"From a long view of the history of mankind ... the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics." Richard Feynman,

American physicist (1918-1988)

"This change in the conception of reality is the most profound and the most fruitful that physics has experienced since the time of Newton."

> Referring to Maxwell's contributions to physics. Albert Einstein, German-American physicist (1879-1955)

"He achieved greatness unequalled." Max Planck, *German physicist (1858-1947)*

James Clerk Maxwell (1831-1879), aged 24. Photo: Trinity College, University of Cambridge.

Current Assignments ... For today:

- Read Sections 9.3 9.7
 For Lecture 11:
- Read Section 9.8

- Office hours: 3-4 Tuesdays & Thursdays
- **Suggested Conceptual Exercises:**
- Chapter 9: 1,3,5,7,9,11,13,19,21,23,29,31,33
 Homework #2
- Due 11:00 AM, Thursday, February 14
 Writing Assignment #1
- Due 11:00 AM, Thursday, February 28
 Tutorials
- Tutorial #4 this week

Review of Lecture 9

Textbook, Sections 8.6, 9.1, 9.2

- Electromagnetism
- Waves
- Interference of waves

Plan for Lecture 10

Textbook, Sections 9.3 - 9.7

- Light: particle or wave?
- The double slit experiment
- Electromagnetic wave theory of light
- Electromagnetic spectrum
- Solar radiation
- Blackbodies

From Lecture 9: Wave Interference in 2D

Textbook Figure 9.11

© 2010 Pearson Education, Inc.

Textbook Figure 9.12

© 2010 Pearson Education, Inc.

What Is Light: Particle or Wave?

- Some things are sources of light, such as light bulbs and the sun.
- Everything else, such as the moon and our furniture, we see by reflection.
- So, what enters your eyes when you see light? In particular, is it a particle or a wave?
- One way to tell is if we can get light to exhibit interference.
 - → We need two sources of light that have identical vibrations. One way is to have a single light go through a screen with two slits.

Young's Double Slit Experiment

- First performed by Thomas Young in 1801.
- Goal was to answer the question of whether light was made of particles (Newton's "corpuscular" theory), or of waves travelling through some ether, just as sound waves travel in air.

Young's Double Slit Experiment

What happened?

Young's two-slit experiment with laser light

 http://www.colorado.edu/physics/2000/apple ts/twoslitsa.html

The resulting interference pattern supported the wave theory of light.

Light is a wave.*

Textbook Figure 9.17

© 2010 Pearson Education, Inc.

Double Slit Experiment

PhET interactive animation

- http://phet.colorado.edu/en/simulati on/wave-interference
- Interactive vary wavelength and separation
- http://dev.physicslab.org/asp/applet s/doubleslit/default.asp

Interactive ripple tank animation

 http://www.falstad.com/ripple/ex-2slit.html Try these animations at home

The EM Wave Theory of Light - 1

- Imagine a charged object, like a balloon, a pith ball, or a comb.
- It exerts an electric force on other charged objects, and when moved, it exerts a magnetic force on magnets.
- The magnitude of the force depends on the distance between the objects.
- Imagine shaking the balloon/pith ball/comb.

→ How long does it take for the other charged object or the magnet to react?

The EM Wave Theory of Light - 2

- Shaking changes the electric and magnetic fields created by the moving charge.
- Does this change appear everywhere instantaneously or does it take some finite time?
- This question was studied by Maxwell, who thought that the equations of electromagnetism should treat electric and magnetic fields similarly.

PHY100S (K. Strong) - Lecture 10 - Slide 11

Two charged particles are placed a short distance apart in a vacuum.

- The electric force exerted by one on the other:
- (A) Cannot be felt due to the vacuum.
- (B) Is transmitted instantaneously.
- (C) Is transmitted at the speed of light.
- (D) Is due to gravity.
- (E) Is due to friction.

Maxwell's Equations

Maxwell's electromagnetic field theory can be thought of as four relationships:

- (1) the electric force law
- (2) the magnetic force law
- (3) Faraday's law: a changing magnetic field creates an electric field
- (4) Maxwell's contribution:a changing electric field creates a magnetic field

Predictions of Maxwell's Equations Maxwell's Equations predict:

- The existence of electromagnetic waves.
 - → An oscillating electric charge creates an electromagnetic wave, which consists of changing electric and magnetic fields.
- That EM forces take time to propagate, rather than changing at all points simultaneously.
- The speed of propagation of these waves 300,000 km/s.
 - This had already been measured as the speed of light – so is light an electromagnetic wave?

Generating Electromagnetic Waves

Figure 9.22 Shaking a charged object will make other charged objects shake in response.

Textbook Figure 9.24

© 2010 Pearson Education, Inc.

Textbook Figure 9.22

© 2010 Pearson Education, Inc.

Figure 9.24 Shaking a charged object will make it send out an EM wave in all directions. This wave is a disturbance in the EM field of the charged object.

Fields of Oscillating Charges

The electric field of an oscillating charge:

 http://www.upscale.utoronto.ca/GeneralIntere st/Harrison/Flash/EM/LightWave/Wave.html

- The electric and magnetic fields generated by an oscillating electric charge:
- http://www.upscale.utoronto.ca/PVB /Harrison/Flash/EM/EMWave /EMWave.html

The EM Wave Theory of Light - 3

Maxwell (1864), before the Royal Society of London in 'A Dynamic Theory of the Electro-Magnetic Field', said:

"We have strong reason to conclude that light itself - including radiant heat and other radiation, if any - is an electromagnetic disturbance in the form of waves propagated through the electro-magnetic field according to electro-magnetic laws."

The existence of EM waves was verified by Heinrich Hertz (1887).

The EM Wave Theory of Light - 4

Every vibrating charged object creates a disturbance (wave) in its own electromagnetic field. This disturbance spreads outward through the field at lightspeed, 300,000 km/s. Light is just an electromagnetic wave.

Electromagnetic wave

The Decline of the Newtonian Universe Key ideas:

- Electromagnetic fields contain energy.
- Scientists postulated the existence of an <u>ether</u>, which permeated everywhere and everything, and which was the medium for electromagnetic waves.
 - \rightarrow It was later proven that ether does not exist.
 - \rightarrow Electromagnetic fields propagate in vacuum.
- This vacuum is not entirely empty it is full of fields!

 \rightarrow The beginning of post-Newtonian physics.

The Electromagnetic Spectrum

- Imagine shaking a charged object quickly.
- Does this create an electromagnetic wave?
- What is its frequency? Its wavelength?

Textbook Figure 9.24

© 2010 Pearson Education, Inc.

The Electromagnetic Spectrum

- The frequencies of visible light are around 10¹⁵ Hz.
- However, electromagnetic waves can have any frequency; different frequency ranges are given different names.
- This range of frequencies is called the <u>electromagnetic spectrum</u>.
- Electromagnetic waves carry <u>radiant</u> <u>energy</u>, and are sometimes called <u>electromagnetic radiation</u>.

The Electromagnetic Spectrum

Textbook Figure 9.27

© 2010 Pearson Education, Inc.

Radio waves

- Longest wavelengths, down to about 1 mm
- Include AM, FM, TV, and microwaves
- Many natural processes also create radio waves
- Radio astronomy using radio telescopes to detect radio waves – is a very active field of research

Infrared radiation

- Next range, from 1 mm to about 0.001 mm
- Typically caused by the thermal motion of molecules in a substance
- Perceived as heat

Visible light

- Has wavelengths around 5 x 10⁻⁷ m (400-700 nm)
- Created by individual electrons in atoms, as they change from one energy level to another
- The longest wavelengths are perceived as red; shortening the wavelength gives orange, yellow, blue, and violet in a continuous gradation - the rainbow

Ultraviolet radiation

- The next shortest wavelengths, or higher frequencies
- Also created by changes in atomic electrons, but its energy is higher, making it more dangerous to living cells
- Ultraviolet radiation is a leading cause of skin cancer

X-rays

- Created by highest-energy electron interactions possible in atoms
- Can destroy living cells, and pose a cancer risk
- Widely used in medicine

 newer X-ray machines
 use much less power than
 older ones, making them
 safer

Textbook Figure 9.29

© 2010 Pearson Education, Inc.

Gamma rays

- Highest-frequency electromagnetic waves
- Produced in nuclear reactions such as fusion and fission
- Can also damage living cells
- Their wavelengths are so short compared to the size of the atom that they only interact with the nucleus, and can penetrate deeply into matter

The Solar Spectrum

The sun emits all wavelengths of EM radiation, with the most energy in the visible, ultraviolet, and infrared regions.

Textbook Figure 9.30

© 2010 Pearson Education, Inc.

SOHO Images of the Sun

- Solar & Heliospheric Observatory (1995)
- One month or 48 hours in Sept-Oct 2009
- From <u>http://sohowww.nascom.nasa.gov/</u>

$\lambda = 17.1$ nm $\lambda = 19.5$ nm $\lambda = 28.4$ nm $\lambda = 30.4$ nm $\lambda = 677$ nm

1 million degrees

60,000-80,000°

Michelson Images taken with the Extreme ultraviolet Imaging Telescope Doppler Imager

http://sohowww.nascom.nasa.gov /data/realtime/soho/soho_fader.html

Blackbodies

- The Sun behaves like a <u>blackbody</u> at a temperature of approximately 6000 degrees.
- A <u>blackbody</u> is a <u>perfect emitter</u> it emits the maximum possible amount of radiation at each wavelength.
- A blackbody is also a <u>perfect absorber</u>, absorbing at all wavelengths of radiation incident on it. Therefore, it looks black.
- Every object emits radiation, with <u>emissivity</u>: emitted radiance at λ

 $\varepsilon_{\lambda} \equiv \frac{1}{\text{blackbody radiance at } \lambda}$

The Blackbody Spectrum

http://www.colorado.edu/physics/phet /simulations/blackbody/blackbody.swf

- Blackbody radiation depends on the temperature of the emitting object.
- Humans tend to be warmer than our surroundings. We emit energy (~ 100 Watts for an average adult at rest) in the infrared.
- Although we also absorb infrared radiation from our surroundings, there is a net energy loss – replaced by metabolic processes.

Solar and Terrestrial Radiation

- Solar spectrum
 - \rightarrow peaks in visible, near 500 nm (or 0.5 microns)
 - \rightarrow known as <u>shortwave</u> radiation
- Earth's spectrum
 - \rightarrow peaks in the infrared, near 10 microns (µm)
 - → known as longwave radiation

