LECTURE \#4 - SUMMARY

(E) Acceleration
average acceleration:

$$
\vec{a}_{\mathrm{avg}} \equiv \frac{\overrightarrow{\mathrm{v}}\left(\mathrm{t}_{2}\right)-\overrightarrow{\mathrm{v}}\left(\mathrm{t}_{1}\right)}{\mathrm{t}_{2}-\mathrm{t}_{1}}=\frac{\mathrm{v}\left(\mathrm{t}_{2}\right)-\mathrm{v}\left(\mathrm{t}_{1}\right)}{\mathrm{t}_{2}-\mathrm{t}_{1}} \hat{i}
$$

instantaneous acceleration $\vec{a}(t) \equiv \lim _{\Delta t \rightarrow 0}\left(\vec{a}_{\text {avg }}\right)=\lim _{\Delta t \rightarrow 0}\left[\frac{v(t+\Delta t)-v(t)}{\Delta t}\right] \hat{\mathrm{i}}$
$\overrightarrow{\mathrm{a}}(\mathrm{t})=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}(\mathrm{t})}{\mathrm{dt}}=\frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}} \hat{\mathrm{i}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\mathrm{d} \overrightarrow{\mathrm{x}}(\mathrm{t})}{\mathrm{dt}}\right]=\frac{\mathrm{d}^{2} \overrightarrow{\mathrm{x}}(\mathrm{t})}{\mathrm{dt}^{2}}=\frac{\mathrm{d}^{2} \mathrm{x}(\mathrm{t})}{\mathrm{dt}^{2}} \hat{\mathrm{i}}$
Summary of the general vector relationships for motion in a straight line:

$\vec{x}(t)=x(t) \hat{i}$	$\vec{v}(t)=\frac{d \vec{x}(t)}{d t}=\frac{d x(t)}{d t} \hat{i}$	$\begin{aligned} \vec{a}(t) & =\frac{d \vec{v}(t)}{d t}=\frac{d v(t)}{d t} \hat{i} \\ & =\frac{d^{2} \vec{x}(t)}{d t^{2}}=\frac{d^{2} x(t)}{d t^{2}} \hat{i} \end{aligned}$

Motion in a Straight Line - A Special Case with Constant Acceleration

We will now consider a special case: $\quad \mathrm{a}(\mathrm{t})=\mathrm{a} \rightarrow$ acceleration is constant Analysis - Our Approach

- we will drop vector notation because everything is in the same direction
- previously we took derivatives to proceed from $\mathrm{x}(\mathrm{t}) \rightarrow \mathrm{v}(\mathrm{t}) \rightarrow \mathrm{a}(\mathrm{t})$
- now we want to go in the opposite direction because we know $a(t)$, i.e., we will proceed from $a(t) \rightarrow v(t) \rightarrow x(t)$
- this is somewhat harder - we will do this by integrating

Starting Point: $\quad a(t)=a$
We know that $a(t)=\frac{d v(t)}{d t}$, so $\frac{d v(t)}{d t}=a(t)=a$
$\therefore \mathrm{v}(\mathrm{t})=\int \mathrm{a}(\mathrm{t}) \mathrm{dt}=\int \mathrm{adt}=\mathrm{at}+\mathrm{C}$
Need initial conditions to solve for C , the constant of integration. Let's say that at $\mathrm{t}=\mathrm{t}_{\mathrm{o}}, \mathrm{v}\left(\mathrm{t}_{\mathrm{o}}\right)=\mathrm{v}_{\mathrm{o}}$.

$$
\begin{aligned}
\mathrm{v}\left(\mathrm{t}_{\mathrm{o}}\right) & =\mathrm{at} \mathrm{o}_{\mathrm{o}}+\mathrm{C}=\mathrm{v}_{\mathrm{o}} \\
\mathrm{C} & =\mathrm{v}_{\mathrm{o}}-\mathrm{at}_{0} \\
\mathrm{v}(\mathrm{t}) & =\mathrm{at}+\left(\mathrm{v}_{\mathrm{o}}-\mathrm{at} \mathrm{t}_{\mathrm{o}}\right)
\end{aligned}
$$

Thus $\quad v(t)=v_{0}+a\left(t-t_{0}\right)$

