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Abstract We examine in detail a 1 year global reanalysis of carbon monoxide (CO) that is based on joint
assimilation of conventional meteorological observations and Measurement of Pollution in The Troposphere
(MOPITT) multispectral CO retrievals in the Community Earth System Model (CESM). Our focus is to assess the
impact to the chemical system when CO distribution is constrained in a coupled full chemistry-climate model
like CESM. To do this, we first evaluate the joint reanalysis (MOPITT Reanalysis) against four sets of independent
observations and compare its performance against a reanalysis with no MOPITT assimilation (Control Run). We
then investigate the CO burden and chemical response with the aid of tagged sectoral CO tracers. We estimate
the total tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371±12%Tg for MOPITT
Reanalysis and 291±9%Tg for Control Run. Our multispecies analysis of this difference suggests that (a) direct
emissions of CO and hydrocarbons are too low in the inventory used in this study and (b) chemical oxidation,
transport, and deposition processes are not accurately and consistently represented in the model. Increases in
CO led to net reduction of OH and subsequent longer lifetime of CH4 (Control Run: 8.7 years versus MOPITT
Reanalysis: 9.3 years). Yet at the same time, this increase led to 5–10% enhancement of Northern Hemisphere
O3 and overall photochemical activity via HOx recycling. Such nonlinear effects further complicate the
attribution to uncertainties in direct emissions alone. This has implications to chemistry-climate modeling and
inversion studies of longer-lived species.

1. Introduction

Oxidation in the troposphere is mainly controlled by the hydroxyl radical (OH), which initiates a complex chain
of reactions that significantly affects the abundance of radiatively and chemically important species such as
ozone (O3), methane (CH4), and secondary organic aerosols [Isaksen et al., 2009]. For example, the OH radical
reacts with atmospheric CH4, nonmethane volatile organic compounds (NMVOCs), and carbon monoxide
(CO), leading to the ultimate oxidation of reduced carbon in the troposphere to carbon dioxide (CO2). The reac-
tion with CO is considered the primary chemical loss mechanism for OH, followed by its reaction with CH4 [Levy,
1971]. Changes in CO and CH4 abundance therefore introduce important perturbations in the chemical system
of the troposphere, resulting in changes in radiative forcing from these species [Stocker et al., 2013]. Larger
emissions of CO, in particular, lead to increases in the burden of several tropospheric species due to the reduc-
tion in OH [Prather, 1996]. The subsequent increase in CH4 burden (and its lifetime) leads to a positive feedback
on CO abundance through chemical production of CO from CH4 [Guthrie, 1989]. Furthermore, at appropriate
levels of nitrogen oxides (NOx=NO2+NO), the CO+OH reaction is also efficiently involved in the photochemi-
cal production of tropospheric O3 [Crutzen, 1973; Logan et al., 1981]. The efficiency of O3 production and the
chemical oxidation of CH4 and CO are controlled by the recycling of the HOx family of radicals, consisting of
OH, hydroperoxy (HO2), organic peroxy (RO2), and oxy (RO) radicals. Constraints on the interdependence
between CO, CH4 (and NMVOCs), and OH are therefore critical in understanding the overall chemical response
to perturbations in tropospheric composition and associated climate forcings.
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1.1. Tropospheric CO Sources and Sinks

Carbon monoxide is directly emitted into the troposphere from incomplete combustion of carbonaceous
materials. This includes fossil fuel and biofuel use in energy production, domestic heating, transportation,
and manufacturing, as well as agricultural and natural fires. Globally, fossil fuel/biofuel (FFBF) combustion
constitutes the main primary source of CO emissions. At present, it produces CO at a rate of about
500–600 Tg CO/yr [Shindell et al., 2006; Duncan et al., 2007; Stein et al., 2014], predominantly originating from
industrialized regions like North America, Europe, and East Asia. Biomass burning (BB) contributes about
350–500 Tg CO/yr, mostly from tropical and boreal forest fires [Andreae and Merlet, 2001; Duncan et al.,
2003; Kaiser et al., 2012]. BB sources show a stronger climate-related seasonal and interannual variation than
FFBF. Consequently, it strongly drives the interannual variability of CO abundance [Novelli et al., 2003; van der
Werf et al., 2006; Edwards et al., 2006b; Hooghiemstra et al., 2012; Worden et al., 2013]. For example, observa-
tional evidence shows that episodic large-scale fires, which emit significant amounts of CO [Pfister et al., 2005;
Krol et al., 2013], are most likely influenced by the El Niño–Southern Oscillation or ENSO [Edwards et al., 2006a;
Logan et al., 2008].

CO is also produced from chemical oxidation. This secondary source of CO is, in fact, larger than the FFBF or
BB direct emissions. Around 800 Tg CO/yr is produced from CH4 oxidation and about 600 Tg CO/yr from
NMVOCs oxidation, which are mainly of biogenic origin and to a lesser extent from anthropogenic sources
[Granier et al., 2000; Prather et al., 2001; Shindell et al., 2006; Duncan et al., 2007; Stein et al., 2014]. The CO sea-
sonality is further complicated by biogenic emissions, which peak during the summer and may dominate
when anthropogenic sources are low or have been drastically reduced in industrialized countries [Hudman
et al., 2008]. However, recent studies tend to show an underestimation of anthropogenic VOC emissions
[Stein et al., 2014; Emmons et al., 2015].

CO is mainly removed from the atmosphere through its reaction with OH and to a lesser extent by dry deposi-
tion and soil uptake. Globally, CO has an average lifetime of 2.3months (assuming an average OH concentra-
tion of 1.1 × 106molecule/cm3). It varies seasonally and regionally from 1month to 2.5months depending on
the distribution of OH. In any case, its lifetime is longer than characteristic hemispheric and tropospheric mix-
ing time scales. This makes CO a good signature of combustion, which is useful in tracking long-range trans-
port of pollution, in general, and BB plumes in particular [e.g., Edwards et al., 2004]. Furthermore, the relative
abundance of CO and CO2 in plumes provides a good indication of combustion efficiency making it useful to
constrain emission factors [Kondo et al., 2011; Silva et al., 2013]. The abundance and spatiotemporal distribu-
tion of CO in the troposphere are driven by the interplay between its sources and sinks. While uncertainties
regarding CO sources still exist, global multimodel (and single-model) simulations of tropospheric chemistry
consistently show large differences even when using similar sources. This discrepancy is attributed to differ-
ences in the simulated OH distribution [Duncan et al., 2007; Naik et al., 2013; Monks et al., 2015; Strode et al.,
2015], which leads us back to the CH4-CO-OH conundrum and role of nonlinear chemistry in better under-
standing changes in climate forcing that are associated with changes in combustion-related emissions.

1.2. Constraints on Tropospheric CO From MOPITT

Despite these remaining uncertainties, our present understanding of the spatiotemporal distribution of
CO and its variability has greatly improved in the past decade. This is largely due to the availability of
aircraft measurements; thanks to the National Oceanic and Atmospheric Administration (NOAA) and the
Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) observational programs
[e.g., Novelli et al., 1998, 2003; Emmons et al., 2004; Nédélec et al., 2003; Zbinden et al., 2013; Novelli and
Masarie, 2015] and spaceborne measurements such as the Measurement of the Pollution in the Troposphere
(MOPITT), the Atmospheric Infrared Sounder (AIRS), the Tropospheric Emissions Spectrometer (TES), and the
Infrared Atmospheric Sounding Interferometer (IASI) [e.g., Jones et al., 2003; Warner et al., 2007; Worden
et al., 2013, 2014; Deeter et al., 2014; George et al., 2015; Clerbaux et al., 2015]. Past studies have integrated
these observations of CO and related gases in both regional and global chemical transport models to con-
strain sources and sinks, in particular CO emissions [Streets et al., 2013, and references therein]. These assim-
ilation efforts have evolved from Bayesian synthesis inversions [e.g., Palmer et al., 2003; Heald et al., 2004;
Pétron et al., 2004; Arellano et al., 2004; Pfister et al., 2005; Arellano et al., 2006; Stavrakou and Muller, 2006;
Jones et al., 2009; Konovalov et al., 2011; Kopacz et al., 2010], variational methods [Chevallier et al., 2009;
Fortems-Cheiney et al., 2009, 2011; Hooghiemstra et al., 2012; Jiang et al., 2011, 2013, 2015], and comparison
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of these two approaches [Kopacz et al., 2009] to data assimilation (DA) frameworks [Miyazaki et al., 2012b,
2015] and multispecies inversions [Muller and Stavrakou, 2005; Pison et al., 2009; Jiang et al., 2011]. Most
recent studies have also shown that (1) aggregating the NMVOC sources in a global background (CO from
chemical oxidation) leads to an overestimate of CO sources [Jiang et al., 2011] and (2) systematic biases in
emission estimates may be caused by (a) model errors such as vertical transport and convection [Jiang
et al., 2013, 2015], (b) aggregating emission estimates to larger footprints, (c) errors in representing biogenic
CO, and (d) specifying (prescribing) OH distribution [Jiang et al., 2015].

Different versions of MOPITT CO have previously been assimilated to constrain the CO atmospheric concen-
trations for chemical weather studies using variational and sequential DA methods [Lamarque et al., 2004;
Yudin et al., 2004; Pradier et al., 2006; Arellano et al., 2007; Barré et al., 2013, 2015; Klonecki et al., 2012;
Inness et al., 2013, 2015]. Furthermore, these studies have been extended by several groups to longer assim-
ilation periods (i.e., reanalysis activities) to provide insights on decadal trends of CO distribution and emis-
sions. This entailed more sophisticated analysis approaches, including better representation of chemical
sources of CO and multiple observational constraints. For example, Fortems-Cheiney et al. [2011] presented
results of 10 years of assimilation of MOPITT version 4 Thermal Infrared (TIR) retrievals using the LMDZ-
SACS (Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric
Chemistry System) mechanism [Chevallier et al., 2009; Pison et al., 2009]. This mechanism represents the
CH4 oxidation chain by a few reactive species (CO, CH4, HCHO, H2, OH, and methyl-chloroform). Their system
used a 4D-Var scheme that optimized OH, 3-D chemical sources of formaldehyde (HCHO), and CO surface
emissions. The Fortems-Cheiney et al. [2011] study concluded that proper treatment of chemical sources of
CO in conjunction with jointly constraining OH is important to produce accurate and consistent estimates
of CO emissions. In the context of the European Monitoring Atmospheric Composition and Climate (MACC)
project, which was followed by the Copernicus Atmosphere Monitoring Service (CAMS), a weakly coupled
chemistry-meteorology 4D-Var data assimilation system has been developed at the European Center for
Medium-Range Weather Forecast (ECMWF) [Inness et al., 2015]. Inness et al. [2013] presented an 8 year reana-
lysis of MOPITT TIR total column CO retrievals (as well as other satellite data sets including IASI CO) for which
O3, CO, and NOx initial conditions were optimized based on the coupling between the Integrated Forecasting
System (IFS) and the Model for Ozone and Related chemical Tracers (MOZART-3) chemistry transport model.
More recently, Miyazaki et al. [2015] presented a full chemistry ensemble-based reanalysis of MOPITT TIR
700 hPa CO retrievals (and other satellite-derived measurements such as O3 from TES, NO2 from OMI, and
HNO3 from MLS) with optimization of CO emissions only. Neither reanalysis provided a detailed discussion
of the CO budgets including estimates of the chemical CO sources, as had been done in Fortems-Cheiney
et al. [2011, 2012] and Yin et al. [2015]. However, the latter studies used a simplified chemistry scheme within
an offline chemistry transport model.

Finally, the recent studies of tropospheric CO summarized above point to a new direction of incorporating
multiple observational constraints into current models of atmospheric chemistry. However, it still points to
a gap in our understanding of the variability in CO atmospheric concentrations mostly associated with the
coupled nonlinear nature of the factors controlling its abundance (see section 1.1). In particular, issues remain
regarding the following: (a) accuracy and consistency of concentration and emission trends due to errors in
model representation of transport, deposition, chemical production, and loss, which are not mutually exclu-
sive, and (b) uncertainties in sectoral and regional emissions of CO and hydrocarbons. While recent studies
have begun tackling some of these issues independently, detailed and comprehensive analyses are yet to
be undertaken especially with regard to secondary sources of CO and the chemical response to changes in
CO within the context of coupled chemistry-climate studies. Systematic investigation of these confounding
interactions is warranted as we move forward toward producing long-term chemical reanalysis for climate
studies and attribution.

1.3. Objectives of This Study

Here we investigate the first year of a reanalysis project at the National Center for Atmospheric Research
(NCAR), which focuses on assimilating the multispectral MOPITT CO retrievals for more than a decade
(2002 to 2015). We have initiated our reanalysis (state estimation) for the year 2002 using our previously
described assimilation system [Arellano et al., 2007; Barré et al., 2015], which includes an ensemble-based
DA software (Data Assimilation Research Testbed, or DART) and the coupled chemistry-climate model of
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the Community Earth System Model (or CESM) Hurrell et al. [2013] Community Atmospheric Model with
Chemistry (or CAM-Chem). Hereafter, this DA system will be denoted as DART/CAM-Chem and our most
recent study [Barré et al., 2015] as B2015. This reanalysis finds the best estimate of the CO atmospheric state
by optimizing its concentration (i.e., state as opposed to state-source estimation). Here we tackle the two first
issue mentioned earlier regarding accuracy and consistency of concentration and emission trends due to
errors in model representation of physical and chemical processes. We focus in particular on assessing the
impact on the chemical system when CO distribution alone is constrained in CESM.

The specific objectives of this paper are twofold.

First, we conduct a global evaluation of the impact of MOPITT assimilation on modeled CO fields by (a) inves-
tigating the full diagnostics of assimilated MOPITT observations (e.g., bias, root-mean-square error (RMSE),
mean of analysis increments, and chi-square) and (b) comparing the simulated CO fields to ground-based
and airborne CO measurements. These comparisons provide a comprehensive evaluation of the changes
in CO distribution resulting from assimilating MOPITT. Our evaluation serves as a direct extension of B2015,
with a particular focus on evaluating our system over a longer assimilation period (1 year versus one season).
This evaluation is conducted within the context of chemical reanalysis rather than chemical weather applica-
tion as in B2015. Furthermore, we note that such evaluation is a necessary first step to build confidence on
our analysis of CO distributions.

Second, we investigate the detailed chemical response of CESM/CAM-Chem to MOPITT assimilation. In parti-
cular, we focus on the impact of CO assimilation (state estimation) on the modeled tropospheric chemistry
and methane lifetime through changes in the CO burden. We study the spatiotemporal patterns of the
changes in concentrations, chemical fluxes, and lifetimes of relevant species affecting the CO-OH-CH4 and
VOC/NOx/O3 chemical systems; i.e., what is the short-term model response in CO-OH-CH4 and VOC/NOx/
O3? This study collectively addresses the issues pointed out by recent reanalysis [Inness et al., 2015;
Miyazaki et al., 2015] and inverse modeling studies [Fortems-Cheiney et al., 2011; Yin et al., 2015] within the
context of state estimation, coupled chemistry-climate modeling, the use of the new multispectral MOPITT
retrievals of CO profiles, and fully and explicitly accounting for nonlinear processes.

Together, these two aim to provide unique perspectives on the impact of constraining the CO distribution in
atmospheric chemistry models. To our knowledge, this is the first systematic investigation on the chemical
system in a context of global assimilation. Yet this has important and broad implications to the design
approach, observing systems, implementation, and interpretation of ongoing and future chemical reanalysis,
source inversion, and chemistry-climate studies. Understanding the model response provides insights on
how to accurately and consistently attribute the mismatch between modeled and observed distribution of
radiatively and chemically active species like O3 and CH4 that are significantly and nonlinearly affected by
changes in CO.

The paper is organized as follows. In section 2, we describe the CESM/CAM-Chem model, the data assimila-
tion system (DART), the MOPITT CO observations, and the data sets used for verification. In section 3, we
evaluate and contrast the simulated CO fields, the assimilated observations, and the independent measure-
ments. The impact of the assimilation on the CO concentrations, proportions of CO burden, and other
chemical species are described in section 4. We discuss our results in section 5. Our summary, conclusions,
and description of future prospects are presented in section 6.

2. Chemical Data Assimilation System

This section presents the following main components of our chemical data assimilation system: (1) main
observations to be assimilated (MOPITT CO retrievals), (2) chemical transport model (CESM/CAM-Chem),
and (3) data assimilation (DA) software (DART) integrating MOPITT measurements into CAM-Chem.
Although this DA system has been described in detail by B2015 and references therein, we will briefly
describe the system once again to provide context with other reanalysis/inverse analysis studies, specifically
Inness et al. [2015],Miyazaki et al. [2015], and Yin et al. [2015]. We also briefly describe the CO tags which were
not included in B2015. We use these tags as tracer diagnostics. In this section, we also describe our experi-
mental design for the reanalysis. We note that this system assimilates both meteorological observations from
the National Centers for Environmental Prediction (NCEP) and MOPITT CO retrievals and can allow updating
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both meteorological and chemical states. Finally, we describe the observations used for the evaluation of
the simulations.

2.1. MOPITT Retrievals

The MOPITT instrument is a nadir-viewing, cross-track scanning gas correlation radiometer on board the
NASA EOS Terra satellite. It operates in both the thermal (4.7μm) and near (2.7μm) infrared [Edwards et al.,
1999]. The V5J data set used in this study is the product of a multispectral retrieval algorithm [Worden
et al., 2010] that provides total CO column as well as CO profiles expressed in 10 levels (10 partial CO
columns), nominally located from the surface to 100 hPa. Multispectral retrievals show, in general, increased
sensitivity to CO with respect to thermal infrared-only retrievals, in particular for daytime measurements over
land. Overall, the Degree of Freedom for Signal (DFS), which is a metric of instrument sensitivity, is generally
close to 2 and greater than 1 [Worden et al., 2010]. Validation of V5J retrievals shows bias values below 5% in
the lower troposphere (surface to 400 hPa) and around 14% in for the upper troposphere [Deeter et al., 2013].
To avoid introducing a positive bias in their analyses, Jiang et al. [2013] and B2015 excluded MOPITT retrievals
from the upper three levels (300, 200, and 100 hPa). Similarly, we only assimilate retrievals from the lower
seven levels (i.e., surface to 400 hPa). Regarding assimilation purposes, model profiles are “smoothed” using
the MOPITT a priori profiles and averaging kernels to match the vertical resolution of the retrievals. However,
we assign to each partial column the pressure level where its averaging kernel peaks, so as to be consistent
with its associated retrieval sensitivity. For each partial column, we use an error variance corresponding to the
diagonal element of its retrieval error covariance matrix. We assume that the off-diagonal error terms are
relatively small, to sequentially assimilate each partial column of the profile. For purposes of quality control
related to cloud detection and measurement sensitivity, we use only daytime data, with DFS greater than
0.5, within 65° latitude of the equator. To minimize introduction of noise in the model due to subgrid varia-
bility and horizontal error correlation in the data, we use the error-weighted average of the data within the
model grid (i.e., superobservations), assuming uncorrelated errors of pixels within it. We choose to assimilate
the full lower seven levels of the profile to extract as much information as there is in MOPITT (e.g., retrievals
with DFS >1) for our purpose of constraining the full 3-D CO distribution.

2.2. Community Earth System Model, CESM

In this study, we use the version 1.2 of the NCAR Community Earth System Model (CESM), with updates
as described in Tilmes et al. [2015], available for download at http://www.cesm.ucar.edu/experiments/
cesm1.2/. It consists of different component models of the climate system, mainly the Community
Atmosphere Model, Version 4 (CAM4) [Neale et al., 2013], the Community Land Model Version 4.0 (CLM4)
[Lawrence et al., 2011], the Parallel Ocean Program (POP2) [Smith et al., 2010], and the Community Ice Code
(CICE4) [Hunke and Lipscomb, 2008]. Here we prescribe sea surface temperatures and sea ice for present-
day conditions [Rayner et al., 2006] and include only the coupling between land and atmosphere. Model
dynamics are calculated online but are constrained by observations due to the assimilation of conventional
meteorological data sets (see section 2.3). We focus here on the simulation of CO in the Community
Atmosphere Model with Chemistry (CAM-Chem) as described and evaluated in Lamarque et al. [2012] and
Tilmes et al. [2015]. We use an active coupling with CLM4 [Lawrence et al., 2011] to allow online calculation
of the dry deposition of gases and aerosols [Val Martin et al., 2014] as well as biogenic emissions through
the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 in CLM [Guenther et al.,
2012]. The leaf area index is prescribed using Moderate Resolution Imaging Spectroradiometer (MODIS) pro-
ducts. Model dynamics are calculated using the CAM4 finite volume (FV) dynamical core [Neale et al., 2013],
which includes horizontal and vertical transport of the chemical tracers. The spatial grid spacing is 1.9° in lati-
tude and 2.5° in longitude, with 26 vertical levels with a model top at around 40 km. The chemical composi-
tion of O3, NO, NO2, HNO3, CO, CH4, N2O, and N2O5 in the top five vertical levels of the model (stratosphere)
are prescribed using values from previous simulations of the Whole Atmosphere Community Climate Model
(WACCM) [Marsh et al., 2013] for present-day conditions (monthly averages from 1996 to 2005). No strato-
spheric reactions are considered in this study. In the troposphere, we used full chemistry mechanism from
MOZART v4 [Emmons et al., 2010] which has been updated and summarized in Lamarque et al. [2012] and
Tilmes et al. [2015]. The bulk aerosol model (BAM) is used to represent aerosol mass at specific diameters
and species. Global monthly anthropogenic emissions are based on the RCP8.5 inventory [Granier et al.,
2011]. This inventory is the basis for the MACCity inventory [Granier et al., 2011] and is consistent with the
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historical inventory used for the CCMI activity [Lamarque et al., 2010]. Total anthropogenic CO emissions for
year 2000 (~610 Tg CO/yr) are higher in this inventory relative to EDGAR (~550 TgCO/yr) [see Granier et al.,
2011, Figure 1]. We use this inventory since it provides a longer time series with information on interannual
trends covering the period of this reanalysis. Daily fire emission estimates have been precalculated using the
Fire Inventory from NCAR (FINN) version 1.5 [Wiedinmyer et al., 2011] and have been averaged on a monthly
basis. The study by Wiedinmyer et al. [2011] provides a comparison with GFED3.1 and FINNv1, showing the
ratio of FINN to GFED emissions to be slightly higher in CO (1.07 to 1.38) and much higher in VOCs (3.8 to
5.0), for example. Emission fields for total CO for each season are shown in the supporting information. We
refer the reader to these studies for details on the anthropogenic and fire emission inventories. We note here
that previous studies have used either a simplified chemistry or full chemistry scheme in an offline chemistry
transport model or CTM [Yin et al., 2015; Miyazaki et al., 2015] or a full chemistry in a weakly coupled
chemistry-weather model [Inness et al., 2015]. While our system includes full chemistry in a fully coupled
model, this study only utilizes coupling between meteorology, land, and atmospheric chemistry. This serves
as an online CTM, which enables us to focus on investigating the atmospheric chemistry component of CESM.

2.3. Data Assimilation Research Testbed

The Data Assimilation Research Testbed (DART) is an open source community software facility (http://www.
image.ucar.edu/DAReS/) for ensemble data assimilation [Anderson et al., 2009a]. DART works with a wide vari-
ety of numerical models and observations, and its modularity provides a flexible environment for data assim-
ilation research, development, and education. The CESM/CAM-Chem modeling system interfaces with DART
and allows sequential assimilation of both meteorological and chemical observation using the Ensemble
Adjustment Kalman Filter (EAKF) scheme [Anderson, 2001]. A similar ensemble square root filter algorithm
(Local Ensemble Kalman Filter or LETKF) was used byMiyazaki et al. [2015] for assimilating chemical measure-
ments in a CTM. For this application, the EAKF algorithm begins with an ensemble of CESM forecasts defined
as one multi-instance CESM run (see section 2.3.1) and followed by an analysis step that updates the atmo-
spheric states in light of available observations (see section 2.3.2).
2.3.1. Ensemble Forecasts
We use a 30-member ensemble of 6 h coupled (meteorology/land/chemistry) forecasts with the active
coupled model components CAM-Chem and CLM as the prior for the our analysis. During each forecast,
the CESM coupler exchanges fluxes at every 30min solver time step. The ensemble forecast of meteorology
provides a spread in chemistry through perturbations in the initial condition of meteorological state variables
such as horizontal winds, boundary layer dynamics, temperature, and specific humidity. Those perturbations
not only affect the transport of CO but also directly influence the spatial distribution of chemical species,
through ensuing perturbations in deposition rates, photolysis, heterogeneous chemistry (with moisture), as
well as in land surface conditions (biospheric/oceanic/land fluxes). The benefit of using an ensemble of model
simulations initialized by an EnKF has been demonstrated in the context of CO2 assimilation [Liu et al., 2011].
We also add perturbations in emissions to incorporate associated uncertainties in emissions to the spread
(errors) in tropospheric concentrations of chemical species. Those perturbations are carried out using pseu-
dorandom and normally distributed realizations following Evensen [2003], as applied in Gaubert et al. [2014].
Here we use a horizontal length scale of 1000 km and standard deviation of 40% for CO and 30% for VOCs.
These values are chosen based on previous DA setup and comparison of emission inventories [B2015;
Granier et al., 2011]. The aim is to represent a realistic spread from errors in emissions. The same “noise” is
applied to all CO sources and VOCs across all time steps. We note that using additive relative perturbations
does not change the a priori spatial and temporal distributions as well as cross covariances between chemical
variables for the ensemble mean. We also perturbed surface CH4 (which is prescribed in CAM-Chem) by
adding a global constant value for each ensemble member. The spread in CH4 has been set to lower values
(10%), because it is prescribed from an observational data set.
2.3.2. Analysis Procedure
Asmentioned, we use the Ensemble Adjustment Kalman Filter (EAKF) scheme by Anderson [2001] for our ana-
lysis. This is an ensemble Kalman filter with a deterministic update that ensures that the posterior ensemble
mean and covariance are consistent with Kalman filter theory. Ensemble Kalman filters have been successfully
applied in tropospheric chemistry for surface observations [Hanea et al., 2004; Constantinescu et al., 2007a,
2007b;Wu et al., 2008; Zubrow et al., 2008; Tang et al., 2011; Curier et al., 2012; Gaubert et al., 2014] and satellite
retrievals [Arellano et al., 2007; Miyazaki et al., 2012b; Coman et al., 2012; B2015]. The best performance is
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achieved by correcting the raw sample error covariances via inflation and localization to minimize filter diver-
gence and sampling error. Here we briefly describe the EAKF algorithm as implemented in DART. We refer the
reader to Anderson et al. [2009a, and references therein] for more a detailed description of the algorithm. For
this study, we use the DART/EAKF system that has been coupled with CAM [Raeder et al., 2012] for meteor-
ological DA and with CAM-Chem [Arellano et al., 2007; B2015] for MOPITT CO retrieval DA. As with previous
studies, the NCEP/NCAR conventional meteorological observations of pressure, air temperature, winds, and
specific humidity are assimilated. This includes surface observations (land and marine), radiosondes, the
Aircraft Communications and Reporting System (ACARS), and satellite drift winds. Data processing, model
configurations, and assimilation setup in the case of meteorological DA have been taken from the atmospheric
reanalysis by Raeder et al. [2012].

The DART/EAKF procedure, which is based on sequential DA, is as follows:

1. Generate an ensemble of CAM-Chem 6-hourly forecasts (section 2.3.1).
2. Apply a space and time adaptive inflation factor to adjust the prior error variance as described in Anderson

[2009b]. Here the ensemble is linearly inflated around its mean by increasing the deviation of each ensem-
ble member by a factor larger than 1. This factor is sequentially optimized in space by correcting the
spread according to the innovation and the associated total error. Generally, the inflation factor values
are larger in densely observed regions, where the posterior spread is usually too low.

3. Apply associated forward operator to get an ensemble of expected observations. For each ensemble
member, we transform the corresponding model profile of CO at the observation location to a partial
column yCAM that is the model equivalent of MOPITT CO partial column. Given the a priori profile ySATapr

and its averaging kernel matrix A, the smoothed CAM-Chem profile that is directly comparable to
MOPITT observations is calculated by

yCAMret ¼ 10Alog10 yCAMþ I�Að Þlog10ySATapr (1)

4. Update the prior ensemble member j in observation space (yfm;j) using the observation yo, its error σo, the
ensemble mean yfm, and standard deviation σfm. The posterior ensemble is expressed as

yam;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σoð Þ2
σoð Þ2 þ σfm

� �2
vuut

2
4

3
5 yfm;j � yfm
h i

þ yfm
σfm
� �2 þ yo

σoð Þ2
" #

1

σfm
� �2 þ 1

σoð Þ2
" #

(2)

The corresponding increment in observation space for ensemble member j is the difference between the
posterior and prior:

Δym;j ¼ yam;j � yfm;j (3)

Update the prior ensemble in model space by first calculating linear regression coefficients (sensitivity)
between the ensemble of a prior state and expected observations. This least squares approach is described
in detail by Anderson [2003]. We can then multiply these coefficients by the increment in observation space
Δym,j to estimate the analysis increment in model space for ensemble member j. That is,

Δxj ¼ α
σ xf ; yfm
� �
σfm
� �2 Δym;j (4)

where Δxj is the increment in model space, σ xf ; yfm
� �

is the covariance between the observation and the
model state, and α is a localization function applied for error covariance localization (or tapering). This error
covariance localization is done to avoid spurious long-range correlation due to finite ensemble size. We use
the Gaspari-Cohn (GC) fifth-order rational function [Gaspari and Cohn, 1999] with compact support to taper
the covariance of the state farther away from the observation location. This tapering is defined by a half-
width parameter, which is the distance at which the value of α is 0.5. As in Raeder et al. [2012], we used a half
width of 0.2 rad in the horizontal (~1200 km) and 200 hPa in the vertical. This is larger than the localization
range in B2015. Differences in half widths, however, do not significantly affect the analysis results (B2015).
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Although the current DART/EAKF setup is capable of updating all CESM model states in the state vector for
any observations, we opted to use here a variable localization as defined in Kang et al. [2011]. In particular,
we use univariate assimilation for CO, meaning that only the CO observations are impacting the CO concen-
trations. We opted to do this for two reasons. First, we suppose that since we are using the same setup as
Raeder et al. [2012], the current sets of meteorological data that we used here already provide reasonable
constraints on meteorological state variables such as winds, temperature, surface pressure, specific humidity,
cloud liquid content, and cloud ice content. Second, we have low confidence at this stage in the cross corre-
lation generated by the ensemble and in the model short-term feedback of chemical perturbations to
meteorology. Inference of chemical parameters frommeteorological data assimilation can lead to unphysical
values in the chemical state of the atmosphere. This is a subject we would like to pursue in future studies.
2.3.3. CO Tags
Several emission sources have been “tagged” in order to reconstruct the composition of the modeled CO. As
in Emmons et al. [2010], the additional tracers are treated in the same manner as the total CO (e.g., the same
CO+OH loss mechanism but without affecting OH). The tags correspond to the global direct CO emissions
from the main sectors such as anthropogenic, biomass burning, biogenic, and oceanic sources, the sum of
these accounts for the primary component of the total CO. CO from chemical oxidation, which defines the
secondary component of the total CO, can be deduced by subtracting the primary CO from the total CO.
We also tagged CO derived from CH4 using a yield of 0.9 (i.e., molar ratio of CO formed per CH4 consumed).
We note that we did not perturb emissions for these tags. The resulting ensemble spread in the abundance of
these tags is due solely to the perturbations in meteorology and chemistry. These tags represent the time-
varying derivatives, d[CO]/demis, or the associated response functions (in concentrations) for each emission
category. The same response functions are used in Bayesian synthesis (analytical) inversions [e.g., Arellano
et al., 2004; Kopacz et al., 2009] to optimize CO emissions. In our setup, however, each tag uses the full OH
field calculated from the full chemistry (rather than prescribed), hence accounting for nonlinear effects of
changes in OH due to changes in total CO. Furthermore, in the case of the MOPITT assimilation, we update
these response functions (i.e., tagged CO concentration fields) rather than optimizing the emissions. At every

6-hourly assimilation, each CO tag (COf
i;j) for ensemble member j is scaled after the analysis step (equation (4))

of the assimilation cycle according to its relative a priori response contribution to the total CO forecast

concentration (COf
j ), i.e.,

COa
i;j ¼ COf

i;j þ
COf

i;j

COf
j

ΔCOj (5)

where ΔCOj is the CO analysis increment in model space (Δxj in equation (4)). This ensures that the sum of CO
tags is equal the total CO constrained by MOPITT. In doing this, we update the response functions rather than
the emissions. Again, we note that the emissions in the forecast model CAM-Chem are not updated during
the update step of assimilation. The CO tags, which do not feed back to the model chemical system, are used
for tracer diagnostics to help understand the changes in CO burden due to CO state assimilation. The
updated CO tags represent therefore the MOPITT-constrained CO burden due to every emission category.

2.4. Experimental Setup and Initialization

We assess the impact of MOPITT assimilation over 1 year by carrying out two assimilation experiments: (1)
Control Run, where only 6-hourly meteorological observations are assimilated, and (2) MOPITT Reanalysis,
where MOPITT V5J CO profiles are jointly assimilated with meteorological observations. The initialization
was carried out in two steps. First, we performed two deterministic (“single-model”) 1 year CAM-Chem runs
starting 1 January 2001. The first run was then used to spin-up the model with the new variables (CO tags).
Next, the fields from 1 January 2002 were used as initial condition for the second run in 2001. In the second
step, we run an ensemble simulation (started with small perturbations on the temperature initial conditions)
from the deterministic run on 1 November 2001. This ensemble simulation also includes (a) perturbations in
CH4 and emissions as described in section 2.3.1, (b) 6-hourly meteorological DA, and (c) 6-hourly MOPITT CO
DA (starting 30 November 2001). As previously described, perturbations in deposition and biogenic emis-
sions result from perturbations in meteorology. We chose to start CO DA only after 1month of meteorological
DA. Finally, on 30 January 2002, the Control Run is initialized from the MOPITT Reanalysis. The Control Run
and the MOPITT Reanalysis have exactly the same setup, using the same initial conditions. This means that
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there are 2months (from 30 January 2002 to 1 April 2002) for which the influence of MOPITT assimilation can
be seen in the Control Run. In order to remove the effect of optimized initial conditions from prior MOPITT
assimilation, we focus on the period from 1 April 2002 to 1 April 2003 for our evaluation and chemical
fluxes calculations.

2.5. Observational Data Sets Used for Evaluation

We use multiple independent data sets of CO that are available to evaluate the forecast and analysis of our
control and reanalysis runs. These data sets are measurements of CO taken from different observing
platforms (aircraft and ground, during routine observations, or field campaigns) and with various
sampling/instrument characteristics (infrared analyzer, spectrometer, and flasks). The combination of these
measurements provides a comprehensive evaluation of the four-dimensional CO fields (e.g., ground sites
at remote locations; aircraft profiles over North America, Europe, and the Amazon; and column retrievals from
ground sites at high latitudes). Some characteristics of the observations are shown in Table 1, while their
geographical distribution can be seen in Figure 1.

Table 1. List of Measurements Used for Model Evaluationa

Measurement Data Sets Sites/Domain References

Network MOZAIC/IAGOS Europe Marenco et al. [1998]
Measurement type Aircraft in situ Measurements U.S. and Canada Nédélec et al. [2003]
Spatial average Continental/100 hPa bin
Temporal average Seasonal
Campaign SMOCC Amazon Andreae et al. [2004]
Measurement type Aircraft in situ measurements
Spatial average 29 flights/500m bin
Temporal average 2months
Network WMO/WDCGG Global Novelli and Masarie [2015]
Measurement type Surface measurements
Spatial average None
Temporal average Annual
Network NDACC (www.ndacc.org) Ny Alesund Notholt et al. [1993]
Measurement type Ground-based solar absorption Thule Hannigan et al. [2009]

Fourier Transform Infrared Spectrometer Toronto Whaley et al. [2015]
Spatial average Profile mixing ratio values at altitudes Wollongong Paton-Walsh et al. [2005]

higher than 5 hPa taken from the a priori Lauder Morgenstern et al. [2012]
Temporal average Available at spectra retrieval times, Arrival Heights Zeng et al. [2012]

compared as month averages

aThe location of the measurements is indicated in Figure 1.

Figure 1. Locations of measurements used in our model evaluation. Grey lines show all MOZAIC aircraft observations
within the specified domain (outlined here in red). Orange lines show all SMOCC aircraft observations. Blue squares
indicate the location of columnmeasurements taken at NDACC stations, and green triangles show the location of surface in
situ measurements at WDCGG stations.
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2.5.1. WDCGG Measurements
We use CO measurements from the World Data Centre for Greenhouse Gases (WDCGG) database (http://ds.
data.jma.go.jp/gmd/wdcgg/). Most of those measurements come from the NOAA Global Monitoring Division
(NOAA/GMD) surface sites [Novelli and Masarie, 2015]. These high-precision measurements, which are taken
at remote sites (mountains and oceanic islands), are representative of large-scale background CO at the sur-
face. Measurements have been obtained from 56 individual stations for this period (Figure 1).
2.5.2. NDACC-FTS Measurements
We use CO total column retrievals acquired with ground-based high-resolution solar absorption Fourier
transform spectrometer (FTS) at six Network for the Detection of Atmospheric Composition Change
(NDACC) stations (http://www.ndsc.ncep.noaa.gov/). First, simulated vertical profiles have been interpolated
and smoothed by the associated observational a priori profile and averaging kernel for each retrieval over the
time period March 2002 to April 2003. Then, measured and modeled total columns are monthly averaged
prior to comparison. We use three sites located in the Northern Hemisphere (NH): one at midlatitudes,
Toronto in Canada [Whaley et al., 2015; Wiacek et al., 2007], and two at high latitudes, Thule in Greenland
[Hannigan et al., 2009] and Ny Alesund in Spitsbergen [Notholt et al., 1993, 1997]. We also use three sites
located in the Southern Hemisphere (SH): Wollongong, in Australia [Paton-Walsh et al., 2005] and Lauder in
New Zealand [Morgenstern et al., 2012] as well as Arrival Heights in Antarctica [Zeng et al., 2012]. The location
of the sites can be found in Figure 1.
2.5.3. MOZAIC-IAGOS Measurements
The MOZAIC database (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft) [Marenco et al.,
1998], a part of the IAGOS consortium (In-Service Aircraft for a Global Observing System), contains 20 years
(1994 to 2015) of in situ ozone, CO, and total nitrogen (NOy) measurements, acquired from commercial air-
crafts. CO is measured using an infrared analyzer with ±5% with an absolute error minimum of 5 ppb
[Nédélec et al., 2003]. Most measurements are performed at cruising altitude (i.e., in the upper troposphere);
quasi-vertical profiles are obtained during takeoff and landing. We produced seasonally averaged vertical
profiles for two densely sampled regions (Figure 1), North America and Europe [Thouret et al., 2006]. CO
measurements for all the flights in each of these two regions were segregated in 100 hPa bins and averaged
to obtain a mean vertical profile. There are thousands of observations below 350 hPa and around 12,000
above 350 hPa (Figure S1 in the supporting information). The former, mostly situated over the Atlantic
Ocean, are representative of the upper troposphere and the latter of the continental lower troposphere.
Measurements closest to the surface sample airports and their surroundings. Therefore, they may represent
highly polluted air from local sources.
2.5.4. Aircraft Observations From the LBA-SMOCC Campaign
A suite of 29 flights (Figure 1) over the Amazon forest during the Large-Scale Biosphere Atmosphere
Experiment in Amazonia-Smoke, Aerosols, Rainfall, and Climate (LBA-SMOCC) field campaigns have been used
to complement this evaluation [Andreae et al., 2004]. These in situ CO profiles were taken from aircraft observa-
tions during the end of the dry season (September and October 2002) [see Fuzzi et al., 2007, Figure 2] over the
Amazon basin in Brazil, affected by plumes from strong vegetation fires. Measurement details have been
described in Guyon et al. [2005]. Some of these measurements were close to strong local fires, sometimes lead-
ing to pyroconvections, which are processes occurring at model subgrid scales [Freitas et al., 2006, 2007]. The
observed CO concentrations in the lower 1000m are driven by tens of thousands of fires across the entire peri-
meter of the Amazon forest [Guyon et al., 2005; Andreae et al., 2012]. Aircraft passages through the plumes of
nearby fires resulted in CO concentration peaks up to 5000ppb. In order to remove the strong local effects that
would bias the evaluation, CO concentrations greater than 450ppb were removed. For the purpose of evalua-
tion, all flights were averaged and binned in 500m bins. The number of observations and a zoomed map of
observations are shown in Figures S2 and S3 in the supporting information.

3. Verification of Assimilation Results

This section describes the diagnostics and comparisons with assimilated and independent data that are used
to evaluate the assimilation results.

3.1. Observation Space Diagnostics

Here we show the diagnostics derived from comparing assimilation results with meteorological and MOPITT
data that were assimilated.
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3.1.1. Verification of the Meteorological Assimilation
The evaluation of the meteorological assimilation will be treated only briefly in this section. Regarding this
aspect, most of the model and assimilation parameters were taken from Raeder et al. [2012]. The main differ-
ence is the use of only 30 ensemble members here instead of 80 ensemble members in Raeder et al. [2012].
The spatial localization length may be too broad in our case. We compare the performances of the two

Figure 2. Average annual vertical profile of RMSE against temperature measurements (in K) by radiosondes over (top left) the
Northern Hemisphere, (top right) the Southern Hemisphere, (bottom left) the tropics, and (bottom right) over North America.
The black points show the results for the mean of the ensemble of 6 h forecast from Raeder et al. [2012], while the red points
show the equivalent for the MOPITT Reanalysis run. The associated total spread and bias are presented in the supporting
information. We note here that previous reanalysis (except Inness et al. [2015]) used prescribed meteorology to drive the CTM
which may introduce numerical inconsistencies and does not allow internal feedback within the assimilation cycle.
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reanalyses by comparing the root-mean-square error (RMSE) of 6 h forecasts of temperature against
radiosondes (Figure 2). The forecast performance is similar between experiments with an expected but only
slight degradation in MOPITT Reanalysis relative to Raeder et al. [2012] due to our use of smaller ensemble
size. However, the MOPITT Reanalysis exhibits a RMSE in temperature lower than 2 K while the mean bias
is lower than 1 K, which is within the errors in observations. Moreover, the total spread mimics the RMSE
shape and amplitude, indicating a good estimation of errors by the ensemble (see Figures S4 and S5 in the
supporting information).
3.1.2. Verification of the MOPITT CO Assimilation
The statistics for each assimilation step across the entire year of the analysis period is shown in Figure 3. This
is calculated using observations that were successfully assimilated in CAM-Chem. The number of observa-
tions is plotted in Figure 3 (fourth row). Note that there are differences in the numbers of assimilated obser-
vations between lower, middle, and upper troposphere. These differences are due to the fact that the vertical
position center of the GC localization function corresponds to the location of the maximum in the averaging
kernel (see section 2.1). On average, less than 20% of all observations are assigned to pressures higher than
700 hPa (closer to the surface); another 20% are assigned to pressures lower than 400 hPa (upper tropo-
sphere). The low numbers in the upper troposphere also reflect the exclusion of MOPITT retrievals from pres-
sure levels less than 300 hPa. The remaining 60% of all observations are assigned to the middle troposphere
where MOPITT retrievals sensitivity peak (maximum values of the averaging kernel functions). The number of
observations assimilated is higher during summer than winter at midlatitude and high latitudes; the tropics
show no seasonal differences (not shown). The time series of global average CO loading in the lower tropo-
sphere shows two peaks (CO at about 160 ppb) in late NH Spring (April and May) and September and a mini-
mum in NH summer (CO at about 120 ppb in July). This is indicative of the interplay between production
(emissions) and loss of CO including strong seasonality of vegetation fires. The seasonal variability of CO in

Figure 3. Time series of global assimilation diagnostics in observation space. For every assimilation step, the observations
(and statistics) are averaged across the globe (horizontal) and over vertical sections: (left column) lower troposphere (from
surface to 700 hPa), (middle column) middle troposphere (from 700 to 400 hPa), and (right column) upper troposphere
(lower pressure than 400 hPa). (first row) The CO concentrations in ppb for MOPITT in black, 6-hourly forecast from the
Control Run in blue and from MOPITT Reanalysis run in red. (second row) The innovations for both runs. (third row) The
chi-square statistics of the forecasts from the MOPITT Reanalysis run. (fourth row) The number of observations (number of
observation per 6 h) successfully assimilated in CAM-Chem and for which statistics are calculated.
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the Control Run is not as pronounced as in the MOPITT data or in the MOPITT Reanalysis, although the timing
of the minimum is similar. This discrepancy is clearly shown in the Control Run mean CO bias, which is about
60 ppb in early May and late September. CO from the reanalysis shows similar seasonality but with lower and
systematically negative bias relative to MOPITT of about 10 ppb. This bias may be attributed to a combination
of (a) possible underestimation of average surface emissions, (b) higher OH in CAM-Chem, and (c) possible
systematic bias in MOPITT. An efficient diagnostic of the error specifications and their balance with actual
model-observation mismatch is to use the chi-square statistics [Ménard and Chang, 2000]. In DART, the
diagnostic is averaged across p observations at a given time step knowing the innovations for each ith

observation yo � yfm
� �

weighted by its associated errors in the forecast (σfm;i) and observation (σo,i). This diag-

nostic is defined as

χ2 ¼ 1
P

XP
i¼1

yo;i � y f
m;i

� �2
,

σfm;i

� �2
þ σo;i
� �2� �

(6)

A value greater than 1 indicates an underestimation of the actual model and observation mismatch, while a
value less than 1 suggests an overfitting of the observations. For the lower levels and mostly during spring
and summer, the chi-square statistics are around 1.2 and 1.6, meaning that the MOPITT Reanalysis is persis-
tently underestimating the total spread (observation errors and/or ensemble spread) and/or underestimating

CO (bias). Note that in our calculation the forecast ensemble spread σfm;i has already been inflated prior to

analysis update (step 2 in section 2.3.2). Inflation factors at the model surface level range from 1.2 to 1.7 in
relatively denser data regions close to the sources where analysis spread is typically low. This gives us insights
on the nature of our errors. We find that lower total spread can be addressed by increasing the model noise
due to emissions and/or MOPITT error (which is assumed to be uncorrelated). However, it is likely that the CO
bias is due to the errors in surface boundary conditions, in general, and that emission or surface fluxes in par-
ticular are causing this underestimation. While adaptive inflation plays a role in achieving a chi-square of
about 1, it is dependent on data density and information content (i.e., data driving the reduction in analysis
spread). This is clearly represented in the forecast statistics resulting from the assimilation of middle and
upper tropospheric levels, where most of MOPITT retrievals are sensitive. Statistics are nearly perfect over
the entire year. The average bias is zero, and the bias standard deviation is around the observation error
(10 ppb or 10%). The chi-square statistics are oscillating around one across the entire reanalysis period, indi-
cating well-balanced errors. The Control Run indicates difficulties in representing higher CO values trans-
ported to the upper troposphere in November 2002.

Figure 4 shows the time series of longitudinal average CO from MOPITT observations, Control Run, and
MOPITT Reanalysis for the lower, middle, and upper troposphere. The time average statistics (bias and
RMSE) are also presented in order to show the latitudinal trends in CO (Figure 4, fourth row). For fixed latitude,
we see the CO seasonal cycle fromMOPITT as changes in concentration (colors) across time (x axis). In the NH,
the CO values are higher in winter and early spring and lower in summer, mainly in response to the OH cycle
governing the CO sink. There is an associated seasonality in the interhemisphere gradient of CO (moving
northward during the summer). The Control Run underestimates the winter/spring enhancement. This can
be seen in its bias relative to MOPITT, close to 40 ppb for the annual average (Figure 4, third and fourth rows).
The maximum latitudinal extent of this bias occurs in February, especially closer to the surface, whereas the
bias minimum occurs in July. There is also a clear signal of CO enhancement from BB sources in the tropics
from May to October 2002, with a maximum vertical and latitudinal extent occurring in October.

This leads to an increase in the bias in the Control Run of up to 40 ppb in October around 20° south. In
contrast, the bias in the MOPITT Reanalysis is close to zero, lower than 10 ppb on average. MOPITT assim-
ilation leads to an increase of CO across the troposphere. This changes the sign of the bias for the upper
levels as compared to the Control Run. This indicates that vertical mixing of higher CO coming from the
lower troposphere is too strong. However, the remaining bias in the upper troposphere is rather low
compared to the Control Run bias. A band of larger CO overestimation can be seen in the tropics for both
the Control Run and the MOPITT Reanalysis, indicating that model convection is perhaps slightly too strong.
As expected, there is a significant improvement in the MOPITT Reanalysis. However, there are some latitu-
dinal differences in the bias, RMSE, and bias standard deviation indicating a better fit in the midlatitudes
than in the tropics.
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3.2. Evaluation Against
Independent Observations
3.2.1. WDCGG Surface Observations
Annual COmean for eachWDCGG surface
station and colocated averaged simula-
tion results sorted by latitude are shown
in Figure 5. The Control Run shows good
agreement with the observations, captur-
ing the latitudinal gradient with very low
bias in the SH. In contrast, the Control
Run underestimates CO in the NH by
around 40 ppb. The increase of CO in
MOPITT Reanalysis leads to an overesti-
mation with respect to the observed
values of around 30ppb in the SH and less
than 10ppb in the NH. The high-latitude
bias in the reanalysis is consistent with
the findings of Hooghiemstra et al. [2012]

Figure 5. Annual CO average of surface WDCGG observations (black),
MOPITT Reanalysis (red), and the Control Run (blue).

Figure 4. Monthly average latitudinal cross section of MOPITT CO in observation space for the (left column) lower troposphere, (middle column)middle troposphere,
and (right column) upper troposphere. The average bias between simulations and MOPITT CO is shown for (second row) the MOPITT Reanalysis and (third row) the
Control Run. The labels in the time (horizontal) axis for these plots correspond to the month in which these fields are averaged (February 2002 to March 2003).
(bottom row) The time average (April 2002 to April 2003).
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and Jiang et al. [2015] indicating a positive bias in MOPITT CO, in particular in the SH. However, it is important to
note that the overestimation in the reanalysis is due not only to MOPITT retrieval bias but also to the model
response to assimilation. A positive increment of CO in the assimilation at midlatitudes (due to MOPITT bias)
can have a more important consequence on simulated CO fields if these adjusted CO plumes are transported
downwind to latitudes higher than 65° because there will not be observations to constrain them. For this case,
these increments can last as long as the CO lifetime, up to 3months in polar winter, when there is no significant
chemical CO loss. This is clearly seen, for instance, in CO over the South Pole Station, which was strongly affected
despite the fact that no MOPITT observations were assimilated poleward of 65°S.
3.2.2. NDACC-FTS Measurements
The NDACC-FTS instruments allow a complementary evaluation at high latitudes. In the NH, we use one station
close to CO sources (Toronto) and two remote stations (Ny Alesund and Thule). In Figure 6, we show the com-
parison of total column CO from NDACC, the Control Run, and the MOPITT Reanalysis. For the Control Run, the
decrease of the total column in NH late spring is captured for all stations while the increase in NH spring 2003 is
underestimated. The annual cycle is better represented in the MOPITT Reanalysis for all stations, as shown by
improved temporal correlation statistics (see Table S1 in the supporting information). Although there is an over-
all improvement in the MOPITT Reanalysis relative to Control Run, a slight bias remains. In the SH, the Control
Run reveals an underestimation of the annual CO average compared to the NDACC stations. The Control Run
bias reaches�25% at the Wollongong station, which is the SH site located closest to sources. This bias is mainly
driven by an underestimation of the spring peak, reaching a maximum in October at Wollongong and Lauder
and in November at Arrival Heights, which is the most remote station. We see an improvement in the MOPITT
Reanalysis in terms of better temporal variability and reduction in the bias over Wollongong station. However,
we also see an increase in the background CO that leads to a significant bias (with opposite sign) in stations far
from the sources (i.e., Lauder and Arrival Heights), consistent with the surface observations. The spring peak
enhancement seen by the three SH NDACC stations is due to BB, [Jones et al., 2001] suggesting an underestima-
tion of emissions ormisrepresentation of fires in the Control Run. The low bias between the Control Run and the
surface observations in SHmight be due to compensating effects. It is quite possible that OH in this region is too
low after the assimilation or that CAM-Chem is too strongly transporting CO to the surface. It could also be that
CO is uplifted to the upper layers of the troposphere with errors in plume vertical positions in CAM-Chem.
3.2.3. MOZAIC-IAGOS Measurements
CO data from MOZAIC-IAGOS were averaged over continental scales to generate vertical profiles for every
season having a representative number of observations (comparable number of observations between

Figure 6. Comparison of CO from Control Run and MOPITT Reanalysis with monthly average NDACC-FTS retrievals at six sites. Black circles correspond to monthly
NDACC retrievals of total CO columns, while the red squares and blue triangles correspond to the interpolated and smoothed profiles of CO from the reanalysis and
Control Run, respectively. Ny Alesund (Norway), Thule (Greenland), and Toronto (Canada) are located in the Northern Hemisphere, while Wollongong (Australia), Lauder,
and Arrival Heights (New Zealand) are located in the Southern Hemisphere. Note the different scales for Lauder and Arrival Heights compared to the other stations.
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seasons). Comparison to CAM-Chem simulations is shown in Figure 7a (U.S./Canada) and Figure 7b (Europe).
We note that these measurements are samples of CO from mainly three different environments. The lower
level (close to the surface) is mainly representative of highly polluted conditions as can be expected over
airports in large cities, such as Frankfurt, Vienna, and Munich. Most of the airports with MOZAIC-IAGOS flights
in the U.S. and Canada are located in and around the Midwest (Houston, Denver, Chicago, and Toronto) and
the East Coast (New York). The observed average CO is usually higher than 200 ppb for both continents with a
large standard deviation and a 95th percentile that is systematically higher than 300 ppb. The resulting
average RMSE can reach 150 ppb for the Control Run in winter. It is encouraging that MOPITT Reanalysis is
able to improve CO in these areas despite the representation biases due to the low horizontal resolution
of the model (around 2°). Both CO and its bias are decreasing with height in both simulations. However,
for pressures lower than 700 hPa, CO values and errors are more homogeneous during NH summer than
winter. We find a strong bias correction in the assimilation, in particular during fall and winter, for which
the RMSE is lower than 20 ppb in the reanalysis. The two upper levels are located around the cruising altitude
and are samplingmost of the horizontal extent, which includes both the continental and oceanic background

Figure 7. (a) Seasonal average CO profiles from MOZAIC-IAGOS measurements (black), MOPITT Reanalysis (red), and Control Run (blue) over the U.S./Canada region
within the study period (March 2002 to March 2003). The left column shows the CO observations in black along with their standard deviation (gray). The dashed lines
correspond to the 5th and 95th percentiles. The right column shows the RMSE and correlation coefficients as a function of altitude. (b) Same as Figure 7a but for Europe.
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(Figure 1). In this case, the Control Run exhibits a lower bias compared to MOZAIC and the improvement from
the assimilation is less clear, especially for winter and spring where the RMSE is increased due to the lack of
assimilated observations and a low vertical resolution near the tropopause. The correlation coefficients are
usually higher for MOPITT Reanalysis than for the Control Run over North America, but slightly lower in winter
and spring over Europe.
3.2.4. SMOCC Aircraft CO Measurements
Most CO measurements during the SMOCC-2002 field campaign were taken in the southern Amazon basin, a
region affected by emissions from intense vegetation fires related to deforestation. This leads to large gradi-
ents between flights that were sampling the large-scale background concentrations and flights dedicated to
track fire plumes. Monthly average surface CO concentrations around 500 ppb have been observed during
the dry season in this region [Fuzzi et al., 2007; Artaxo et al., 2013]. As seen in Figure 8, there is high CO loading
in combination with high spatiotemporal variability associated with burning during the dry season. A few
flights into the westernmost part of the Amazon basin sampled the remote background concentrations,
defined as the “green ocean” in Andreae et al. [2004], where the CO concentrations were still higher
than 100 ppb. The RMSE of simulations is around 30 to 50% of the observed values, with a bias of up to

Figure 7. (continued)
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100 ppb. These results have to be compared to the observed CO variability, here measured by the standard
deviation that is in the same range. The relative improvement in the MOPITT assimilation is encouraging, con-
sidering representation bias due to coarse model horizontal resolution. It shows the ability of the instrument
to detect CO in the lower layers of the troposphere. This simulation should be used as a benchmark for further
improvements from the modeling side, including the use of daily emissions (versus monthly), and the para-
meterization of the injection height and plume rise models [Freitas et al., 2006; Val martin et al., 2010].
However, the significant residual bias after assimilation, which is most pronounced for the flights in the smok-
iest regions, suggests that MOPITT observations are underestimating the CO levels in those heavily polluted
conditions, as shown by aircraft data at those latitudes [Deeter et al., 2013]. A bias correction of theMOPITT CO
observations in these extreme conditions would improve the simulations.

In summary, our evaluation of MOPITT Reanalysis shows an overall improvement of the simulated CO fields, via
removal of the winter/spring strong low bias in CAM-Chem. MOPITT Reanalysis reduces this bias to about
50ppb in the NH. This is very consistent across all observations used in our evaluation. Far from CO source
regions, the MOPITT Reanalysis is usually higher than independent observations while the bias is usually low
closer to the sources. There is a positive bias in CAM-Chem as compared to MOPITT in the tropical upper tropo-
sphere that is likely due to too strong convection. Furthermore, CO is overestimated in the SH, particularly at
high latitudes. We attribute this overestimation in the reanalysis to a possible bias in MOPITT and/or a systema-
tic model error such as OH overestimation in the Control Run, but underestimation in the MOPITT Reanalysis.

4. Model Response to MOPITT Assimilation

Here we investigate the model response in CO due to the 6-hourly assimilation of MOPITT retrievals across
the 1 year reanalysis period of this study. We focus on presenting the change in the chemical system in
CAM-Chem (OH, O3, CH4, VOCs, and chemical production of CO) due to changes in modeled CO abundance
by MOPITT. We begin our analysis by presenting the spatial distribution of the mean increments, which
provides a perspective on the systematic adjustments by the model to match MOPITT observations. These
adjustments relate to associated errors in the model representation of the processes affecting CO (transport,
emissions, chemistry, and deposition). We continue our analysis by looking at key chemical species mostly
affected by these CO adjustments, in particular on the changes in oxidative capacity of the troposphere
and ozone production. We will then link these changes to how secondary sources of CO have been modified
as a direct response to CO+OH perturbations.

4.1. CO Increments

The increments are defined as the difference between the analyzed (posterior ensemble mean) and the fore-
cast (prior ensemble mean) fields (see equation (4)). The statistics of the increments across all observations
within the assimilation period represents the systematic DA adjustment. Positive increments represent an

Figure 8. Statistics of simulated and observed CO profiles from all SMOCC flights averaged over (left) 500m altitude bins
and (right) the corresponding RMSE and correlation coefficients. Correlation coefficients are calculated for all data used in
the study. Observations greater than 450 ppb have been removed from the analysis.
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underestimation of the forecast, while negative increments represent overestimation. Most of these incre-
ments can be seen in the source regions near the surface, where errors in direct emissions are dominant.
To the first order, we expect that positive increments in the model surface most likely correspond to a poten-
tial underestimation of surface emissions (as reflected by CO concentrations at this level). We note, however,
that boundary layer mixing and ventilation as well as convection (especially in regions experiencing active
mesoscale to synoptic weather conditions) influence model surface concentrations. Bearing this in mind,
we show in Figure 9 the seasonal variation of the mean increments at the model surface level. Overall,
the increments are mostly positive in areas dominated by anthropogenic and fire activities, indicative of
general underestimation of our prior emissions. The largest increments occur where large fires are
underestimated/overestimated (i.e., positive/negative increments in biomass burning regions in Southeast
Asia, Africa, and South America) or where the prior anthropogenic emissions are underestimated (i.e., positive
increments over anthropogenic source regions in East Asia, eastern Europe, and western U.S.). Several
systematic patterns can also be identified across all the seasons. First, most of the increments are located
on land because this is where MOPITT retrieval sensitivity is more likely to be higher in the lower troposphere
(i.e., addition of near infrared in the retrieval) and provides necessary adjustments in modeled CO close to the
surface. Second, eastern China, Egypt, and the Arabian Peninsula, as well as western Russia and California,
have positive increments across all months suggesting an underestimation of emissions from anthropogenic
sources at these locations. For most of the other increments, it is likely that they are associated with biomass
burning emissions. This is confirmed by inspection of the tagged CO distributions. There is an underestima-
tion of CO from fires for both June-July-August (JJA) and September-October-November (SON) for the
Amazon forest and Indonesia, as well as western Russia, and only for JJA in the African equatorial forest
and California. Fires are overestimated in Myanmar in December-January-February (DJF) and in Siberia in
SON. Some situations are more complex and are likely related to transport of plumes from biomass burning,
such as in northern India and over the Andes in SON.

4.2. Impact on Chemistry

The annual zonal average concentration fields for the Control Run and the MOPITT Reanalysis, as well as their
relative changes, are presented in Figure 10. Differences from the Control Run represent themismatch between
MOPITT and model (in the case of CO) and between MOPITT-constrained and MOPITT-unconstrained model
fields. We note here that evaluation against independent data and our inspection of assimilation diagnostics
show evidence of model fit with MOPITT and other CO observations (section 3). As shown in Figure 10 (first
row), the analyzed fields of CO have increased by up to 75% in the SH, on average from a background of
50 ppb to a background of 80–90ppb relative to the Control Run. The CO increments previously shown are
reflected here. We also find that there is a decrease in CO in the upper troposphere of the SH. The largest
absolute increase is found in the midlatitude and high latitudes of the NH, where in the analyzed fields the
background increased by around 40 to 60%, shifting from a range of 80–120ppb to 120–160ppb. There is also
a relative increase of around 20% in the tropical upper troposphere.

Figure 9. Mean CO increments (ppb) at the model surface across each season (MAM, SON, JJA, and DJF).
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Figure 10. Latitudinal and yearly average chemical concentration fields (rows) from (left column) the Control Run, (middle column) theMOPITT Reanalysis, and (right column)
the percent differences relative to the Control Run. Shown are (first row) CO, (second row) OH, (third row) HCHO, (fourth row) O3, (fifth row) HNO3, and (sixth row) H2O2.
All units are in ppb, except for OH (105molecule/cm3). The black line indicates the chemical tropopause, defining the stratosphere when ozone is greater than 150 ppb.
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The net impact of this mean CO change is a decrease in OH between 5 and 15% overall in the lower
troposphere and up to 20% in the SH (Figure 10, second row). The global tropospheric mean OH reduction
is 8.6%, with a reduction of 9.6% in the NH and 7.61% in the SH (Table S3). Our comparison with the
TransCom OH fields [Patra et al., 2011] shows a difference for the NH mean OH of 1.5 × 106molecule/cm3

in the Control Run and 0.76 × 106molecule/cm3 in the MOPITT Reanalysis (Table S3). Conversely, the SHmean
OH is strongly underestimated in the Control Run (�1.27 × 106molecule/cm3) and in the MOPITT Reanalysis
(�1.65 × 106molecule/cm3). This pattern of underestimation is similar to that observed by Yin et al. [2015],
where most of the lack of OH in the SH is located in the tropics and in the middle troposphere, where the
largest differences are actually close to the equator (see Figure S7). On the other hand, our OH interhemi-
spheric asymmetry is comparable to the Atmospheric Chemistry and Climate Model Intercomparison
Project (ACCMIP) multimodel estimate of 1.28 ± 0.1 [Naik et al., 2013] but slightly higher in both runs (a value
of 1.45 for the Control Run and 1.42 for the Reanalysis). The latest observationally derived estimate is 0.97
± 0.12 from Patra et al. [2014], somehow suggesting that TransCom OH is closest to observations and that
there is a missing OH source in the tropics. Overall, the overestimation of the OH asymmetry, together with
the evaluation results (section 3.2), confirms an overestimation of OH in the NH and an underestimation in
the SH in our experiments, which is typical of current CTMs.

The impact of CO assimilation is clearly demonstrated by these changes in OH. On one hand, the patterns in
OH response are anticorrelated with the mean CO changes as the CO+OH reaction is the primary loss
mechanism for OH. The only OH increase is seen in the upper troposphere of the SH, where CO has
decreased. On the other hand, the changes in OH have further nonlinear effects on the other species. First,
the reduced OH limits the oxidation of VOCs and CH4, thus reducing the HCHO concentration by around
5–10% and 10–20% in the SH (Figures 10 (third row) and 11). The spatial pattern in significant HCHO changes
is very similar to OH, with most notable changes in the midlatitude to high latitudes. In low NOx conditions,
HO2 reacts to form H2O2, which has increased by up to 50% and shows similar patterns to the OH changes

Figure 11. Monthly mean differences between MOPITT Reanalysis and Control Run for (top row) CO and NMVOCs and (bot-
tom row) key oxidant species for the extratropical NH, the tropics, and the extratropical SH at the surface level. Note that the
runswere initialized from the same fields (30 January 2002), so that the first 2months show smaller differences due to spin-up.
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(Figure 10, sixth row). Despite the fact that H2O2 can be photolyzed back to OH, its formation is a loss to the
HOx family, meaning that part of the OH loss by the increase in CO will not be available for VOC and CH4

oxidation [Seinfeld and Pandis, 1998]. Conversely, there is ozone formation if the HO2 (formed by CO oxida-
tion) is recycled back to OH by NOx, which leads to HNO3 formation. Differences in the HNO3 fields are small
because of the rapid loss by wet deposition (Figure 10, fifth row). However, there is a significant increase in O3

in regions where NOx is at sufficient levels to effectively produce O3, as can be seen especially in the NH and
in the tropics. There, the net increase is around 5%, whereas no significant changes are observed in the SH
(Figure 10, fourth row).

To further illustrate these changes, we show in Figure 11 the changes due to MOPITT assimilation in the che-
mical fields at the surface over time and averaged over the NH, tropics, and SH regions due to MOPITT assim-
ilation. This is represented here as the percentage difference between the MOPITT Reanalysis and the Control
Run relative to the Control Run. The NMVOCs listed on the first row (acetylene (C2H2), ethylene (C2H4), ethane
(C2H6), propane (C3H8), and BIGALK which represents alkanes C4 and larger) are directly emitted and are not
chemically produced in the atmosphere. The main sink of these species is in the form of OH abstraction.
Hence, their concentrations are sensitive to the reduction in OH. Consequently, concentrations of these spe-
cies are increased, especially during the respective spring and summer of the NH and SH seasons. We also
show the time series for HCOOH (which is the simplest carboxylic acid) and H2O2. Oxidation through RO2

+HO2 is more favored since OH is converted to HO2 by CO+OH reaction. HO2 can also react with itself to
produce H2O2. We find that both H2O2 and HCOOH are increased due to more HO2. Conversely, the lower
CH4 and NMVOCs chemical oxidation rate (due to lower OH) leads to a reduced chemical production of
HCHO (emissions are the same in both runs). The cycling of HOx in the presence of NOx should explain the
slight increase in ozone in the MOPITT Reanalysis. As shown in Figure 11, there is relatively little change in
HNO3, but there is an increase in NO3, suggesting a higher oxidation stage for NOx in the MOPITT Reanalysis.

In order to evaluate the processes involved in the changes presented in Figures 10 and 11, we also calculated
the integrated chemical production and destruction rates for CO, HCHO, O3, OH, H2O2, and HNO3, as well as
the CH4 destruction rate. This is shown in Figure 12, which helps explain the nature of the changes of the
chemical fields.

Figure 12. Annual chemical production (P) and destruction (L) of key species in the chemical troposphere (in Tg/yr). Error
bars correspond to the ensemble standard deviation. Values are indicated below the bar plot. Differences are calculated as
MOPITT Reanalysis minus Control Run.
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As discussed earlier, the CO loss is caused by its oxidation with OH. The initial chemical model response due
to higher CO concentrations is an increase in the CO loss and correspondingly in OH loss (Figure 12). Changes
in OH lead to further response depending on the dominant chemical pathways and concomitant photoche-
mical regime. In the presence of NOx (e.g., in the NH), it leads to an increase in O3 chemical production and
consequently slightly enhanced O3 concentrations (see also Figures 10 and 11). However, ozone photolysis
(O3 loss) will also lead to OH production in the presence of water vapor. Consequently, the observed higher
O3 loss (Figure 12) can be explained by the increase in the OH chemical production (more recycling), which
compensates for the initial response of increased OH loss. In the absence of NOx, however, the HOx= (OH
+HO2) species are converted to H2O2, leading to higher H2O2 concentrations (e.g., in the high-latitude SH)
(Figure 11) and higher chemical production (Figure 12). This pathway is considered a net loss mechanism
for HOx. As a consequence of this overall OH loss, we find lower CH4 loss and correspondingly lower HCHO
production (Figure 12), as well as lower HCHO concentrations (Figure 11) leading to lower CO chemical
production (Figure 12). This can be seen clearly in the low NOx regions of the Southern Hemisphere, where
there is no significant change in O3 concentrations even with enhanced CO. Globally, the increase in CO
burden with MOPITT assimilation leads to a higher O3 chemical production, a net reduction in OH concentra-
tion, and subsequent reductions in CH4 oxidation, and CO chemical production. We note that CH4 surface
concentrations are prescribed in our reanalysis. Hence, the impact of CO adjustments to CH4 distribution is
expected to be minimal. However, we can further elucidate the indirect impact through the decrease in
CH4 oxidation (loss due to OH).

It is worth mentioning here that the effect of CO assimilation on the chemical system is highly nonlinear and
centered around changes in the OH sink, which then feeds back to the OH source processes depending on
the chemical regime (HOx recycling). While the changes in OH appear to provide a positive impact in NH,
the underestimation of OH in the SH is exacerbated by assimilation due to MOPITT bias (to the first order).
Independent evaluation of other species (not shown) reveals that the chemical system has been either
significantly degraded or improved. One of the goals of this paper is to elucidate the changes in the chemical
system and point out these nonlinearities, which can only be addressed (based on this study and supported
by literature) through either constraining OH and/or the main factors affecting its cycle (not just its sink
with CO).

4.3. Global CO Burden

In order to complete the evaluation of the model response to the MOPITT CO data assimilation, the CO and
HCHO annual global tropospheric budget is elucidated further in Figure 13 for the Control Run and Figure 14

Figure 13. CO and HCHO annual budget (Tg/yr) in the chemical troposphere for the Control Run. The CO chemical produc-
tion is assumed to be due to formaldehyde oxidation. The NMVOC oxidation is deduced from the difference between the
total chemical production of HCHOminus the production of HCHO from CH4 oxidation. The ensemble standard deviation is
indicated in parentheses. Note that the spread in the nonbiogenic emission fluxes is calculated from the prescribed values
(40%; see section 2.3.1).
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for the MOPITT Reanalysis and in Table S2. This represents a schematic representation of themain “reservoirs”
and “fluxes” affecting CO, similar to the figures in Fortems-Cheiney et al. [2011, 2012] and Yin et al. [2015].
Overall, the global magnitudes of each component controlling the burden of CO (in both control and reana-
lysis) are within the range of values reported in the literature (i.e., emission ~40% and chemical production
~60% from which ~60% is due to CH4 oxidation) [e.g., Duncan et al., 2007; Stein et al., 2014]. As expected,
OH dominates CO loss followed by a much smaller extent (~5%) by CO dry deposition. Here we note that
the ensemble standard deviation was derived as a result of either prescribed noise on emissions and CH4

or from the model response and coupling, which propagates the noise from the meteorological assimilation
and emissions perturbations. For example, for a range of standard deviation between 10% (CH4) and 40%
(CO) of perturbations that we added in the emissions, together with the spread stemming from meteorolo-
gical perturbations, the ensemble run generated a spread of around 10% for the CO burden and 20% for
chemical production.

The comparison of the budget between MOPITT Reanalysis and the Control Run (Figures 13 and 14) confirms
some of the findings described earlier. The HCHO burden is reduced from 770 to 742 Tg, because of a
reduced chemical production (conversion of NMVOCs +CH4 to HCHO is reduced from 1510 to 1456 Tg/yr
HCHO). This decrease translates into a decrease in the chemical destruction (less VOC source of OH recycling).
Note that the response to OH is mostly seen in the oxidation of CH4 rather than that of NMVOCs. As a con-
sequence, CO chemical production (secondary CO) is decreased by ~54 Tg/yr CO (from 1266 to 1212 Tg/yr
CO) (see Figure 12 as well). However, the global CO burden has increased by 100± 53 Tg CO (from 291 to
391 Tg CO) as an overall response to MOPITT assimilation. This increase in burden can be seen in the increase
of CO loss by 20% and dry deposition by around 30% (both of which are directly related to the CO burden).
The apparent lack of mass (CO burden) in the Control Run (25% lower than in the MOPITT Reanalysis) can be
attributed to an underestimation of CO sources from chemical production and/or direct emissions. In the case
of chemical production, this underestimation can be due to CAM-Chem strongly underestimating NMVOCs
[e.g., Emmons et al., 2015]. Our limited evaluation with NDACC shows an underestimation of C2H6 by a factor
of 2. The underestimation of chemical production can also be partly due to the apparent overestimation of
wet deposition in CAM-Chem. There is a significant loss in CO of around 6% (9% for the total) through wet
deposition of HCHO and other oxygenated species like HOCH2OO and HCOOH. The yield of CO production
from HCHO in CAM-Chem is ~75% (1133 Tg/yr CO from HCHO/1518 Tg/yr HCHO) for the MOPITT
Reanalysis. A similar yield of ~73% is found for the Control Run. This is significantly lower than previous results
indicating that the model wet deposition in CAM-Chem is higher than in previous studies and is not negligi-
ble (e.g., 100% in Duncan et al. [2007]). Bearing this in mind, attributing the change in CO burden as a
response to MOPITT assimilation to underestimation of direct emissions alone is misleading due to the non-
linearity of the system. This has been alluded to and reported indirectly in past studies [Jiang et al., 2011,
2015]. Here we show direct evidence of this CO-OH-CH4 feedback.

Figure 14. Similar to Figure 13 but for MOPITT Reanalysis.
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We further elucidate this point by conducting a mass balance using the burden of our updated CO tags and
the total burden from the Control Run and MOPITT Reanalysis (see Figure 15). Based on CO tags, the primary
CO burden increased by about 50% (from 129 Tg CO in the Control Run to 197 Tg CO in the MOPITT
Reanalysis) as a result of MOPITT assimilation. We infer the secondary CO burden from the difference
between the total and primary CO burden (both of which were constrained by MOPITT in MOPITT
Reanalysis). This has increased by 20% (from 162 Tg CO in the Control Run to 195 Tg CO in the MOPITT
Reanalysis) due to MOPITT assimilation. Secondary CO needs to be increased in spite of the fact that chemical
production of CO from CH4 and NMVOCs has decreased by 54 Tg CO/yr as a response to a decrease in OH due
to MOPITT assimilation. This points to the impact of constraining secondary CO in the CO budget and the role
of understanding the CO-OH-CH4 feedback in improving the accuracy of emission estimates. We supplement
the results of past studies, such as Jiang et al. [2011] and Fortems-Cheiney et al. [2012], by presenting direct
evidence of this nonlinearity.

The partitioning between primary and secondary CO has slightly change from 44.5% and 55.5% in Control
Run to 50% and 50% in MOPITT Reanalysis. If we look at the seasonal burden (not shown), it suggests that
the partitioning varies in the MOPITT Reanalysis from 44% of primary origin in JJA to 55% in DJF while a max-
imum CO burden of 420 Tg is found in SON, due to an increased BB contribution. The biogenic CO burden, for
which emissions are estimated using MEGAN, is increased from 20 in the Control Run to 33 Tg in the MOPITT
Reanalysis (Figure 15). This suggests that either VOCs from MEGAN or their chemical fate is underestimated.
This could imply a deficiency of secondary CO in both model simulations.

5. Discussion

Our evaluation of analyzed CO fields in section 3 points to a relatively important overestimation of the ana-
lyzed CO background in the SH extratropics by around 30 ppb. This result is consistent with Hooghiemstra
et al. [2012], who found an overestimation of 20 ppb by inverting emissions using MOPITT v4. For those
latitudes, the CO measured at surface stations is somehow representative of the tropospheric burden (i.e.,
remote and well-mixed regions). The CO burden for this region is 54.5 Tg for the Control Run and 77 Tg for
the MOPITT Reanalysis. CO is underestimated by around 2.8 ppb (5%; see Figure 5) relative to mean observa-
tion value of 53.2 ppb. If we adjust the SH burden by 5% (which gives 57.3 Tg), this new estimate appears to

Figure 15. The CO annual tropospheric burden composition (Tg/yr) is presented for (left column) the Control Run and
(right column) the MOPITT Reanalysis. (top row) The fraction of primary versus secondary CO. (bottom row) The sources
contribution to the primary CO burden.
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correspond to the increase in the BB burden seen in the MOPITT Reanalysis (sections 4.1 and 4.3). We propose
that the estimate of the SH burden should be 57.3 Tg instead of 77 Tg (MOPITT Reanalysis), based on the
corrected Control Run burden. This adjustment in the CO budget will result in a total tropospheric burden
for the analyzed year of 371 Tg CO as opposed to 391 Tg CO. The uncertainty on the total tropospheric
burden estimated using the ensemble spread in the reanalysis is 12%.

The evaluation of the differences between CO abundance as optimized by data assimilation (MOPITT
Reanalysis) and the Control Run indicates an underestimation of both emissions and chemical production
of CO. It should be noted that the emissions are not directly estimated in the assimilation but are inferred
from the CO burden of the CO tags, which were also constrained by MOPITT (see section 2.3.2). We recognize,
however, that there is a potential influence of the distribution of our a priori emissions on this inference (even
in a global sense). Hence, only the following partial conclusions can be drawn on emission adjustments based
on the adjustments in CO abundance (state estimation):

1. The underestimation of anthropogenic emissions explains some of the CO bias in CAM-Chem, as
suggested by inversion studies. This underestimation can be up to 50% of the observed values and
may be even more significant in terms of regional differences. The increments (due to MOPITT assimila-
tion) suggest a large underestimation over East Asia, although errors from Europe and U.S. CO emissions
cannot be disregarded, for instance, errors coming from traffic emissions [Stein et al., 2014].

2. The BB emissions of CO and VOCs, their chemical reactivity, and their transport play a dominant role in JJA
and SON. Most of them occur in the tropical band, defined here as between 30°S and 30°N, where nearly
half of the global CO burden resides (200 Tg out of 371 Tg). Our findings of a potentially too strong vertical
mixing in CAM-Chem and subsequent chemical response indicate the importance of model errors in
particular for that region [Jiang et al., 2015; B2015].

3. The CO biogenic tag suggests that biogenic emissions or associated VOCs that oxidized quickly to COmay
be underestimated.

4. Once again, we highlight that the underestimation of the secondary CO is at least as important as the
primary emissions. This demonstrates that chemistry is central in the CO error budget.

We also find that tropospheric CH4 lifetime (which has been derived for both experiments) has also changed.
While the CH4 burden has remained fairly constant (as can be expected since CH4 concentrations are
prescribed in both runs), CH4 loss has decreased by 30 Tg/yr (from 457± 90 Tg/yr CH4 in Control Run to
427± 89 Tg/yr CH4 in MOPITT Reanalysis; see Table S2 as well). This leads to an increase in lifetime by around
6months from 8.7 ± 0.22 years in the Control Run to 9.3 ± 0.23 years in the MOPITT Reanalysis. The values of
the Control Run (8.7) are consistent with the study by Tilmes et al. [2015] reporting a similar range of results by
assimilating the meteorology (specified dynamics). However, the CH4 lifetime from reanalysis is significantly
closer to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) multimodel mean
of 9.7 years [Naik et al., 2013] and to observation-based estimates of the CH4 lifetime of 10.2 [Prinn, 2005] and
11.2 [Prather et al., 2012] years.

Finally, we investigated in this study the chemical response from the assimilation of the CO state only, using
an ensemble of forward coupled chemistry transport simulations, with a full tropospheric gas chemistry
mechanism and a simple aerosol model. Emissions and other chemical concentrations or fluxes were not
optimized during the CO update. The first-order chemical feedback, i.e., the oxidation by OH, seems to be
improved by the CO assimilation, as indicated by the CH4 lifetime. Comparison with TransCom OH fields
reveals that this improvement is seen in the NH. The decrease in OH should theoretically increase the CO
lifetime and therefore its abundance. It appears that it leads to an increase of tropospheric ozone in favorable
conditions. This can enhance the photochemical production of OH, which is a negative feedback. However,
this is not the case in the SH were MOPITT bias further degrades the OH fields (relative to TransCom). This
highlights the need for bias correction in assimilating these retrievals and additional constraints on OH.

The formation of HCHO from CH4 and NMVOCs falls within the latest state-of-the art estimates, if we consider
that all produced HCHO would have formed CO. For the Control Run, the chemical production of HCHO from
CH4 is 857 Tg/yr (which would lead to 801 Tg/yr of CO), compared to 800 Tg/yr of CO from Prather et al. [2001]
and a multimodel mean of 766 Tg/yr [Shindell et al., 2006]. We deduce a chemical production of HCHO of
652 Tg/yr (which would lead to 609 Tg/yr of CO), compared to a multimodel mean of 730 Tg/yr [Shindell
et al., 2006]. The reduced OH leads to an increased lifetime of NMVOCs (and CH4). As a result, there is an
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increase in the loss of HCHO. The loss of intermediate oxygenated NMVOCs throughwet and dry deposition is
responsible for a reduced CO secondary formation. The overall CO chemical production in the MOPITT
Reanalysis is 1266 Tg/yr. Since the CO chemical production is down to 1212 Tg/yr, an overall increase of CO
by assimilation leads to a decrease of CO chemical destruction. The multiple pathways and especially the
formation of more oxygenated species, more subject to wet deposition, does not favor CO production.
As noted by Stein et al. [2014], the use of another dry deposition scheme led to a 14 Tg increase of the
CO burden.

6. Conclusions and Future Directions

One year of daytime multispectral MOPITT retrievals of CO partial columns have been assimilated in the
coupled chemistry-climate model CESM/CAM-Chem. This is part of an ongoing decadal chemical reanalysis
project at the National Center for Atmospheric Research using the same ensemble-based data assimilation
system that was previously applied for chemical weather studies which adopted a newer DA approach of
joint assimilation of meteorological and CO observations. Here we presented the results of the initial year
of reanalysis with a particular focus on two objectives: (a) reevaluating the CO distribution constrained by
MOPITT over a period beyond weekly monthly variations as was done in our previous chemical weather stu-
dies and (b) elucidating the changes in the chemical system as a response to the changes in CO abundance
due to the assimilation of MOPITT. We note that this reanalysis only optimizes the meteorological and CO
states in CESM (i.e., emissions are prescribed). Our goal is to provide a best estimate of the CO spatiotemporal
distribution for future applications. We have taken this approach to gain insights on the key drivers of CO
variability as well as uncertainties in modeling the chemical system otherwise obfuscated by confounding
factors and nonlinearities.

Overall, our diagnostics of MOPITT data assimilation demonstrate an efficient assimilation and a well-
balanced global error budget. Our global evaluation based on four different independent sets of measure-
ments shows that the best improvements in CO distribution are found when the simulation errors are the
greatest (i.e., during spring) and when the MOPITT V5J observations are the most sensitive and accurate,
i.e., in the lower/middle troposphere over land. This is especially shown in our comparison with MOZAIC
profiles. We find that certain adjustments in CO during assimilation of MOPITT can be transported to down-
wind areas not directly sampled by MOPITT. This leads to important corrections in the transport of high CO
from possibly missing fire events in our prior emission inventory. Such corrections may not be found when
optimizing emissions alone (e.g., CO source inversion). In addition, the seasonal cycle of CO has been
improved in the MOPITT Reanalysis. We find, however, an exaggerated increase of CO at high latitudes
(in particular during winter and in the SH) which we attribute to a combination of missing CO sink and bias
in MOPITT retrievals. Over East Asia and Russia, we find a bias across all seasons. On the other hand, we also
find that the MOPITT retrievals over the Amazon might be too low, or poorly sampled for fires, leading to a
residual underestimation of CO compared to SMOCC aircraft in situ measurements. At the surface, the mean
of CO increments due to assimilation indicates systematic errors, most likely to be missing fire emissions. In
fact, we find that BB sources are underestimated on average in the Amazon, equatorial Africa, and Indonesia.
This is complicated, however, by potentially too strong convection in the tropics leading to a bias in the upper
levels of the troposphere in these regions.

Our assimilation of MOPITT in CESM/CAM-Chem resulted in key adjustments in the chemical system, primarily
elucidating the nonlinearities in species abundance with OH radical concentrations. We estimate the total
tropospheric CO burden in 2002 (from ensemble mean and spread) to be 371 (±12%) Tg for MOPITT
Reanalysis and 291 (±9%) Tg for our reanalysis with no MOPITT assimilation (Control Run). While direct emis-
sions of CO appear to be low, our analysis of the CO burden suggests significant contributions from hydro-
carbon oxidation despite a modest decrease in secondary CO flux resulting from the model chemical
response to the increase in the CO burden with MOPITT assimilation. In general, we see an improvement
in simulated OH due to changes in CO as a result of assimilation especially in the NH. We find an improved
CH4 lifetime of 9.3 years in the MOPITT Reanalysis instead of 8.7 years in the Control Run, suggesting that
OH is too high in our Control Run.

This is further illustrated by comparison with TransCom OH, suggesting an improvement in the simulated OH
in the tropical NH. The same comparison also reveals an underestimation of OH in the tropical SH (which is
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typical of current CTMs). Assimilating MOPITT in CAM-Chem exacerbates the CO bias in the extratropical SH.
This implies the inability of the modeling system to generate OH, which would compensate for the
CO increase due to the potential MOPITT bias in this region. We note, however, that this CO bias has only
a modest impact on the CH4 lifetime and global CO burden, since most of CH4 and CO burden and
chemical fluxes occur in the tropics and in the NH. A recent study suggests that complementary recycling
pathways of OH can be substantial in pristine environments and should be considered in this context
[Lelieveld et al., 2016].

We also find that positive correlation between ozone and CO in the presence of NOx leads to an increase of
ozone in the NH. As a result, the positive ozone bias in the model is increased by this ozone enhancement.
Another consequence of this increase, however, is enhanced photochemical activity that can eventually lead
to a more efficient (albeit likely overestimated) OH production. However, we also find that the secondary CO
formation from CH4might be underestimated in both experiments despite the relatively high OH in the NH in
the model. CO production from CH4 and VOCs is lower than previously published estimates, likely because
intermediate oxygenated species can be lost through wet deposition. It is found that the yield of CO produc-
tion from HCHO is 75%, suggesting that the overall efficiency of CO production from CH4 might have been
overestimated in previous studies. These cascading (and compensating) effects illustrate the nonlinearities
in the modeled chemical response and suggest that some model parameters should be adjusted during
assimilation to provide a more consistent forecast. We advocate that these physical and chemical processes
are important and need to be taken into account (as opposed to using linear and simplified schemes) and
further research needs to be done to fully characterize the CO budget (both primary and secondary). As
noted in Strode et al. [2015], biases in OH, CO emissions, and transport are not mutually exclusive, and the
model bias in CO is likely to be a combination of these factors.

Within the context of chemical reanalysis, our results point to key modeling and analysis considerations,
especially in improving the accuracy and consistency of our estimates of chemical fluxes as a result of the
interplay between emission, transport, chemistry, and deposition processes. We suggest the following future
directions from this work:

1. Accounting for model errors to improve not only the magnitude but also the structure of the ensemble
statistics (error covariance) is important. For example, there is opportunity in a coupled modeling system
to use different physical parameterizations for vertical convection and/or for dry and wet deposition. In
addition, errors in model forcings can be applied within the ensemble framework (e.g., use of different
land use for biogenic emission and deposition and different emission models and inventories). While
we have partially shown this from the spread of biogenic emissions and deposition rates, elucidating
these benefits comprehensively is a necessary first step.

2. Although we employ a variable localization in our current assimilation approach, there is opportunity to
take advantage of the meteorology/chemistry coupled system in the future. Use of correlated information
of meteorological, chemical, and physical variables, which can be observed, might aid in improving the
consistency of the full initial conditions. We note, however, that careful implementation (i.e., use of speci-
fic localization length due to model error and sampling noise) needs to be conducted. For CO, further
research needs to be done regarding the state/parameter/fluxes to be estimated (e.g., CO states, emis-
sions, surface fluxes, secondary CO, as well as the state, emissions, and deposition fluxes of CO precursors
like HCHO or NMVOCs). This is to ensure consistency in the estimates of the chemical system. In particular,
better determination of VOC oxidation steps could be improved by careful use and understanding of
HCHO data and related biogenic emissions [Marais et al., 2012; De Smedt et al., 2015]. For ozone, the
use of state augmentation, with a careful way of minimizing sampling errors, may address nonlinear
effects since errors and chemical feedbacks are negatively correlated [Zoogman et al., 2014]. The use of
CO and O3 error correlations in conjunction with collocated observations can also improve both CO
and O3 spatiotemporal distribution and budgets [e.g., Barré et al., 2013].

3. Including more processes in the model would allow the perturbation of CO and OH to change the forma-
tion of secondary aerosols, the oxidation of VOCs [e.g., Hodzic and Jimenez, 2011], and cloud chemistry. For
instance, a recent study on the sensitivity of BB emissions shows that the reduced OH availability in fire
plumes leads to a different yield of aerosol formation from (biogenic) isoprene [Daskalakis et al., 2015].
Moreover, Mao et al. [2013] proposed a catalytic mechanism that converts HO2 to H2O instead of H2O2

through its uptake on aerosols that leads to a reduced OH level and thus diminishes the CO bias. An
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improved aerosols scheme could help in better determination of the OH fields, while CO assimilation can
inform about aerosols related to combustion [e.g., Arellano et al., 2010; Konovalov et al., 2011].

4. The use of optimized CO emissions or analyzed fields of CO or even a multispecies assimilation could help
obtain an improved tridimensional distribution and a better seasonality of OH for CH4 inversions. The
saved OH can be used to force CH4 simulation as suggested in Strode et al. [2015]. Initial multispecies
inversions and assimilations demonstrate some synergies between different observations [Butler et al.,
2005; Pison et al., 2009; Miyazaki et al., 2015]. The assimilation can also be complemented by the use of
IASI in combination with MOPITT [Fortems et al., 2009; Inness et al., 2013; B2015]. A bias correction strategy
should be utilized to fully employ measurements from these instruments.

5. Recently developed advanced data assimilation algorithms that are designed to handle nonlinearities, as
well as parameter estimation and bias correction, such as the Modified Restart EnKF [Song et al., 2014] and
the Iterative Ensemble Kalman Smoother [Bocquet and Sakov, 2014], show great potential to provide a
more robust chemical data assimilation performance.

Notation: List of Acronyms

ACARS Aircraft Communications and Reporting System.
AIRS Atmospheric Infrared Sounder.
BAM bulk aerosol model.
BB biomass burning.
BF biofuel.

CAM-Chem Community Atmosphere Model with Chemistry.
CESM Community Earth System Model.
CICE Community Ice Code.
CLM Community Land Model.
CTM Chemical Transport Model.

CAMS Copernicus Atmosphere Monitoring Service.
DA data assimilation.

DART Data assimilation Research Testbed.
DFS Degree of Freedom for Signal.
EAKF Ensemble Adjustment Kalman Filter.
EnKF Ensemble Kalman Filter.

ECMWF European Center for Medium-Range Weather Forecasts.
EOS Earth Observing System.
FINN Fire Inventory from NCAR.

FF fossil fuel.
FTS Fourier transform spectrometer.
FV finite volume
GC Gaspari and Cohn.

GMD Global Monitoring Division.
IAGOS In-Service Aircraft for a Global Observing System.

IASI Infrared Atmospheric Sounding Interferometer.
IFS Integrated Forecasting System.

LMDz-SACS Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified
Atmospheric Chemistry System.

MACC Monitoring Atmospheric Composition and Climate.
MEGAN Model of Emissions of Gases and Aerosols from Nature.

MLS Microwave Limb Sounder.
MOPITT Measurement of the Pollution in the Troposphere.
MOZAIC Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft.
MOZART Model for Ozone and Related chemical Tracers.

NASA National Aeronautics and Space Administration.
NCAR National Center for Atmospheric Research.
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NCEP National Centers for Environmental Prediction.
NDACC Network for the Detection of Atmospheric Composition Change.

NMVOCs nonmethane volatile organic compounds.
NOAA National Oceanic and Atmospheric Administration.
POP Parallel Ocean Program.

RMSE root-mean-square error.
SMOCC Smoke Aerosols, Clouds, Rainfall, and Climate.

TES Tropospheric Emissions Spectrometer.
VOCs volatile organic compounds.

WACCM Whole Atmosphere Community Climate Model.
WDCGG World Data Centre for Greenhouse Gases.
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