

# **Current Assignments ...**

# For today

- Read Sections 11.2 11.7
- For Lecture 19
- Read Chapter 12

# Homework #3

- Late deadline 11:00 AM, Friday, March 15 Homework #4
- Posted March 7. Due 11:00 AM, Friday, March 22 Writing Assignment #2
- Posted Feb. 28. Due 11:00 AM, Thursday, April 4
   Suggested Conceptual Exercises
- Ch. 11: 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45

  Tutorial #8

PHY100S (K. Strong) - Lecture 18 - Slide 2

Office hours:

3-4 Tuesdays

& Thursdays

# **Review of Lecture 17**

# Textbook, Sections 11.1 - 11.2

- General relativity
- The big bang

"Matter tells spacetime how to curve, and curved spacetime tells matter how to move".

PHY100S (K. Strong) - Lecture 18 - Slide

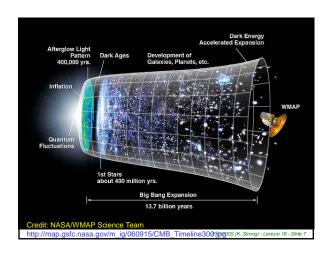
# Plan for Lecture 18

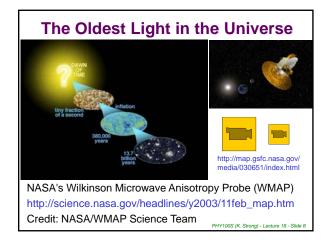
# Textbook, Sections 11.2 - 11.7

- The big bang
- The shape of the universe
- Dark matter and dark energy
- Cosmic inflation

PHY100S (K. Strong) - Lecture 18 - Slide

# From L17: Evidence for the Big Bang


- In 1929 it was discovered that the universe was expanding; extrapolating backwards led to the big bang.
- 2. The cosmic microwave background (CMB), left over from the big bang, has been observed and agrees with theoretical predictions.
- The CMB has been mapped in great detail; its small variations are just as they should be to create galaxies as we see them today.
- 4. Theory predicts just which elements, and in what ratios, should be produced in the big bang; these agree well with observations.


# The Oldest Light in the Universe NASA's Wilkinson Microwave Anisotropy Probe (WMAP)

NASA's Wilkinson Microwave Anisotropy Probe (WMAP) http://science.nasa.gov/headlines/y2003/11feb\_map.htm

Credit: NASA/WMAP Science Team

PHY/1005 (K. Strong) - Lecture 18 - Side 6



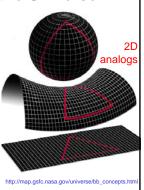


# The Expanding Universe

- The big bang was not really an explosion.
- It created space and time.
- The expanding universe continues to create spacetime.

**Textbook Figure 11.14** 

• It is not expanding into anything.


© 2010 Pearson Education, Inc.

The expanding surface of a balloon is a 2D analog of 3D space.

# The Shape of the Universe

# Three possibilities:

- Closed like the surface of a sphere. Parallel lines eventually meet.
- · Open like a saddle, infinite in extent. Parallel lines diverge.
- Flat no curvature, extends infinitely far in all directions. Parallel lines remain parallel.



→ consistent with

PHY100S (K. Strong) - Lecture 18 - Slide 1

a flat universe.

# **Textbook** http://map.gsfc.nasa.gov/ nedia/030639/index.html **Figure 11.16** © 2010 Pearson Education, Inc. The measured angle is close to 1°

Which Shape Is the Universe?

# What is the Universe Made Of?

# Many forms of matter: http://astro.berkeley.edu/~mwhite

• protons, neutrons, electrons (form atoms) Not dark matter



- neutrinos
- black holes
  - → regions of spacetime from which nothing can escape, even light
- matter

Dark

- dark matter
  - → does not interact with EM radiation
  - → can be detected due to its gravitational effects
  - → comprises most of the mass of the universe

### What Is Dark Matter?

# We don't know! Some possibilities:

- MACHOs (MAssive Compact Halo Objects), including brown dwarfs
  - → Dim objects, intermediate between stars and planets, that are not luminous enough to be directly detectable by telescopes.
- Supermassive black holes
- WIMPs Weakly Interacting Massive Particles
  - → New forms of matter, maybe particles produced shortly after the big bang.

PHY100S (K. Strong) - Lecture 18 - Slide 1

### **Detection of Dark Matter - 1**

- By measuring the motions of stars and gas, astronomers can "weigh" galaxies.
- The mass of the galaxies, including the Milky Way, is ~10 times larger than the mass that can be associated with stars, → Dark matter gas and dust.

**Textbook Figure 11.20** 

© 2010 Pearson Education. Inc.

provides this mass.

PHY100S (K. Strong) - Lecture 18 - Slide 14

# **Detection of Dark Matter - 2**

- Galaxies can also be "weighed" by measuring how they distort light coming from other galaxies (gravitational lensing)
  - → Again, there is missing mass dark matter.



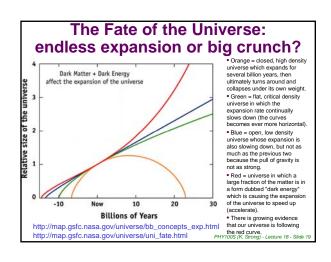
Telescope image of the rich galaxy cluster, Abell

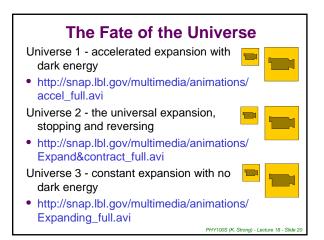
The arc-like pattern spread across the picture like a spider web is an illusion caused by the gravitational field of the

Credits: W.Couch (University of New South Wales), R. Ellis (Cambridge University), and NASA

# The Accelerating Universe

- Because of the gravitational attraction between all the matter in the universe, we might expect its expansion to be slowing.
- 1998 Observations of exploding supernovas gave information about distances, speeds, and accelerations across the universe.
  - →The most distant galaxies were too far away to be explained without acceleration.
- The result: The expansion of the universe is apparently accelerating!


# Dark Energy


- This acceleration cannot be driven by any matter or field that we know of
  - → It must be driven by something new.
- This energy that is slowly pushing the universe apart is called dark energy.
- When the mass of the dark energy and dark matter is added to the luminous and nonluminous matter, the result is just enough for the universe to be flat.

# What is the Universe Made Of?

**Textbook Figure 11.21** 

© 2010 Pearson Education, Inc.



