LECTURE \#8 - SUMMARY

A particle is accelerating if its velocity changes (i) magnitude, or (ii) direction.

- The component of acceleration that is parallel to velocity changes only the magnitude of the velocity, NOT its direction.
- The component of acceleration that is always perpendicular to velocity changes only the direction of the velocity, NOT its magnitude.

Section II. 4 Projectile Motion

projectile - an object that is launched into the air and then moves predominantly under the influence of gravity.
Projectile motion can usually be treated in 2-D:
$\rightarrow \quad$ acceleration is constant in the x direction = zero (usually)
$\rightarrow \quad$ acceleration is constant in the y direction = gravity
\rightarrow assume negligible air resistance
Initial conditions? Set $t=t_{0}=0$.
Position: at $t=0, \quad x_{0}=0, \quad y_{0}=0$
Velocity: at $t=0, \quad v_{x o}=v_{0} \cos \theta_{0}, \quad v_{y o}=v_{o} \sin \theta_{0}$
Equations governing the motion of the projectile: Acceleration:

$$
a_{y}=-g
$$

Velocity:

$$
a_{x}=0
$$

$$
\mathrm{v}_{\mathrm{x}}(\mathrm{t})=\mathrm{v}_{\mathrm{xo}}+\mathrm{a}_{\mathrm{x}}\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right) \quad \mathrm{v}_{\mathrm{y}}(\mathrm{t})=\mathrm{v}_{\mathrm{yo}}+\mathrm{a}_{\mathrm{y}}\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right)
$$

$$
=v_{\mathrm{xo}}=\mathrm{v}_{\mathrm{o}} \cos \theta_{0} \quad=\mathrm{v}_{\mathrm{yo}}-\mathrm{gt}=\mathrm{v}_{\mathrm{o}} \sin \theta_{\mathrm{o}}-\mathrm{gt}
$$

Position:

$$
\begin{array}{rlrl}
x(t) & =x_{o}+v_{x 0}\left(t-t_{0}\right)+\frac{1}{2} a_{x}\left(t-t_{0}\right)^{2} & y(t) & =y_{o}+v_{y 0}\left(t-t_{0}\right)+\frac{1}{2} a_{y}\left(t-t_{0}\right)^{2} \\
& =v_{x 0} t=v_{0} t \cos \theta_{0} & & =v_{y 0} t-\frac{1}{2} g t^{2}=v_{0} t \sin \theta_{o}-\frac{1}{2} g t^{2}
\end{array}
$$

(1) Trajectory (y as a function of x)
$y(t)=\left(\tan \theta_{0}\right) x(t)-\left(\frac{g}{2 v_{0}{ }^{2} \cos ^{2} \theta_{0}}\right) x(t)^{2} \quad$ so the trajectory is a parabola.
(2) Range (how far the projectile travels if it traverses a level ground)
$x_{R}=\frac{v_{0}{ }^{2}}{g} \sin 2 \theta_{0} \rightarrow$ increases as v_{0} increases, and as g decreases
(3) Flight Time (how long the projectile is in flight if it traverses a level ground)
$\mathrm{t}_{\mathrm{f}}=\frac{2 \mathrm{v}_{\mathrm{o}}}{\mathrm{g}} \sin \theta_{\mathrm{o}} \quad \rightarrow$ increases as v_{o} increases, g decreases, θ_{\circ} goes from 0 to 90°
(4) Maximum Height (how high the projectile goes)
$y_{\text {max }}=\frac{v_{0}{ }^{2}}{2 g} \sin ^{2} \theta_{0} \rightarrow$ increases as v_{0} increases, g decreases, θ_{0} goes from 0 to 90°

