## LECTURE \#21 - SUMMARY

## Section III. 8 Force and Potential Energy

 Potential Energy CurvesHow fast must a train be coasting at A to reach D?
The normal force and gravity act on the train.
$\overrightarrow{\mathrm{N}} \perp \mathrm{d} \overrightarrow{\mathrm{r}}$ so only gravity (conservative) does work.


Apply conservation of $\mathrm{E}_{\mathrm{m}}$.
To get to $D$, the train has to get over the top at C. Say that the train JUST gets over C , i.e., $\mathrm{K}_{\mathrm{C}}=0$. So the energy at C will be all gravitational potential energy.

$$
\mathrm{E}_{\mathrm{C}}=\mathrm{U}_{\text {reference }}+\mathrm{mgh}_{\mathrm{C}}
$$

Therefore, to get to $D$, the actual energy of the system must be larger than this.

$$
\mathrm{E}_{\mathrm{A}}=\frac{1}{2} \mathrm{mv}_{\mathrm{A}}{ }^{2}+\mathrm{U}_{\text {reference }}+\mathrm{mgh}_{\mathrm{A}}
$$

So: $\quad E_{A} \geq E_{C}, \frac{1}{2} m v_{A}{ }^{2}+U_{\text {reference }}+\mathrm{mgh}_{\mathrm{A}} \geq \mathrm{U}_{\text {reference }}+\mathrm{mgh}_{\mathrm{C}}, \quad \mathrm{v}_{\mathrm{A}} \geq \sqrt{2 \mathrm{~g}\left(\mathrm{~h}_{\mathrm{C}}-\mathrm{h}_{\mathrm{A}}\right)}$ If $\frac{1}{2} \mathrm{mv}_{\mathrm{A}}{ }^{2}>\Delta \mathrm{U}$ between A and C , then there is enough energy to get over C . If $v_{A}$ is not greater than $\sqrt{2 g\left(h_{C}-h_{A}\right)}$, then the energy of the system will be insufficient to get the train over the hill at C
$\rightarrow \quad$ This hill acts as a potential barrier preventing the train from reaching D.
$\Delta U=m g \Delta y$, so the shape of the roller coaster is the same as the shape of the gravitational potential energy $\rightarrow$ potential energy curve $\equiv$ plot of $U$ vs. position

## Force and Potential Energy

For 1-D nonconstant force: $U(x)=U\left(x_{s}\right)-\int_{x_{s}}^{x} F_{x}^{c} d x$. Differentiate: $\frac{d U(x)}{d x}=-F_{x}^{c}$
Potential energy curve for a spring: $F=F_{0}^{s}(x)=-k x$
(A) compression: $x<0, \frac{d U}{d x}<0, F>0$
(B) equilibrium: $\quad x=0, \frac{d u}{d x}=0, F=0$
(C) stretching: $\quad x>0, \frac{d U}{d x}>0, F<0$

When nonconservative forces are acting:

$W_{\text {net }}^{C} W_{\text {net }}^{C}+W_{\text {net }}^{N C}=K_{f}-K_{i} \quad$ (generally true)
$\mathrm{W}_{\text {net }}^{N C}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}-\mathrm{W}_{\text {net }}^{\mathrm{C}}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}+\Delta \mathrm{U}_{\mathrm{i} \rightarrow \mathrm{f}}=\mathrm{E}_{\mathrm{m}}^{\mathrm{f}}-\mathrm{E}_{\mathrm{m}}^{\mathrm{i}} \quad \rightarrow \quad \mathrm{W}_{\text {net }}^{N C}=\Delta \mathrm{E}_{\mathrm{m}}$
Note: The change in $U$ is associated with conservative forces only.
When nonconservative forces are acting, $\Delta \mathrm{E}_{\mathrm{m}} \neq 0$. The change in mechanical energy $=$ net work done by the nonconservative forces (i.e., dissipation).
Can $\Delta \mathrm{E}_{\mathrm{m}}=0$ when nonconservative forces are present? Yes when $\overrightarrow{\mathrm{F}}_{\text {net }}^{N C} \bullet d \vec{r}=0$.

