

Writing Assignment \#2

- Writing Assignment \#2 is now available \rightarrow Posted under Homework on the homepage
- Due 11:00 AM, Thursday, April 4 in the Drop Boxes (late penalty = 5\%/day for 1 week)
- Choose a topic in physics that: (i) is related to something we have discussed in the lectures (or will discuss - check the syllabus) and (ii) interests you.
- The essay should be ~ 4 pages or 1000 words
- Detailed guidelines are given - read them!
- Avoid plagiarism (and its penalties)!

PHY100S (K. Strong) - Lecture 14 - Slide 3

Current Assignments ...

For today

- Read Sections 10.5-10.6

For Lecture 15

- Read Sections 10.7-10.8

Office hours: 3-4 Tuesdays \& Thursdays

- Due 11:00 AM, Thursday, February 28 - now!

Homework \#3 (new due date)

- Handed out February 14, due FRIDAY, MARCH 8

Suggested Conceptual Exercises

- Chapter 10: 21,25,27,31,35,37,39,41,43,47,49,51

Tutorial \#6

- Homework \#2 will be returned and discussed

Review of Lecture 13

Textbook, Sections 10.1-10.4

- Einstein
- Galilean relativity
- The Principle of Relativity
- The speed of light
- The Special Theory of Relativity

Plan for Lecture 14

Textbook, Sections 10.5-10.6

- More on the speed of light
- The relativity of time - time dilation
- Time travel

From Lecture 13

The Principle of Relativity
Every nonaccelerated observer observes the same laws of nature.

Principle of Constancy of Lightspeed
The speed of light (and of other electromagnetic radiation) in empty space is the same for all nonaccelerated observers, regardless of the motion of the light source or of the observer.

PHY1005 (K. Strong)-Lecture 14-Slide 6

The Speed of Light

Let's rephrase constancy of the speed of light: "In every observation of the passage of light from one point to another through empty space, the time taken is simply the relative separation of the points divided by a constant velocity, c."

- This statement explicitly links space and time.
- If c is constant for all observers, then our notions of space and time must depend on the observer...

Michelson Morley Experiment

Michelson Morley Experiment (1887)

- Michelson and Morley invented the interferometer to look for the ether.
\rightarrow Ether was thought to be a medium permeating the universe, through which light moved.
- Since their lab was moving through the ether, they predicted that two light beams moving in different directions would have slightly different speeds relative to the lab. But when they did their experiment:
\rightarrow They found that all beams had the same speed.
\rightarrow This proved that the ether did not exist.
- This experiment also verified the constancy of the speed of light, although this was not believed at the time.

PHY100S (K. Strong) - Lecture 14 - Slide 8

What is the Speed of Light?

Finding the speed of light with marshmallows!

- http://www.physics.umd.edu/ripe/icpe/newsl etters/n34/marshmal.htm
- Or with chocolate!

What Is Time?

- The speed of light, $c=300,000 \mathrm{~km} / \mathrm{sec}$.
- Because the mirrors are $150,000 \mathrm{~km}$ apart, it takes one second for the light to travel back and forth (one complete round trip).
- Let the light clock "tick" at the end of each round trip.
- Now let's do a thought experiment using two light clocks.
\rightarrow One on Velma's spaceship
\rightarrow One with Mort on Earth

What does Mort see when Velma flies past him?

He sees her light
Textbook Figure 10.8
beam traveling
farther than his
between "ticks".
Mort sees Velma's
clock run slow.

Who is correct?

- Answer: They are both correct!
- There is no correct observer and no truly universal time.

Rule: Moving clocks run slow.

- Time is relative - it depends on the relative speed of the clock and the observer.
- Any phenomenon that varies with time will exhibit the same behavior as the clocks e.g., aging animals, melting ice

PHY100S (K. Strong) -Lecture 14- Slide 15

Time Dilation

So we have time T measured by a clock moving at speed v running slow, or "dilated" compared to the time T_{0} measured by a stationary clock:

$$
\mathrm{T}=\frac{\mathrm{T}_{0}}{\sqrt{\left(1-\mathrm{v}^{2} / \mathrm{c}^{2}\right)}}
$$

We can also write this as: $\quad \mathrm{T}=\gamma \mathrm{T}_{\text {。 }}$ where

$$
\gamma=\frac{1}{\sqrt{\left(1-\mathrm{v}^{2} / \mathrm{C}^{2}\right)}}>1 \quad \text { SO } \mathrm{T}>\mathrm{T}_{0}
$$

What does Velma see as she flies past Mort?

She sees his light
Textbook
Figure 10.8

- 2010 Pearson Education, Inc. beam traveling
farther than hers
between "ticks".
Velma sees Mort's
clock run slow.
PHY100S (K. Strong) -Lecture 14-Slide 14

Time Dilation

- We can show that time measured by a moving clock is slow, or "dilated", according to the equation:
where

$$
T=\frac{T_{0}}{\sqrt{\left(1-v^{2} / c^{2}\right)}}
$$

- T is time in the moving frame of reference (e.g., Velma's as seen by Mort)
- T_{0} is time in the stationary frame of reference (e.g., Velma's as seen by Velma)
- v is the relative speed
(e.g, between Mort and Velma)

PHY100S (K. Strong)-Lecture 14-Slide 16

Some Points to Note

(1) The time difference between two events is always shortest in the reference frame for which the events occur at the same place.
(2) The time measured in this reference frame is called the proper time (= the shortest time).
(3) Time dilation does not depend on the direction of motion of the reference frame (v).
(4) Time dilation is symmetric. We don't really want to say that reference frame A^{\prime} ' is in motion, as we don't know if A or A^{\prime} is in motion.
(5) The only way to apply time dilation is if you have two events that happen at the same PLACE in one reference frame.
e.g., Clock (this is why clocks are so often used - because we assume that the clock remains sitting in the same place in the reference frame!)

The Relativity of Time

Textbook
Table 10.1
© 2010 Pearson Education, Inc.

The Relativity of Time

Figure 10.9
This graph shows the duration of one clock tick (representing 1 second in the clock's reference frame) on a moving clock, for various speeds of the clock relative to the observer.

How about those frogs?

Mort and Velma have identical frogs who live for 10 days. Velma passes Mort at 75% of lightspeed. How long are the frogs' lifetimes according to Mort?

> Mort's Velma's
(A) 10 days 10 days
(B) 10 days 15 days
(C) 15 days 10 days

How about those frogs?

Mort and Velma have identical frogs who live for 10 days. Velma passes Mort at 75\% of lightspeed. How long are the frogs' lifetimes according to Velma?

Mort's (A) 10 days	Velma's 10 days	So Mort sees his frog die first and Velma sees
(B) 10 days	15 days	her frog die
(C) 15 days	10 days	first. Both are correct!
		Phyroos (K. Storos) -Leeture 14 - Stide 23

Time Dilation Animation

Try this at home yourself:

- http://www.upscale.utoronto.ca/Generallntere st/Harrison/SpecRel/Flash/TimeDilation.html

How fast do Mort and Velma age?

- If Velma passes Mort at 75% of lightspeed, then
\rightarrow Mort and his descendants see Velma age 120 years during his 80-year lifetime.
- She lives for 120 years as measured by Mort's clock.
- He sees her age slowly, by 1 yr for each of his 1.5 yrs.
- He dies after 80 of his years and she dies after 120 of Mort's years, but she looks like an 80-year-old.
\rightarrow Velma and her descendants see Mort age 120 years during her 80-year lifetime.
\rightarrow And both are correct!
- Each will see the other age more slowly.

