LECTURE \#2 - SUMMARY

Vector Addition

To add two vectors, place them head-to-tail. The vector sum is the vector from the tail of the first to the head of the second.

- commutative \rightarrow order is not important: $\vec{C}=\vec{A}+\vec{B}=\vec{B}+\vec{A}$
- associative \rightarrow grouping is not important: $\vec{S}=\vec{A}+\vec{B}+\vec{C}=(\vec{A}+\vec{B})+\vec{C}=\vec{A}+(\vec{B}+\vec{C})$

Vector Subtraction

Subtraction of a vector just means adding the negative of this vector, i.e., adding a vector of the same length but opposite direction: $\Delta \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{1}=\overrightarrow{\mathrm{r}}_{2}+\left(-\vec{r}_{1}\right)$
The new position vector is $\vec{r}_{2}=\vec{r}_{1}+\Delta \vec{r}$ where $\Delta \vec{r}$ is the displacement vector.

Scalar Multiplication

e.g. $3 \vec{B}$ is a vector in the same direction as \vec{B}, having 3 times the magnitude of \vec{B} Unit Vectors
The unit vector in the direction of \vec{B} is $n \vec{B}$, such that the magnitude of $n \vec{B}$ is 1 (no units), i.e., $\hat{b}=n \vec{B}$ with $|\hat{b}|=|n \vec{B}|=1$.
Vectors in 2-D
The x and y coordinate axes define a coordinate system in a plane. We can define unit vectors along the x and y axes as \hat{i} and \hat{j}, with length 1 and no units. position vector: $\vec{P}=x_{1} \hat{i}+y_{1} \hat{j} \quad$ (vector starts at origin)
For vector \vec{A} in a plane: $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}=A \cos \theta \hat{i}+A \sin \theta \hat{j}$, with $A=\sqrt{A_{x}^{2}+A_{y}^{2}}=|\vec{A}|, \theta=\tan ^{-1}\left(A_{y} / A_{x}\right)$.

Vectors in 3-D

Add a third axis to $x-y$ coordinate system using the Right Hand Rule (RHR).
In a 3-D co-ordinate system, $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$ with $A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}=|\vec{A}|$.
$\vec{A}=\vec{B}+\vec{C}+\vec{D}+\vec{E}$ is a set of eqns for: (1) x, (2) y, and (3) z components.
Components vs. Coordinates (in 2-D)
coordinates = pair of numbers specifying a given position in a coordinate system components (of a vector) = the lengths of a vector in the coordinate system
These are equivalent if the vector starts at the origin.

Section I. 3 Differentiation and Integration

Differentiation

Mathematically: $\frac{\mathrm{dx}}{\mathrm{dt}}=\lim _{\Delta t \rightarrow 0} \frac{\mathrm{x}(\mathrm{t}+\Delta \mathrm{t})-\mathrm{x}(\mathrm{t})}{\Delta \mathrm{t}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}$
Geometrically: $\quad=$ slope of line through (x, t) and $(x(t+\Delta t), t+\Delta t)$ as $\Delta t \rightarrow 0$
e.g. for $x(t)=a t^{m}$, the derivative is $\frac{d x(t)}{d t}=$ mat $^{m-1}$

