSICS 2001-2002
 Tutorial Questions \#5 - Solutions
 October 15/16

Applying Newton's Laws of Motion

1. Blocks of $1.0,2.0$, and 3.0 kg are lined up from left to right in that order on a table so that each block is touching the next one. A rightward-pointing 12-N force is applied to the leftmost block, as shown below. What is the acceleration of the blocks and what force does the middle block exert on the rightmost one?

Answer:

First draw the free-body diagram for each block. Choose the coordinate system (as shown). Define $\overrightarrow{\mathrm{F}}_{\mathrm{ij}}$ as the force that block i exerts on block j .

Next, apply Newton's Second Law. We only need to consider the horizontal component as there is no motion in the vertical direction. So, applying Newton's Second Law in the x direction gives:

$$
\begin{array}{ll}
\text { block 1: } & F_{\text {app }}+F_{21}=m_{1} a_{1} \\
\text { block 2: } & F_{12}+F_{32}=m_{2} a_{2} \\
\text { block 3: } & F_{23}=m_{3} a_{3} \tag{3}
\end{array}
$$

We appear to have three equations for seven unknowns. However, we can relate some of these unknowns. All three blocks move with the same acceleration, so $a_{1}=a_{2}=a_{3}=a$, which is in the $+x$ direction (positive to the right).

Also apply Newton's Third Law:

$$
\begin{array}{lll}
F_{12}+F_{21}=0 & \text { i.e., } & F_{21}=-F_{12} \\
F_{23}+F_{32}=0 & & F_{32}=-F_{23}
\end{array}
$$

So the three equations become:
block 1: $\quad F_{\text {app }}-F_{12}=m_{1} a$
block 2: $\quad F_{12}-F_{23}=m_{2} a$
block 3: $\quad F_{23}=m_{3} a$
and we now only have three unknowns.
We are asked to solve for acceleration a and force F_{23}.
Substitute equation (2) and then equation (3) into equation (1):

$$
\begin{aligned}
& F_{a p p}-\left(m_{2} a+F_{23}\right)=m_{1} a \\
& F_{a p p}-\left(m_{2} a+m_{3} a\right)=m_{1} a \\
& \left(m_{1} a+m_{2} a+m_{3} a\right)=F_{a p p} \\
& a=\frac{F_{a p p}}{m_{1}+m_{2}+m_{3}}=\frac{12 \mathrm{~N}}{1.0+2.0+3.0 \mathrm{~kg}}=2.0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Then use equation (3) to solve for the force that the middle block $\left(\mathrm{m}_{2}\right)$ exerts on the rightmost one $\left(m_{3}\right)$:

$$
F_{23}=m_{3} a=(3.0 \mathrm{~kg}) \times\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)=6.0 \mathrm{~N}
$$

2. The figure below shows a $0.84-\mathrm{kg}$ ball attached to a vertical post by strings of length 1.2 m and 1.6 m . If the ball is set whirling in a horizontal circle, find
(a) the minimum speed necessary for the lower string to be taut, and
(b) the tension in each string if the ball's speed is $5.0 \mathrm{~m} / \mathrm{s}$.

Answer:

Again, start by defining the coordinate system and drawing the free-body diagram for the ball.. Because this is a case of uniform circular motion, choose an " r - y " coordinate system.

Apply Newton's Second Law:

$$
\vec{F}_{n e t}=\vec{F}_{g}+\overrightarrow{\mathrm{T}}_{1}+\overrightarrow{\mathrm{T}}_{\mathrm{u}}=\mathrm{m} \vec{a}
$$

Separate this into the r and y components.

$$
\begin{array}{ll}
& F_{n e t, y}=F_{g, y}+T_{l, y}+T_{u, y}=m a_{y} \\
y \text { direction: } & F_{n e t, y}=-m g+T_{u} \sin \theta=0 \\
& T_{u} \sin \theta=m g \\
\text { r direction: } & F_{n e t, r}=F_{g, r}+T_{1, r}+T_{u, r}=m a_{r} \\
& F_{n e t, r}=-T_{1}-T_{u} \cos \theta=-m a_{r} \\
& T_{1}+T_{u} \cos \theta=m \frac{v^{2}}{R} \tag{2}
\end{array}
$$

where a_{r} is the radial (centripetal) acceleration and R is the length of the horizontal string (1.2 m).
We can also calculate the angle θ from the lengths of the strings (valid while the strings are taut).

$$
\cos \theta=\frac{1.2 m}{1.6 m} \text { so } \theta=41.4^{\circ}
$$

(a) The lower string will be taut if $T_{1} \geq 0$. To find the minimum speed that will meet this condition, eliminate T_{u} from equations (1) and (2).

$$
T_{1}=m \frac{v^{2}}{R}-T_{u} \cos \theta=m \frac{v^{2}}{R}-\left(\frac{m g}{\sin \theta}\right) \cos \theta=m \frac{v^{2}}{R}-\frac{m g}{\tan \theta}
$$

$$
m \frac{v^{2}}{R}-\frac{m g}{\tan \theta} \geq 0
$$

We want $T_{1} \geq 0$, so:

$$
\frac{\mathrm{v}^{2}}{\mathrm{R}} \geq \frac{\mathrm{g}}{\tan \theta}
$$

$$
v \geq \sqrt{\frac{\mathrm{Rg}}{\tan \theta}}=\sqrt{\frac{(1.2 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{\tan 41.4^{\circ}}}
$$

$$
\mathrm{v} \geq 3.7 \mathrm{~m} / \mathrm{s}
$$

(b) Given that $\mathrm{v}=5.0 \mathrm{~m} / \mathrm{s}$, we can find the two tension forces using the two equations that we have derived.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{u}}=\frac{\mathrm{mg}}{\sin \theta}=\frac{(0.84 \mathrm{~kg}) \times\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{\sin 41.4^{\circ}}=12 \mathrm{~N} \quad \text { (independent of } \mathrm{v}, \text { balances gravity) } \\
& \mathrm{T}_{1}=\mathrm{m} \frac{\mathrm{v}^{2}}{\mathrm{R}}-\frac{\mathrm{mg}}{\tan \theta}=\frac{(0.84 \mathrm{~kg}) \times(5.0 \mathrm{~m} / \mathrm{s})^{2}}{1.2 \mathrm{~m}}-\frac{(0.84 \mathrm{~kg}) \times\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{\tan 41.4^{\circ}}=8.2 \mathrm{~N}
\end{aligned}
$$

3. A block of mass M and height h slides down a slope as shown below. The slope is inclined at angle θ from the horizontal. Connected to the top of the box is an object of mass m . The object is directly above point A on the floor of the box, as shown.
(a) Draw free-body diagrams for mass m and for mass M and identify all forces acting on each at the point when mass m has just been released from the top of the box (i.e., ignore any normal force between the two masses).
(b) If mass m drops from the top of the box, where will it fall relative to A when it reaches the floor, and how long will it take to fall, assuming that the slope is frictionless.

Answer:

(a) Free-body diagrams:

(b) Apply Newton's Second Law to each mass, ignoring friction: $\vec{F}_{n e t}=\vec{F}_{g}+\vec{N}=m \vec{a}$
mass M , x direction:
$M g \sin \theta=M a_{x}$

$$
\begin{aligned}
& a_{x}=g \sin \theta \\
& N-M g \cos \theta=M a_{y}=0 \\
& N=M g \cos \theta
\end{aligned}
$$

mass M , y direction:

$$
v=\operatorname{vig} \cos 0
$$

mass m, x direction:

$$
\mathrm{mg} \sin \theta=\mathrm{ma}_{\mathrm{x}}
$$

$$
a_{x}=g \sin \theta
$$

mass m , y direction:

$$
-M g \cos \theta=M a_{y}=0
$$

$$
a_{y}=-g \cos \theta
$$

Since the acceleration in the x direction is the same for both masses, mass m will fall on point A when it reaches the floor.
To find the time that mass m takes to fall, start with the acceleration in the y direction.

$$
\begin{aligned}
& a_{y}=-g \cos \theta \\
& v_{y}(t)=v_{o y}+a_{y} t=v_{o y}-g t \cos \theta \\
& y(t)=y_{o}+v_{o y} t+\frac{1}{2} a_{y} t^{2}=y_{o}+v_{o y} t-\frac{1}{2} g t^{2} \cos \theta \\
& y(t)-y_{o}=v_{o y} t-\frac{1}{2} g t^{2} \cos \theta
\end{aligned}
$$

Thus: $-\mathrm{h}=(0) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2} \cos \theta$

$$
t=\sqrt{\frac{2 h}{g \cos \theta}}
$$

