PHY 140Y FOUNDATIONS OF PHYSICS 1998-99

Term Test \#1
 Tuesday, November 3, 1998
 6:30 PM - 8:30 PM

INSTRUCTIONS:

Please give your name, student number, and TA's name on the examination booklet(s).
Answer ALL questions. Total marks $=100$.
Marks, shown in brackets, will be given for workings and units as well as for final answers.
Non-programmable calculators may be used. No aid/crib sheets are allowed.

QUESTIONS:

1. Define and briefly explain the difference between the following. [12 marks]
(a) average and instantaneous velocity
(b) uniform and non-uniform circular motion
(c) kinetic and static friction
2. State Newton's three Laws of Motion. Briefly explain the significance of each one. [6 marks]
3. One car starts out from point A with initial velocity $10.0 \mathrm{~m} / \mathrm{s}$ to the right but is decelerating at the rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$. A second car starts out from rest at point $\mathrm{B}(75 \mathrm{~m}$ from A) and accelerates towards A at $4.0 \mathrm{~m} / \mathrm{s}^{2}$. [18 marks]
(a) When do the two cars collide?
(b) Where are the two cars when they collide?
(c) How fast is each car going when they collide?

4. A ball is thrown at a speed of $25.0 \mathrm{~m} / \mathrm{s}$ and at an angle of 53° above the horizontal. [18 marks]
(a) What is the height of the ball when it strikes a wall 30.0 m away from where it was thrown?
(b) Is the ball on its way up or down when it hits the wall?
(c) At what time is the ball half as high above the ground as it is in part (a)?
5. Two blocks are connected by a string as shown below. The inclined plane is frictionless. Neglect the mass of the string and pulley and any friction in the pulley. [18 marks]
(a) What is the acceleration of the two blocks? In which direction do they move?
(b) What is the tension in the string?
(c) If there were a friction force between the block and the incline, what minimum coefficient of static friction would be required to keep the system from moving?

6. A car drives around a flat circular track of radius 100 m . The speedometer shows its constant speed to be $108 \mathrm{~km} / \mathrm{hr}$. [18 marks]
(a) What is the car's acceleration? (both magnitude and direction)
(b) What is the smallest coefficient of friction necessary to provide the centripetal force?
(c) What is the angular velocity of the car?
7. A person is standing against the inner wall of a rotating cylinder of radius R as shown below. The rotation proceeds at a uniform angular velocity ω. The floor of the cylinder drops a distance L .
Consider the coefficient of kinetic friction to be μ_{k} and the maximum coefficient of static friction to be μ_{s}. [10 marks]
(a) Under what condition(s) will the person slide downwards?
(b) How long does it take for the person to slide down the distance L?

