LECTURE \#31 - SUMMARY

Lorentz (or Length) Contraction

Let's return to our example, and consider just the one-way travel of the spaceship from Earth to the star. In the Earth-star reference frame A, the spaceship travels 10 ly in 12.5 years at speed 0.8c. So the distance between Earth and the star, as seen in A is:

$$
\Delta \mathrm{X}_{\text {one-way }}=\mathrm{v} \Delta \mathrm{t}_{\text {one-way }}=\mathrm{v} \frac{\mathrm{~L}}{\beta}=\mathrm{cL}(\mathrm{~m})=\mathrm{L} \text { (lightyears) }=10 \mathrm{ly}
$$

In the spaceship reference frame A^{\prime}, we already found that:

$$
\Delta \mathrm{t}_{\text {one-way }}^{\prime}=\frac{\Delta \mathrm{t}}{1 / \sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}}=7.5 \text { years }
$$

Because the Earth and star move past the spaceship at speed $v=0.8 c$, the distance between Earth and the star, as seen in A^{\prime}, is
$\Delta \mathrm{X}_{\text {one-way }}^{\prime}=v \Delta \mathrm{t}_{\text {one-way }}^{\prime}=\mathrm{v} \frac{\Delta \mathrm{t}}{1 / \sqrt{1-v^{2} / c^{2}}}=\Delta x \sqrt{1-v^{2} / c^{2}}=(10 \mathrm{ly})\left(\sqrt{1-0.8^{2}}\right)=6.0 \mathrm{ly}$
This indicates that the distance between any two points is always greatest in a frame (the Earth-star frame A in our example) fixed with respect to those points. In any other reference frame is smaller. This is called the Lorentz contraction.

In general: $\Delta \mathrm{x}^{\prime}=\Delta \mathrm{x} \sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}=\frac{\Delta \mathrm{x}}{\gamma}$ where A^{\prime} is moving w.r.t. the two points.
Note: an object's length in a frame in which it is at rest is called its proper length.

Lorentz Velocity Addition

Let's say that object O has velocity u' in reference frame A'.

What will the velocity of the object be as measured by an observer in A ?

frame A

Galilean Approach: $\quad \mathrm{v}_{\mathrm{A}}^{\circ}=\mathrm{v}_{\mathrm{A}^{\prime}}^{\circ}+\mathrm{v}_{\mathrm{A}}^{\mathrm{A}^{\prime}} \quad \therefore \mathrm{u}=\mathrm{u}^{\prime}+\mathrm{v}$
Does this still hold? No! e.g., if $v=0.75 c$ and u ' $=0.80 c$, then $u=1.55 c>c$!
STR Approach: Apply the Lorentz transformations and take the differentials.

$$
\mathrm{x}=\gamma\left(\mathrm{x}^{\prime}+\mathrm{vt} \mathrm{t}^{\prime}\right) \rightarrow \mathrm{dx}=\gamma\left(\mathrm{dx} \mathrm{x}^{\prime}+\mathrm{vdt} t^{\prime}\right)
$$

$$
t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) \rightarrow d t=\gamma\left(d t^{\prime}+\frac{v}{c^{2}} d x^{\prime}\right)
$$

$u=\frac{d x}{d t}=\frac{d x^{\prime}+v d t^{\prime}}{d t^{\prime}+\frac{v}{c^{2}} d x^{\prime}}=\frac{\frac{d x^{\prime}}{d t^{\prime}}+v}{1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}} \quad$ Thus $\quad u=\frac{u^{\prime}+v}{1+\frac{v}{c^{2}} u^{\prime}} \quad$ and $\quad u^{\prime}=\frac{u-v}{1-\frac{v}{c^{2}} u}$
Special cases:
(1) $u^{\prime} \ll c$ and $v \ll c$: $u \cong u^{\prime}+v$ and $u^{\prime} \cong u-v$
i.e., we get the Galilean velocity transforms
(2) $u^{\prime} \approx c$ and $v \approx c$:

Let's say:

$$
\mathrm{u}^{\prime}=\left(1-\delta_{1}\right) \mathrm{c}: \quad \delta_{1} \approx 0, \quad \delta_{1}>0
$$

$$
v=\left(1-\delta_{2}\right) c \quad \delta_{2} \approx 0, \quad \delta_{2}>0
$$

Then:

$$
u=\frac{c\left(2-\delta_{1}-\delta_{2}\right)}{1+\left(1-\delta_{1}\right)\left(1-\delta_{2}\right)}=\frac{c\left(2-\delta_{1}-\delta_{2}\right)}{2-\delta_{1}-\delta_{2}+\delta_{1} \delta_{2}}<c!!
$$

So u is still less than c. Note: it would be 2 c using the Galilean velocity transform.
Now, let's make the x component of u and u^{\prime} explicit: $u_{x}=\frac{u_{x}^{\prime}+v}{1+\frac{v}{c^{2}} u_{x}^{\prime}}$
where v is the relative velocity of A^{\prime} to A along the x axis.
What happens to the velocity perpendicular to the direction of motion of the two reference frames?

Galilean Approach: $\quad u_{y}=u^{\prime}{ }_{y}$
With STR, we still have $y=y^{\prime}$, but $t \neq t^{\prime}$. Again apply the Lorentz transformations and take the differentials.

$$
\begin{aligned}
& y=y^{\prime} \rightarrow d y=d y^{\prime} \\
& t=\gamma\left(t^{\prime}+\frac{v}{c^{2}} x^{\prime}\right) \rightarrow d t=\gamma\left(d t^{\prime}+\frac{v}{c^{2}} d x^{\prime}\right)
\end{aligned}
$$

Thus: $\left.\mathrm{u}_{\mathrm{y}}=\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dy}}{\gamma\left(d \mathrm{y}^{\prime}+\frac{\mathrm{v}}{\mathrm{c}^{2}} \mathrm{~d} x^{\prime}\right)}=\frac{\frac{d y^{\prime}}{\mathrm{dt}}}{\gamma\left(1+\frac{\mathrm{v}}{\mathrm{c}^{2}} \frac{\mathrm{dx}}{} \mathrm{dt}^{\prime}\right.}\right)=\frac{\mathrm{u}^{\prime}{ }_{y}}{\gamma\left(1+\frac{\mathrm{v}}{\mathrm{c}^{2}} \mathrm{u}^{\prime}{ }_{x}\right)}$
So $u_{y} \neq u^{\prime}$ Note: even if $u_{x}^{\prime}=0$, so that the object only has a y^{\prime} velocity component in reference frame A^{\prime}, we still have $u_{y} \neq u^{\prime}$. In this case: $u_{y}=u_{y}^{\prime} / \gamma$.
We can derive a similar equation for the z component: $u_{z}=\frac{u_{z}^{\prime}}{\gamma\left(1+\frac{v}{c^{2}} u^{\prime}{ }_{x}\right)}$

