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PHY 140Y – Foundations of Physics, Fall Term 2001  (K. Strong) Lecture 23

LECTURE #23 – SUMMARY

Uniform Circular Motion and Simple Harmonic Motion
For UCM, position vector: ĵ)t(sinRî)t(cosR)t(r θ+θ=

�

phase: δ+ω=θ t)t(
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So, UCM is the superposition of SHM along the x and y axes with
• equal amplitudes (R) and equal angular velocities (ω)
• π/2 phase difference since )tcos(R)tsin(R 2 δ+ω=+δ+ω π

Uniform Circular Motion: ĵ)tcos(Rî)tcos(R)t(r 2
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Any 2-D Periodic Motion: ĵ)tcos(Rî)tcos(R)t(r 22211
π−δ+ω+δ+ω=
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Section IV.2  Springs and Pendulums – Examples of SHM
(1) Springs

s
oF  = force of spring on block (restoring force): x
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This is SHM because xa ∝  and a is oppositely directed to x.
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(2) Pendulums
Force tangent to the trajectory: θ−= sinmgFt̂

Also have: 2
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using θ≅θsin  for small θ

This is again SHM, with acceleration ∝ displacement, and in the
opposing direction.  Here, gravity acts as the restoring force.

In this case: )tcos()t( o δ+ωθ=θ with
L
g=ω  and

g
L2T π=

So a simple pendulum perturbed slightly from equilibrium (θ ≈ 0) exhibits SHM.
If θ is large, then the situation becomes non-linear and is one of the simplest
systems which exhibits chaotic behaviour.
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