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PHY 140Y – Foundations of Physics, Fall Term 2001  (K. Strong) Lecture 4

LECTURE #4 – SUMMARY

(E) Acceleration

average acceleration: î
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Summary of the general vector relationships for motion in a straight line:
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Motion in a Straight Line - A Special Case with Constant Acceleration

We will now consider a special case: a(t) = a   →  acceleration is constant
Analysis - Our Approach
• we will drop vector notation because everything is in the same direction
• previously we took derivatives to proceed from x(t) → v(t) → a(t)
• now we want to go in the opposite direction because we know a(t),

i.e., we will proceed from a(t) → v(t) → x(t)
• this is somewhat harder - we will do this by integrating

Starting Point: a(t) = a

We know that  
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Need initial conditions to solve for C, the constant of integration.
Let's say that at t=to, v(to)=vo.
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