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LECTURE #31 – SUMMARY

Lorentz (or Length) Contraction
Let's return to our example, and consider just the one-way travel of the spaceship
from Earth to the star.  In the Earth-star reference frame A, the spaceship travels
10 ly in 12.5 years at speed 0.8c.  So the distance between Earth and the star,
as seen in A is:
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In the spaceship reference frame A', we already found that:
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Because the Earth and star move past the spaceship at speed v = 0.8c, the
distance between Earth and the star, as seen in A', is

ly  0.6)8.01)(ly  10(cv1x
cv11

tv'tv'x 222
22

wayonewayone =−=−∆=
−

∆=∆=∆ −−

This indicates that the distance between any two points is always greatest in a
frame (the Earth-star frame A in our example) fixed with respect to those points.
In any other reference frame is smaller.  This is called the Lorentz contraction.

In general:
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   where A' is moving w.r.t. the two points.

Note: an object's length in a frame in which it is at rest is called its proper length.

Lorentz Velocity Addition
Let's say that object O has velocity u' in
reference frame A'.

What will the velocity of the object be as
measured by an observer in A?

Galilean Approach: 'A
A

O
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Does this still hold? No!  e.g., if v = 0.75 c and u’ = 0.80 c, then u = 1.55 c > c !

STR Approach: Apply the Lorentz transformations and take the differentials.
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Special cases:
(1) u' << c and v << c: v'uu +≅ and vu'u −≅
i.e., we get the Galilean velocity transforms

(2) u' ≈ c and v ≈ c:

Let's say:  
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So u is still less than c.  Note: it would be 2c using the Galilean velocity transform.

Now, let’s make the x component of u and u' explicit:  
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where v is the relative velocity of A' to A along the x axis.
What happens to the velocity perpendicular to the direction of motion of the two
reference frames?

Galilean Approach: yy 'uu =
With STR, we still have y = y', but t ≠ t'.  Again apply the Lorentz transformations
and take the differentials.
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Thus: 
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So yy 'uu ≠ Note: even if 0'u x = , so that the object only has a y' velocity
component in reference frame A', we still have yy 'uu ≠ .  In this case: γ= /'uu yy .

We can derive a similar equation for the z component: 
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