LECTURE \#9 - SUMMARY

Section II. 5 Uniform and Non-Uniform Circular Motion

Definition: uniform circular motion (UCM) is the motion of an object that is following a circular path at constant speed.
$\rightarrow \quad$ it is accelerated motion in 2-D (because direction of velocity changes)

(1) General Considerations

arc length $\mathrm{s}=\mathrm{R} \theta$ (by definition, with θ in radians)
$\mathrm{ds}=\operatorname{Rd} \theta$ and $\frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{R} \frac{\mathrm{d} \theta}{\mathrm{dt}}$ where $\frac{\mathrm{d} \theta}{\mathrm{dt}} \equiv \omega=\underline{\text { angular speed (units of radians/s) }}$
Note: There are 2π radians in a circle, but a radian is not really a dimensional unit. Be careful - never use degrees/s !
Now, speed v is just $\quad v=\frac{d s}{d t}=R \frac{d \theta}{d t} \quad \therefore \quad v=R \omega$
This equation is general, not just for UCM (ω can change).

(2) Uniform Circular Motion

period $(T)=$ the time it takes for a particle to go one full circle

$$
\text { distance } s=T v=2 \pi R
$$

2π radians $=1$ full circle
$\therefore \quad \mathrm{T}=\frac{2 \pi \mathrm{R}}{\mathrm{V}}=\frac{2 \pi \mathrm{R}}{\omega \mathrm{R}}=\frac{2 \pi}{\omega} \quad \Rightarrow \quad$ units of time (s)
frequency $=$ the number of full revolutions or cycles per unit time

$$
\mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{\omega}{2 \pi} \quad \Rightarrow \quad \text { units of cycles/s }(\text { Hertz }=\mathrm{Hz})
$$

Equations of motion for UCM:

Position vector: $|\vec{r}(t)|=R$
$\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}=R \cos \theta(t) \hat{i}+R \sin \theta(t) \hat{j}=(R \cos \omega t) \hat{i}+(R \sin \omega t) \hat{j}$ using $\theta(\mathrm{t})=\omega \mathrm{t}$ with $\theta=0$ at $\mathrm{t}=0$.
Velocity: $\vec{v}(t)=\frac{d x(t)}{d t} \hat{i}+\frac{d y(t)}{d t} \hat{j}=(-\omega R \sin \omega t) \hat{i}+(\omega R \cos \omega t) \hat{j}$
$v=|\vec{v}(t)|=\sqrt{v_{x}{ }^{2}+v_{y}{ }^{2}}=\sqrt{\omega^{2} R^{2} \sin ^{2} \omega t+\omega^{2} R^{2} \cos ^{2} \omega t}=\omega R$

Scalar product $\vec{r}(t) \bullet \vec{v}(t)=r_{x} v_{x}+r_{y} v_{y}=\ldots=0$, so $\vec{v} \perp \vec{r}$ and $\vec{v} \|$ trajectory
Acceleration: $\vec{a}(t)=\frac{d v_{x}(t)}{d t} \hat{i}+\frac{d v_{y}(t)}{d t} \hat{j}=\left(-\omega^{2} R \cos \omega t\right) \hat{i}+\left(-\omega^{2} R \sin \omega t\right) \hat{j}$
$a=|\vec{a}(t)|=\omega^{2} R=\frac{v^{2}}{R}$
Note: $\vec{a}(t)=-\omega^{2} \vec{r}(t)$, so $\vec{a} \| \vec{r}$ (anti-parallel).

