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Atmospheric concentrations of methane (CH4), the second most important anthro-

pogenic greenhouse gas, have been rapidly rising since 1850, however, the rate of increase

has varied in recent decades. In order to attribute these trends, significant effort has

been put into characterizing CH4 surface emissions using inverse modelling (“top-down”)

approaches, which rely on the ability of chemical transport models (CTMs) to simulate

atmospheric CH4 fields. However, systematic errors in models can significantly reduce

the quality of the CH4 simulation and result in biased CH4 emission estimates. Until

now, errors in models have been poorly characterized. The objective of this thesis was

to characterize and investigate the origin of the CH4 model errors in the GEOS-Chem

CTM and quantify their impact on inferred CH4 emission estimates. The weak constraint

four-dimensional variational data assimilation scheme in GEOS-Chem, together with CH4

data from the Greenhouse gases Observing SATellite (GOSAT), were used to characterize

model errors in GEOS-Chem at the horizontal resolutions of 4◦ × 5◦ and 2◦ × 2.5◦. Large

biases in CH4 were found in the stratosphere and in vertical transport in the troposphere

at mid-latitudes. The identified errors were significantly larger at 4◦ × 5◦ than at 2◦ ×

2.5◦. It was determined that a major cause of the biases at 4◦ × 5◦ is excessive mixing

due to increased numerical diffusion manifested in enhanced stratosphere-troposphere

exchange, and stronger quasi-isentropic mixing through the edges of the “tropical pipe”

and the polar vortex in the stratosphere. Coarsening of the model grid also weakened

vertical transport in the troposphere due to the loss of advective air mass fluxes and
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sub-grid tracer eddy mass fluxes. A key outcome of this work is the recommendation

that the 4◦ × 5◦ version of GEOS-Chem should not be used for inverse modeling of CH4

emissions. The thesis also investigated the sensitivity of North American CH4 emission

estimates in the nested version of GEOS-Chem (at the 0.5◦ × 0.67◦ resolution) to biases

in boundary conditions from the coarse global resolution model. It was shown that biases

not fully mitigated in the global CH4 simulation could result in biases as large as 30-35%

in monthly mean surface emission estimates on local to regional scales.
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Chapter 1

Introduction

1.1 CH4 in the Earth’s atmosphere

Atmospheric methane (CH4) plays an important role in climate and air quality. Its
concentration has increased from 722 ppb in 1750 to about 1860 ppb in January 2018
(Mitchell et al., 2011; Dlugokencky, 2018). However, the recent growth rate in CH4 has
not been steady. Figure 1.1 shows the recent changes in atmospheric CH4 concentrations
since 1983. The figure indicates that the rate of atmospheric increase slowed down in the
late 20th century, and went to zero between 2000-2007, but has since resumed. Various
scenarios have been proposed to explain the slow-down, including a decrease in oil and
gas emissions (Aydin et al., 2011; Simpson et al., 2012), a decrease in rice emissions (Kai
et al., 2011), and an increase in concentrations of OH (Rigby et al., 2017), the major
chemical sink of CH4. Explanations for the renewed growth rate include an increase in
microbial emissions (Nisbet et al., 2016; Schaefer et al., 2016; Schwietzke et al., 2016), or
more specifically anthropogenic microbial emissions (Schaefer et al., 2016; Saunois et al.,
2016b), an increase in global fossil fuel emissions (Rice et al., 2016), or a decrease in
OH concentrations (Rigby et al., 2017; Turner et al., 2017). This remains an active area
of research, and it is possible that some combination of these various factors could be
responsible.

Understanding the recent CH4 variations may also help improve projections of future
CH4 increase. Interpreting these changes is a challenging task. It is crucial to quantify the
relative contribution of changes in CH4 sources and sinks as well as to attribute changes
in emissions to either anthropogenic or natural sources. Regulating emissions can control
atmospheric CH4 loading owing to the relatively short lifetime of CH4 (about nine years).
Anthropogenic emissions are the largest source of atmospheric CH4. Efficient policy could
target anthropogenic emissions of a particular type and location. This could include
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better capturing CH4 leaks at oil and gas mining sites, or collecting CH4 emitted from
landfills. Natural CH4 sources cannot be directly controlled. Also, there are other factors
that affect natural CH4 variability, such as the El Niño Southern Oscillation and volcanic
eruptions, which have to be taken into account when investigating the impact of climate
warming on changes of natural CH4 emissions. Generally, understanding the response
of natural emissions to modern climate change may also help interpret the historic CH4

variations in paleoclimate records, which may shed some light on how the natural CH4

budget may change in the future. These issues highlight the importance of determining
and monitoring present day CH4 emissions. CH4 emissions cannot be directly measured
at a global scale, however, indirect methods can be used to do this. One such method,
referred to as inverse modelling (or the top-down approach), is employed in this thesis.

1.1.1 CH4 properties

Atmospheric CH4 is a typical tetrahedral molecule of the XY4 form. Any absorption or
emissions by a molecule changes its energy due to translational, rotational or vibrational
motion, or electronic energy state. All types of energy, except for translational, are
quantized (take certain values). Electronic transitions are very energetic and happen
only in the ultraviolet and visible spectral regions. Pure rotational transitions require a
small amount of energy and occur only in the far-infrared and microwave spectral regions.
Vibrational transitions happen mainly in the near- to mid-infrared region and are always
coupled with rotational transitions. In order for a transition to happen, when interacting
with electromagnetic radiation, a molecular dipole moment has to change by a discrete
amount. The CH4 molecule does not have a permanent dipole moment and, therefore,
has no pure rotational spectrum. The dipole moment is also produced by molecular
vibrations, which give rise to the vibrational-rotational spectral bands. CH4 has four
normal vibrational modes: a non-degenerate symmetric stretch (ν1), a doubly degenerate
bending vibration (ν2), a triply degenerate asymmetric stretch (ν3) and a triply degenerate
symmetric bend (ν4). However, only two (ν3 and ν4) of the four normal modes create an
electric dipole moment, owing to their asymmetric structure. The transition to the next
vibrational energy state is associated with a change of the vibrational quantum number νk,
where k is a normal mode, by unity (∆νk = ±1). A vibrational transition from the ground
state (νk = 0) to the next excited state (νk = 1) gives rise to the so-called fundamental
bands in spectra. For CH4, transitions in these bands are centred at 2917 cm−1, 1534
cm−1, 3019 cm−1 and 1306 cm−1 for the ν1, ν2, ν3 and ν4 normal modes, respectively. In
the near- and mid-infrared regions, CH4 also possesses a large number of overtone and
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combination bands. Transitions in overtone bands occur at a multiple of the fundamental
band frequency (∆νk ≥ 2), while transitions in combination band require simultaneous
change of two different vibrational quantum numbers νk.

The most important band for Earth’s climate is ν4, where CH4 acts as a greenhouse
gas, absorbing terrestrial thermal infrared radiation. The ν3 band in the mid-infrared
region is less important due to significantly weaker thermal radiation in this spectral
range. Overtone and combination bands always contain weaker spectral lines relative
to the fundamental bands due to a smaller probability of transitions and, therefore,
are also less important for terrestrial climate. Figure 1.2 shows an example of Earth’s
emission spectrum at the top of the atmosphere (TOA) over the Sahara Desert. The
reduced radiance in the spectral band at 1306 cm−1 is due to the presence of CH4 in the
atmosphere.

Figure 1.1: Red line: globally-averaged, monthly mean atmospheric CH4 mole fraction based
on data from the network of marine surface air sampling sites maintained by the Global
Monitoring Division of NOAA’s Earth System Research Laboratory (Dlugokencky et al., 1994);
black line: long-term trend with seasonal cycle removed. The figure is taken from https:
//www.esrl.noaa.gov/gmd/ccgg/trends_ch4/ on September 5, 2017.

CH4 reacts with hydroxyl radicals (OH) throughout the entire atmosphere (Jacob,
1999). It also reacts with Cl radicals and excited atomic oxygen O(1D) in the stratosphere.
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Figure 1.2: Earth’s thermal emission spectrum over the Sahara Desert observed by the Nimbus
4 satellite (solid line). Blackbody radiances at different temperatures are depicted by dashed
lines. Adapted from Hanel et al. (1971).

Oxidation by OH is initialized by the reactions

CH4 + OH −−→ CH3 + H2O {1.1}

CH3 + O2 + M −−→ CH3O2 + M {1.2}

where M is any molecule, such as O2 or N2, that dissipates energy released in the reaction.
The methylperoxy radical (CH3O2) reacts with peroxy radicals (HO2) or nitric oxide (NO)
to produce the methylhydroperoxide (CH3OOH) or methoxy radical (CH3O), respectively:

CH3O2 + HO2 −−→ CH3OOH + O2 {1.3}

CH3O2 + NO −−→ CH3O + NO2 · {1.4}

CH3OOH photodissociates or is oxidized by OH:

CH3OOH + OH −−→ CH2O + OH + H2O {1.5}

CH3OOH + OH −−→ CH3O2 + H2O {1.6}

CH3OOH + hν −−→ CH3O + OH {1.7}
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while CH3O (including that produced in reaction (1.7) reacts with O2:

CH3O + O2 −−→ CH2O + HO2 · {1.8}

Reactions (1.5) and (1.8) produce formaldehyde (CH2O) which also photodissociates or is
oxidized by OH:

CH2O + OH −−→ CHO + H2O {1.9}

CH2O + hν O2−−→ CHO + HO2 {1.10}

CH2O + hν −−→ CO + H2 · {1.11}

Carbon monoxide (CO) is produced in reaction (1.11) as well as the reaction of CHO
with the oxygen molecule (O2)

CHO + O2 −−→ CO + HO2 {1.12}

and is later oxidized by OH to yield carbon dioxide (CO2):

CO + OH
O2−−→ CO2 + HO2 · {1.13}

In a high-NOx environment, CH4 also acts as a precursor of tropospheric ozone (O3) as
reaction (1.4) is favoured over reaction (1.3), producing NO2. At high concentrations of
NOx, reaction of the peroxy radical (HO2) with NO also produces NO2,

HO2 + NO −−→ OH + NO2, {1.14}

which is readily photolyzed to produce O3

NO2 + hν O2−−→ NO + O3 · {1.15}

Additional reaction of CH4 with Cl and O(1D) atoms in the stratosphere yields hydrogen
chloride (HCl) and OH, respectively:

CH4 + Cl −−→ CH3 + HCl {1.16}

CH4 + O(1D) −−→ CH3 + OH · {1.17}

This review above shows that in addition to being radiatively active, CH4 is also a
precursor of other greenhouse gases. In the stratosphere, CH4 oxidation is a major source
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of H2O. In the troposphere, CH4 oxidation is a important source of O3, which is a harmful
pollutant. Additionally, CH4 (as well as CO) is the major sink of OH in the troposphere.
Therefore, CH4 oxidation affects the oxidative capacity of the troposphere and the ability
to remove chemical pollutants. As a result, CH4 has substantial impacts on both climate
and air quality.

In terms of its radiative effect, 0.48 Wm−2 of additional radiative forcing (RF) since
about 1750 AD is attributed directly to CH4 (Myhre et al., 2013) (however, this value was
recently revised by Etminan et al. (2016) and estimated at 0.61 Wm−2) and, generally,
represents the RF due to the increase in CH4 concentrations alone from 722 ppb in 1750
to 1803 ppb in 2011. Changes in the actual CH4 emissions since 1750 would yield a
larger direct CH4 RF of 0.641 Wm−2, which also partly includes CH4’s impact on its
own lifetime through the reduction of OH. Indirect RF due to CH4 emissions would also
include 0.241 Wm−2 due to production of tropospheric O3, 0.07 Wm−2 due to production
of stratospheric H2O and 0.018 Wm−2 due to production of CO2. The total emissions RF
of 0.97 Wm−2 thus makes CH4 the second most important anthropogenic greenhouse gas
after CO2 with a the total RF of 1.68 Wm−2. While the CH4 RF estimate has its own
uncertainties, the cumulative forcing is significantly larger than the estimated average
natural RF due to changes in solar irradiance since the Maunder Minimum in the 17th

century, which falls in the range from 0.08 to 0.22 Wm−2. The impact of the CH4 RF
on Earth’s climate depends on climate sensitivity and the initial climate state. However,
the increase in CH4 concentration since 1750 C.E. is assumed to be partly responsible for
recent climate warming and is projected to continue in the future.

1.1.2 Origins and fate of CH4

Unlike H2O (or CH4 on Titan), CH4 under Earth’s atmospheric temperatures is far from
saturation pressure, and its abundance is mainly controlled by surface emissions and
chemical loss. Atmospheric CH4 is of both biogenic and non-biogenic origin, with the
former sources accounting for about 70% of total emissions (Ciais et al., 2013). Biogenic
CH4 is mainly a product of metabolism of methanogenic Archaea organisms, which
consume either hydrogen or acetate:

CH3COOH −−→ CH4 + CO2 {1.18}

CO2 + 4 H2 −−→ CH4 + 2 H2O · {1.19}

Biogenic sources have natural (wetlands, oceans and termites) and anthropogenic (landfills,
livestock and rice agriculture) origins. Non-biogenic sources can also be divided into

6



Top-down Bottom-up

Natural sources 231 [194–296] 384 [257–524]
Wetlands 167 [127–202] 185 [153–227]
Other sources 64 [21–132] 199 [104–297]

Freshwater (lakes and rivers) 122 [60–180]

Wild animals 10 [5–15]

Wildfires 3 [1-5]

Termites 9 [3–15]

Geological (incl. oceans) 52 [35–76]

Hydrates 2 [0-5]

Permafrost (excl. lakes and wetlands) 1 [0-1]

Anthropogenic sources 328 [259–370] 352 [340–360]
Agriculture and waste 188 [115–243] 195 [178–206]

Rice 30 [24–36]

Ruminants 106 [97–111]

Landfills and waste 59 [52–63]

Biomass burning (incl. biofuels) 34 [15–53] 30 [27–35]
Fossil fuels 105 [77–133] 120 [95-138]

Sum of sources 558 [540–568] 736 [596–884]

Table 1.1: Global CH4 budget for 2003-2012 in Tg yr−1. Reported values correspond to the
mean estimates in the literature with the minimum and maximum values in square brackets. The
estimates are obtained using the “top-down” and “bottom-up” approaches which are introduced
in Section 1.2. Adapted from Saunois et al. (2016a).

anthropogenic (fossil fuel mining and burning and waste treatment) and natural (biomass
burning and geological sources including natural seeps and volcanism). At present, the
majority of CH4 emissions (more than 50%) are of anthropogenic origin. Table 1.1 gives
estimates of CH4 emissions from different anthropogenic and natural sources.

In addition to atmospheric chemical loss, some CH4 is also lost by oxidation in soils.
According to Prather et al. (2012), CH4 has a chemical lifetime of about 11.2 years against
loss due to tropospheric OH oxidation, 150 years due to loss in the stratosphere, about
200 years against Cl oxidation, and 120 years due to soil uptake. CH4 is well-mixed in
the troposphere but not in the stratosphere. The total CH4 emissions are constrained to
within 10-15% by observations of its atmospheric growth rate and estimates of the OH
budget (constrained by methyl chloroform (CH3CCl3) measurements) and account for
about 560 Tg CH4 yr−1 (Saunois et al., 2016a).

Additional CH4 can be produced by methanogenic bacteria from the carbon stored
in the Arctic permafrost soil. CH4 is also stored in the deep ocean in the form CH4

clathrates (icy solids with methane enclosed in the crystal structure of water) and is
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hypothesized to have had a crucial impact on climate during certain periods of Earth’s
history, which will be discussed later. Destabilization of CH4 clathrates and melting of
permafrost, accompanied by release of massive amounts of CH4 into the atmosphere, pose
a danger for Earth’s climate in the distant future (Ciais et al., 2013).

1.1.3 CH4 natural variability and interaction with climate

CH4 is believed to have been abundant in the early Archean atmosphere and has been
proposed as a possible answer to the Faint Young Sun paradox (Kasting, 2005), which
is the unresolved problem of how water in a liquid form could exist on Earth early
in its history when the solar output was low (70% of the modern luminosity). Under
low-O2 conditions, the chemical lifetime of CH4 would increase up to 10 kyr, which would
allow the atmosphere to maintain high CH4 abundances in the presence of a permanent
emission source. CH4 concentrations of about 100-1000 ppm would be required to keep
temperatures above freezing, with the atmosphere containing modern concentrations
of CO2. Methanogenic bacteria have been proposed as a possible source of this CH4

and could maintain levels of CH4 as high as 1000 ppm. The Great Oxidation Event at
about 2.3 Ga during the Paleoproterozoic, accompanied by a significant rise of O2 in
the atmosphere, destroyed much of the CH4 in the atmosphere. This led to glaciation
and plunged Earth into a cold (potentially, “snowball”) climate state (Kopp et al., 2005).
However, some studies also suggest the opposite, that the reduction of CH4 biogenic
emissions and weakening of the CH4 greenhouse effect triggered the rise of O2 (Zahnle
et al., 2006). During the mid-Proterozioc era, CH4 concentrations would have had to
be higher than 100 ppmv in order to keep the Earth’s temperature above the freezing
point under conditions of low solar luminosity. However, as shown by Olson et al. (2016),
the atmosphere could maintain CH4 concentrations only below 10 ppm. Therefore, given
that there is no geological evidence of glaciations during the mid-Proterozoic, CH4 can
not be the primary factor for sustaining the warm climate during that period, although
variations in CH4 could still have played a role in destabilizing the climate. During late
neo-Proterozioc era between 650 and 635 Ma, the Earth could have been entirely covered
with ice (the Marinoan glaciation). CH4 release from destabilized low-latitude permafrost
clathrates has been suggested as a possible mechanism for abrupt climate warming, which
put an end to the glaciation (Kennedy et al., 2008). Another clathrate dissociation could
have caused significant warming during the Late Paleocene around 55 Ma and could have
taken place in the sub-tropical western North Atlantic ocean (Katz et al., 1999).

The record of modern ice core CH4 measurements extends only to about 800 kyr before

8



present. However, even these measurements give a broad insight into the historical natural
variability of atmospheric CH4 and its connection to climate variations. Figure 1.3 shows
Dome C (a site in East Antarctica with thick ice) records of CH4 (Loulergue et al., 2008)
and deuterium (δD) (Jouzel et al., 2007) (δD = [(D/H)sample/(D/H)standard]− 1) from
800 kyr to present. Here, δD is a proxy for temperature, with higher values corresponding
to higher temperatures during interstadial periods and lower values being associated with
cold temperatures during extended glaciation. The record shows that CH4 varied from
about 350 to 800 ppb and is highly correlated with the δD record.
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Figure 1.3: Lower panel: Dome C δD record (Jouzel et al., 2007); Upper panel: Dome C CH4
record (different colors represent estimates from different sources). Adapted from Loulergue et al.
(2008).

Figure 1.4 indicates that long-term variability was mainly dominated by variations in
Earth’s orbital parameters, particularly by the 100 kyr obliquity cycle and the 41 kyr
axial precession cycle. It has been suggested that CH4 variations closely follow, and
were initiated by, temperature perturbations. The latter influenced the tropical monsoon
system and the location of the Inter-Tropical Convergence Zone (ITCZ), which in turn
affected tropical wetland emissions through changes in precipitation. An additional source
of variability could have been the extent of glaciers, which controlled CH4 emissions from
periglacial wetlands.

On millenial to decadal time scales, during abrupt climate oscillations (so-called
Dansgaard-Oeschger (DO) events), CH4 changes of 50 to 200 ppb were shown to be
in phase with Greenland temperatures (Severinghaus et al., 1998; Severinghaus and
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Figure 1.4: Spectal analysis of the Dome C CH4 record: decomposition of the CH4 timeseries
into orbital components with different pediods (residuals are given in the bottom plot). The red
line represents a combination of the three orbital components. Adapted from Loulergue et al.
(2008).

Brook, 1999). However, modern climate models fail to explain the magnitude and origin
of these CH4 variations. In particular, neither changes in OH concentrations (Levine
et al., 2012) nor changes in the Atlantic meridional overturning circulation (a trigger
of DO events) causing migration of the ITCZ and altering tropical wetland emissions
(Hopcroft et al., 2011) could generate the amplitude of CH4 variations observed in the
record. In regards to, at least, the last glacial period, Brook et al. (2000) also found
no evidence of rapid clathrate degassing in ocean sediments. Despite relatively low CH4

concentrations compared to the present and the absence of observational evidence that
CH4 was responsible for triggering climate perturbations during the last 800 kyr, variations
in CH4 could still have affected the evolution and magnitude of temperature changes on
glacial-interglacial time scales. Nowadays, this historic CH4 record also places a constraint
on possible physical mechanisms responsible for climate variations in the past and may
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shed some light on how CH4 from natural sources may vary in a future warmer climate.
Changes in CH4 concentrations over the past two thousand years are presented in

Fig 1.5 (Etheridge et al., 1998; Mitchell et al., 2011). It shows that during the late
preindustrial Holocene, between 1000 and 1800 AD, CH4 concentrations remained at
the level of about 700 ppb with small variations. From then until the present, CH4

levels experienced an exponential rise related to increasing anthropogenic CH4 emissions.
Figures 1.3 and 1.5 suggest that current CH4 levels are unprecedented, at least, over
the last 800 kyr. This steep rise in atmospheric CH4 due to anthropogenic activity is
suggested (Bindoff et al., 2013) to be partly responsible for the observed global Earth
temperature rise since the late 19th century.

Figure 1.5: A compilation of high temporal resolution Antarctic ice core CH4 records extending
from 2 ka to present. Different colors and shapes correspond to different data sources. Adapted
from Mitchell et al. (2011).

Given its current growth rate, the atmospheric abundance of CH4 may continue to rise
in the future if no measures are undertaken to limit anthropogenic emissions. If enforced,
measures by emission reduction could have an immediate effect on climate due to the
relatively short lifetime of CH4. Furthermore, the global atmospheric abundance of CH4

may increase due to wetland emissions that are consistently predicted by models to rise
in a warmer climate (Zhang et al., 2017). Release of CH4 from melting permafrost may
occur later in the century if warming continues, but is not expected to be abrupt (Schuur
et al., 2015). Ocean clathrate destabilization is a rather slow process that takes place
on millenial time scales due to slow propagation of temperature anomalies into the deep
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ocean and is unlikely to happen during the current century (Ciais et al., 2013). Potential
release of CH4 from clathrates is limited to the Arctic Ocean, north of Siberia, and the
released CH4 is expected to be converted in the ocean to CO2, which is a significantly
less efficient greenhouse gas. Potential increases in CH4 sources may also be counteracted
by greater chemical destruction by OH in a warmer climate due to increased H2O and a
positive temperature feedback of the OH reaction rate coefficient.

1.2 Atmospheric modelling

To better understand the processes driving the changes in atmospheric CH4 concentrations,
we use an inverse modeling (“top-down”) approach, which uses atmospheric observations
to indirectly infer sources and sinks of atmospheric CH4. The latter can also be evaluated
using a process-oriented method, referred to as the “bottom-up” approach, which identifies
the bulk amount of each major CH4 emitter and emission rates per unit quantity of each
emitter type. This approach is less accurate because it relies on statistical information
from the entire world and insufficient knowledge about emission rates under various
conditions. Hence, it provides only an approximate estimate, which can potentially be
improved using the indirect top-down approach.

The top-down approach to constrain estimates of the CH4 budget includes several
components. First, it includes CH4 measurements at a global scale. Global coverage is
currently provided only by satellite instruments, which are discussed in Section 2.1. The
second component is a physical model that takes CH4 sources and sinks as parameters and
relates them to CH4 observations. The modelling component in this thesis is discussed in
Sections 2.2 and 2.3. The third component is an optimization algorithm that adjusts the
magnitude of model parameters to best match observations, as described in Section 2.4.

The top-down approach relies on the ability to relate sources and sinks of atmospheric
gases to observations using a numerical simulation of atmospheric transport and chemistry.
The two main numerical methods used to model atmospheric transport are referred to
as the Eulerian and Lagrangian approaches. In the Eulerian approach, tracer evolution
is solved on a stationary discretized grid, whereas the Lagrangian method tracks the
evolution of each particle following its motion. There are also hybrid approaches which
combine Eulerian and Lagrangian transport. The Eulerian approach is convenient for
representing the evolution of the entire atmosphere, whereas the Lagrangian approach
has advantages for analyzing origins and fate of a particular ensemble of air parcels. The
Lagrangian approach is also diffusion-free and is particularly useful for investigation of
atmospheric mixing in the vicinity of transport barriers. Since our goal is to simulate
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CH4 concentrations at the location of numerous atmospheric observations, such as those
provided by satellite instruments, we prefer the Eulerian approach over the Lagrangian
one because of its computational efficiency.

1.3 Limitations of modelling tools

The ability to improve a priori CH4 emission estimates in an inverse modeling context
depends strongly on the information content of the observing system, including its
spatial and temporal coverage as well as its sensitivity to vertical CH4 distributions.
However, this ability is also limited by potential biases in both model and measurements.
Because CH4 is well mixed in the troposphere, the signal of emissions at the location of
satellite measurements can be rather weak (less than 1% of the total column of CH4)
depending on the type of observing system and the instrument footprint. This puts
stringent requirements on the quality of the CH4 measurements and the modelled CH4

concentrations: the magnitude of potential biases has to be much smaller than the signal
of emissions.

In this thesis, we investigate potential model biases on relatively short (monthly to
seasonal) time scales. At such scales, CH4 chemistry biases play a minor role considering
that the seasonal cycle in OH concentrations is understood better than inter-annual
variations, and depends primarily on the solar radiation and the abundance of atmospheric
ozone and water vapour. The task then can be reduced to evaluation of model transport
biases. Measurement biases will be partly discussed in Section 2.1, however, they are
not the main focus of this thesis. It is worth mentioning that on long time scales,
chemistry biases can either be manifested through incorrect OH fields or caused by biases
in temperature fields which affect the OH reaction rate constant k(T ) (Fiore et al., 2006;
Locatelli et al., 2015).

Chemical transport models (CTMs), which are used to simulate CH4 abundance in the
atmosphere, reduce significantly the computational time compared to general circulation
models (GCMs). CTMs are driven by pre-calculated meteorological fields, which are
usually archived at reduced temporal resolution due to limited storage space. These
metfields may come from a free-running GCM, but are usually derived from a GCM data
assimilation system, which uses atmospheric observations to mitigate the impact of model
errors on the produced metfields.

A common approach to further speed up CTMs is to coarsen their horizontal or vertical
resolution. However, it is relevant to note that running GCMs at coarse resolution may
result in misrepresentation of key aspects of atmospheric dynamics (Roeckner et al., 2006;
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Rind et al., 2007; Richter et al., 2014). For example, Jablonowski and Williamson (2006)
show that at 4◦ × 5◦ resolution, a GCM does not capture the evolution of baroclinic
waves and starts to converge only at 1◦ × 1.25◦. The question of computational time
is of significant importance in data assimilation for the purposes of estimating surface
emissions of atmospheric gases. The four-dimensional variational data assimilation method
(4D-Var) extensively used in the carbon cycle community to constrain surface emissions of
greenhouse gases (CO2, CH4) is based on an iterative algorithm that integrates the model
forward and backward in time repeatedly until the optimal solution is reached; it would
be costly to run at high spatial resolution. For example, doubling the model resolution
from 4◦ × 5◦ to 2◦ × 2.5◦ in this thesis increased computational time approximately 4.5
times.

Transport biases can come from errors in the original assimilated GCM metfields,
or be native to CTMs. First, the assimilated winds that drive CTMs represent the
mean meteorological state, while their uncertainty is not taken into account. Meanwhile,
meteorological uncertainty limits predictability of the CH4 atmospheric state and spatial
scales at which it can be inferred (Polavarapu et al., 2016). Moreover, due to the non-
linearity of atmospheric dynamics, the atmospheric state generated by ensemble mean
winds can be different from the mean of atmospheric states generated by an ensemble
of wind fields perturbed according to their uncertainty (Liu et al., 2011). Stohl et al.
(2004), Scheele et al. (2005) and Monge-Sanz et al. (2013) also showed that assimilated
metfields may be dynamically inconsistent, which results in increased mixing and, for
instance, stronger stratosphere-troposphere exchange (STE). Another issue arises from
inconsistency between archived horizontal winds (air mass fluxes) and surface pressures in
the advection scheme (Jöckel et al., 2001), which leads to violation of mass conservation.
This problem is usually solved by implementing a mass (pressure) fixer in the model
(Segers et al., 2002; Bregman et al., 2003; Rotman et al., 2004), which, however, may
itself produce spurious effect in the tracer concentrations.

The need for a mass fixer is also partly created by the fact that the metfields are
usually regridded from the native GCM grid (spectral, cubed-sphere) to the CTM grid
(usually, rectilinear longitude-latitude) and are temporally averaged. This process is
always associated with some loss of information about eddy transport by convection (Yu
et al., 2017) and advection and may cause weakening of vertical transport. This stresses
the importance of keeping a consistent numerical grid between the CTM and original
GCM where possible. Grell and Baklanov (2011) showed that the loss of information
about transport reduces the effective model resolution and can be assessed using a power
spectrum of wind fields. The study also stressed that temporal averaging of wind fields

14



may significantly impact vertical distribution of tracers in the model. However, temporal
averaging of metfields does not always have negative effect on tracer simulations. For
example, Pawson et al. (2007) showed that the use of 6-hourly averaged wind fields from
the GEOS-4 data assimilation system significantly improved transport in the stratosphere
by reducing noise in the assimilated metfields.

Another consequence of using a rectilinear grid is the shrinking of the zonal (east-west)
size of model boxes at high latitudes, the need to shorten the advection time step in
order to meet the Courant-Friedrichs-Lewy (CFL) condition, and special treatment of
the polar caps to avoid polar singularities. Different approaches are used to mitigate this
problem (Lin and Rood, 1996; Lin, 2004; Prather et al., 2008), however, as shown by
Prather et al. (2008), poor treatment of the poles may cause tracer fields to converge to
the wrong solution.

Physical parametrization, such as sub-grid convection, is another large source of
errors in CTMs. Biases in convection have a significant impact on both tracer vertical
distribution and tracer inter-hemispheric exchange (Rind et al., 2007; Patra et al., 2011).
Convective transport is usually driven by convective mass fluxes (CMFs), which may
either come with assimilated metfields or be re-diagnosed (parameterized) in the CTM in
terms of resolved scales at a particular horizontal resolution. The latter approach may
be utilized when part of convective transport is resolved in the original high-resolution
GCM (and is not accounted for by CMFs), but is lost by coarsening of CTM grid.
Meanwhile, original and re-diagnosed fluxes can be very different depending on the
convective parametrization scheme. As shown by Orbe et al. (2017), CTMs driven by the
same large-scale meteorological fields but with different convective parametrizations may
have large differences in simulated tracer fields.

The stratosphere is also one of the most challenging regions for CH4 simulations.
CH4 in the Earth’s stratosphere is not well mixed, and transport errors acting on CH4

gradients may significantly bias CH4 fields. A number of studies have found significant
discrepancies in stratospheric CH4 fields between different CTMs (Patra et al., 2011) and
mainly positive biases between models and observations (Ostler et al., 2016; Saad et al.,
2016). Biases in CH4 fields are generally related to discrepancies in the stratospheric age
of air caused by errors in the STE, the mean residual circulation in the stratosphere and
the polar vortex isolation. The transport errors may occur due to a number of factors.
For example, as mentioned before, the use of assimilated meteorological fields increases
mixing in the model. Additionally, the latter may be increased by coarsening the CTM
resolution owing to additional numerical diffusion. Consequently, excessive mixing leads
to the increased STE, “leaking” of the tropical pipe in the stratosphere (tropical branch
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of the Brewer-Dobson circulation), and weakens transport barriers with strong potential
vorticity gradient at the edge of the polar vortex. There are also multiple causes of
errors in the strength of the mean residual circulation in the stratosphere, one of which is
strength of parametrized gravity wave drag in GCMs.

1.4 Scientific objectives and structure of the thesis

This thesis pursues several objectives that can be formulated as follows:

1. To mitigate GEOS-Chem model biases for CH4 using advanced data assimilation
techniques.

2. To quantitatively characterize transport biases in CH4 fields modelled by the GEOS-
Chem CTM at coarse resolution.

3. To generate optimal initial and boundary conditions for CH4 transport and data
assimilation at high resolution within the North American domain.

The first and second thesis objectives are represented by separate papers, which are
currently under review by co-authors. The papers will be submitted to the Atmospheric
Chemistry and Physics and Geoscientific Model Development journals, respectively. The
titles of the papers are as follows:

1. Characterizing model errors in chemical transport modelling of methane: Using
GOSAT XCH4 data with weak constraint four-dimensional variational data assimi-
lation.

2. Characterizing model errors in chemical transport modelling of methane: Impact of
coarse model resolution.

The third thesis objective is concerned with biases in CH4 fields simulated by GEOS-
Chem at high resolution over a regional North American domain. High-resolution simula-
tion suffers less from numerical errors, however is expensive to run globally. In such case,
one of the major sources of biases over short time scales are boundary conditions (BCs).
We investigate the potential impact of these biases on inverted regional emissions and
evaluate different methods of generating optimal time-dependent BCs.

The work conducted in the thesis represents the first application of weak constraint four-
dimensional variational data assimilation of satellite CH4 measurements to characterize
model errors in a CTM and for producing improved CH4 boundary and initial conditions.
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A number of previous studies investigated the impact of model resolution on simulated
CTM tracer fields (Searle et al., 1998; Strahan and Polansky, 2006; Prather et al., 2008).
Here, the physical origin of resolution-dependent model errors is more deeply explored,
their impact on assimilation analysis of CH4 surface emissions is assessed, and several
solutions are proposed to mitigate these errors.

The majority of the work was accomplished by the author based on models and
measurements obtained from public repositories. Proxy CO2 fields for the GOSAT
XCH4 “proxy” retrievals were generated by Dr. Feng Deng, University of Toronto. The
weak constraint 4D-Var method was implemented in GEOS-Chem by Dr. Martin Keller,
University of Toronto for assimilation of CO satellite observations.

The thesis is structured as follows. Chapter 2 gives an overview of research tools
and methods. It describes the observational datasets that were used to constrain and
validate CH4 simulations. This chapter also describes key aspects of atmospheric CH4

modelling and introduces the forward GEOS-Chem CTM as well as its adjoint, which
were used to simulate CH4 fields and invert the CH4 state and CH4 emissions, respectively.
Finally, this chapter gives details about the data assimilation algorithms that were used
to optimize CH4 state and emissions. Each thesis objective is successively addressed in a
separate chapter (Chapters 3, 4 and 5, respectively). Chapter 6 provides a summary of
the accomplishments and gives suggestions for future work.
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Chapter 2

Research tools and methods

2.1 Measurements

Atmospheric observations provide a crucial source of knowledge about CH4 distributions
in the atmosphere and serve multiple purposes. First, observations allow monitoring of
changes in atmospheric CH4 concentrations. Second, they impose constraints on processes
responsible for these changes. And third, they provide an important test for the quality
of atmospheric chemistry and transport models. CH4 measurements are performed from a
variety of platforms, including Earth-orbiting satellites, stationary surface stations, ships,
aircraft and balloons.

Only satellites are able provide global measurement coverage. Satellites carry remote
sensing instruments that record atmospheric spectra, which can be used to retrieve CH4

abundance. Satellites may have limited vertical resolution and coverage depending on the
spectral characteristic of the instrument and the observation geometry. Generally, satellite
instruments that are used to retrieve CH4 can be divided into three categories based
on the altitude range over which they provide information. Nadir-looking instruments
performing measurements in the ShortWave InfraRed (SWIR) spectral band usually have
little vertical information about CH4 distribution and provide estimates of total CH4

amount in the atmospheric column. These include1 passive instruments such as the
SCIAMACHY instrument that flew on-board Envisat (Schneising et al., 2011), TANSO-
FTS on-board GOSAT (Kuze et al., 2009), TROPOMI on-board the recently launched
Sentinel-5P (Veefkind et al., 2012), and the future GOSAT-2 (Nakajima et al., 2017) and
GeoCarb (Polonsky et al., 2014) satellites. This category also includes the future MERLIN
satellite (Kiemle et al., 2014), which will be an active lidar instrument with similar vertical

1See List of Acronyms and Abbreviations for the full names of the satellite instruments
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sensitivity to the above passive instruments (Kiemle et al., 2011). Thermal InfraRed
(TIR) nadir measurements from AIRS (Xiong et al., 2008), TES (Worden et al., 2012),
IASI (Xiong et al., 2013) and CrIS (Gambacorta et al., 2016) are passive instruments
that primarily provide information about the CH4 abundance in the middle and upper
troposphere and are less sensitive to the lower troposphere due to weak thermal contrast
between the atmosphere and the surface. As a consequence, these instruments are less
sensitive to direct changes in CH4 concentrations due to surface emissions except in cases
when emitted CH4 is rapidly injected into the middle and upper troposphere in convective
updrafts (Worden et al., 2013). However, TIR measurements can provide greater temporal
and spatial coverage relative to SWIR measurements as they do not require sunlight
and do not depend on surface spectral reflectivity. Generally, SWIR retrievals are less
sensitive to atmospheric temperature profiles and are, potentially, more accurate than TIR
retrievals because the latter additionally require temperature to model thermal emissions
from each atmospheric layer. Therefore, SWIR CH4 retrievals are more often used as a
constraint on CH4 surface emissions. Satellite instruments in the third category perform
solar occultation and limb measurement, and include instruments such as MIPAS (von
Clarmann et al., 2009) and ACE-FTS (Boone et al., 2005). These instruments mainly
provide information about CH4 distributions in the upper troposphere and stratosphere.
The tropospheric measurements are subject to errors due to interference with clouds.
These measurements have high vertical resolution and are useful for assessing transport
in models. They also supply information about polar atmospheric regions not accessible,
for example, by nadir SWIR measurements.

In this thesis, we use GOSAT TANSO-FTS CH4 retrievals as the main source of
information about the CH4 distribution in the atmosphere and as the primary constraint
on CH4 surface emissions. ACE-FTS retrievals are used to validate the optimized CH4

state and to evaluate the quality of the model transport in the stratosphere. In addition to
space-based observations, we also use in situ CH4 measurements from the National Oceanic
and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL)
global cooperative air sampling surface network (Dlugokencky et al., 2016), tall tower
network (Andrews et al., 2014) and aircraft program (Sweeney et al., 2015). Additionally,
we use CH4 measurements from the third HIAPER Pole-to-Pole Observations (HIPPO)
aircraft campaign (Wofsy et al., 2011) and ground-based XCH4 (see below) retrievals
from the Total Carbon Column Observing Network (TCCON, (Wunch et al., 2011)). As
with the ACE-FTS retrievals, these surface and in situ data serve as independent sources
of information to evaluate the general model performance and to validate the constrained
CH4 fields.
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Most of the observations, except for TCCON and GOSAT, are defined as CH4 volume
mixing ratios (VMR) at a particular location and time. The TCCON and GOSAT datasets
provide retrievals of column CH4 dry-air mole fractions (XCH4) defined as

XCH4 =

´∞
0
NCH4(z)dz´∞

0
Nd.air(z)dz

(2.1)

where NCH4 and Nd.air are number densities of CH4 and dry air, respectively. Eq. (2.1) is
also often written as

XCH4 = 0.2095

´∞
0
NCH4(z)dz´∞

0
NO2(z)dz

. (2.2)

Quantities derived from Eqs. (2.1) and (2.2) do not depend on spatial and temporal
variation in surface pressure and make it easier to interpret spatial variations in the CH4

observations.

2.1.1 GOSAT

The GOSAT mission (Kuze et al., 2009) was designed specifically for retrievals of green-
house gases (CO2 and CH4) and was launched into orbit on January 23, 2009. It carries
two instruments: the Thermal And Near infrared Sensor for carbon Observation Fourier
Transform Spectrometer (TANSO-FTS) and the TANSO Cloud and Aerosol Imager
(CAI). GOSAT flies in a sun-synchronous 666 km orbit with a 3-day revisit time and
performs measurements at about 13:00 local time. TANSO-FTS operates in a cross-track
scanning mode. Figure 2.1 shows the GOSAT viewing geometry. Initially it observed five
across-track points, separated by about 100 km, however in August 2010, the pattern
was switched to three points to reduce pointing errors due to vibrations. Generally, the
pointing mechanism is capable of rotating ±35◦ across track and ±20◦ along-track. This
also allows observations in glint mode over water and in target mode (staring at one
location) for vicarious calibration (for example, at Railroad Valley) and point source
emission estimation. Each scene is exposed for 4 sec while an interferogram is recorded.
The instrument field-of-view creates a 10.5 km diameter ground footprint.

The spectra are obtained in three SWIR bands (0.76-0.78 µm, 1.56-1.72 µm and
1.92-2.08 µm) and one TIR band (5.6-14.3 µm) at a resolution of about 0.2 cm−1 by
taking a Fourier transform of the recorded interferogram. The SWIR bands provide
almost uniform sensitivity through the entire atmosphere while the TIR band is sensitive
to the mid-troposphere. Solar radiation in each SWIR band is additionally split into two
orthogonal polarization components (P/S components) so that the instrument obtains
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Figure 2.1: GOSAT viewing geometry. Adapted from Kuze et al. (2009).

spectra in seven bands in total. This spectral information is used to retrieve VMRs of
CO2, CH4 and H2O. Several CH4 retrieval products have been produced by different
research groups. These include the Full-Physics retrievals from the National Institute
for Environmental Studies (NIES, Japan) (Yoshida et al., 2011) and the University of
Leicester (UoL) (Parker et al., 2011), the RemoteC retrievals developed at the Netherlands
Institute for Space Research (SRON) and Karlsruhe Institute for Technology (KIT) (Butz
et al., 2011), as well as the Proxy RemoteC (Butz et al., 2010) and UoL proxy retrievals
(Parker et al., 2011).

Because GOSAT observations are central to this study, we provide here a detailed
description of the CH4 retrievals and discuss the implications of assumptions made in
the algorithm. We utilize version 5.2 of the UoL Proxy XCH4 retrievals (Parker et al.,
2011, 2015), which are based on the Orbiting Carbon Observatory (OCO) Full-Physics
retrieval algorithm (O’Dell et al., 2012). The Proxy approach was first introduced for
SCIAMACHY CH4 retrievals (Frankenberg et al., 2006) and is based on the idea that
retrievals of XCO2 and XCH4 in nearby spectral bands are subject to similar errors due to
photon light path modification (caused by atmospheric scattering by aerosols and clouds)
and instrumental effects, both of which would cancel by taking the ratio XCH4

XCO2
. Due to

the fact that CO2 is less variable than CH4 in the atmosphere, knowledge about XCO2

from an independent source, such as a CTM, can be used as a proxy for XCH4:

Xproxy
CH4

=
XCH4

XCO2

Xmodel
CO2

. (2.3)

The accuracy of XCH4 retrievals is affected by several factors. Thick cloud and aerosol
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layers are major obstacles for accurate XCH4 estimates. Therefore, such contaminated
scenes are identified and filtered in the retrieval. However, thin cloud and aerosol layers are
harder to detect. Therefore, Full-Physics retrievals have to take into account atmospheric
scattering and fit the properties of the scatterer. This is a challenging task because
the retrieval algorithm requires reliable prior knowledge about the distribution and
characteristics of scatterers, but there is not enough information in the spectra to directly
retrieve them. Eventually, the errors due to scattering may fold into the final retrieval.
However, the Proxy method makes the XCH4 retrievals much less sensitive to the presence
of thin atmospheric clouds and aerosol layers, which are usually difficult to filter. This
significantly increases the number of potentially observable scenes. Figure 2.2 shows the
location and total number of GOSAT observations in February-May 2010, the period
considered in the analyses here. The largest density of measurements is over clear-sky
deserts, although the tropics are also partly observed. Due to large solar zenith angles
(SZAs) during this period, high northern latitudes are sparsely observed.
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Figure 2.2: The location (left panel) and total number (right panel) of GOSAT observations
during the period of February-May 2010.

In the UoL retrieval algorithm, XCH4 and XCO2 are retrieved in spectral bands centred
at 1.65 µm (2ν3 CH4 overtone band) and 1.61 µm, respectively, using the assumption of
a non-scattering atmosphere. Also, no light polarization information is used: the two
polarization components are combined to produce a single intensity.

The idea behind remote sensing retrievals is to relate the spectra recorded by a
spectrometer to the vertical profile of a gas in the atmosphere. This is accomplished
using a forward model which simulates atmospheric absorption and reflection spectra for
a particular satellite geometry by approximately solving the radiative transfer equation in
a plane-parallel atmosphere (Schwarzschild’s equation, Liou, 2002). The forward model
uses gas mixing ratios as parameters which are adjusted by an optimization algorithm so
that the simulated spectra closely match the observed one. In general form, the radiative

22



transfer equation is defined as

µ
dIλ(τ, µ, φ)

dτ
= Iλ(τ, µ, φ)− Jλ(τ, µ, φ), (2.4)

where λ is wavelength, µ = cos(θ), θ and φ are observation zenith and azimuth angles,
and τ is optical depth. τ replaces the vertical coordinate and is defined as

τλ(z
′) =

M∑
m=1

ˆ z′

zTOA

σm(λ, z)Nm(z)dz, (2.5)

where M is a number of absorbing gases, Nm is number density of the mth gas and σm is
absorption cross-section of the mth gas derived from molecular spectroscopic databases.
The latter are one of the main sources of bias in CH4 retrievals and are continuously being
improved and updated based on new experimental data and theoretical calculations. I is
the intensity of sunlight reflected from the surface and partly absorbed in the atmosphere
before and after reflection. The source function J represents the contribution to the total
radiation due to scattering of sunlight and can be expressed as

Jλ(τ, µ, φ) =
ω̃λ
4π

ˆ 1

−1

ˆ 4π

0

Iλ(τ, µ
′, φ′)P (µ, φ, µ′, φ′)dφ′dµ′

+
ω(τ)

4π
P (µ, φ,−µ0, φ0)F0,λe

−τ/µ0

(2.6)

where ω̃λ is single scattering albedo, P is scattering phase function, F0 is solar irradiance
at the top of atmosphere (TOA) while θ0 and φ0 are solar zenith and azimuth angles.
The first term on the r.h.s. of Eq. (2.6) represents the contribution due to multiple
scattering of a diffuse light beam, while the second term is due to single scattering of a
direct attenuated solar beam. Multiplying both sides of Eq. (2.4) by e−τ/µ and integrating
from the surface to TOA we obtain intensity at the TOA as

Iλ(0, µ, φ) = Iλ(τs, µ, φ)e−
τs/µ +

ˆ τs

0

Jλ(τ
′, µ, φ)

e−τ
′/µ

µ
dτ ′ (2.7)

where
Iλ(τs, µ, φ) = µ0F0,λe

−τ/µ0Rs
λ(µ, φ, µ0, φ0) (2.8)

and Rs
λ is surface spectral reflectance (albedo). Due to the small signal-to-noise ratio,

retrievals of CH4 are not possible over surfaces, such as water (except for glint observations),
that have low surface reflectance Rs

λ in the near-infrared (NIR) spectral band. In the
absence of multiple scattering (the single-scattering approximation), for example, in the
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presence of a thin cloud or aerosol layer, in a plane-parallel atmosphere Eq. (2.7) can be
integrated to yield

Iλ(0, µ, φ) = µ0F0,λR
s
λ(µ, φ, µ0, φ0) exp

(
−τs

(
1

µ
+

1

µ0

))
+

+
ω̃λµ0

4π(µ+ µ0)
F0,λP (µ, φ,−µ0, φ0)

(
1− exp

(
−τs

(
1

µ
+

1

µ0

)))
.

(2.9)

Finally, when scattering is completely ignored, only the first term remains on the r.h.s. of
Eq. (2.9).

The UoL XCH4 Proxy retrievals utilize the LIDORT radiative transfer (RT) model
combined with a fast 2-orders-of-scattering vector RT code (Natraj et al., 2008). The
forward model simulates the spectrum at high resolution (0.01 cm−1) within the prescribed
spectral range and convolves it with the instrument line shape function (ILS). Finally,
the observed spectrum y can be related to state vector x, comprised of atmospheric CH4

concentrations and other model parameters, by the forward model equation

y = F (x) + ε (2.10)

where F is the non-linear forward model operator, and ε represents the error in the
measurements and forward model. Here, the state vector consists of CH4 and CO2 VMR
profiles with 20 discrete levels, a single scaling factor on H2O VMR and temperature
profiles, surface albedo, and spectral dispersion due to the Doppler line shift and other
effects.

The UoL Proxy XCH4 retrievals are based on the Bayesian optimal estimation method
(Rodgers, 2000) which derives a maximum a posteriori (MAP) solution x̂ (see Section 2.4.1
for details) by minimizing the cost function

χ2 = (y− F (x))TS−1ε (y− F (x)) + (x− xa)TS−1a (x− xa) (2.11)

where Sε and Sa are the observation and a priori error covariance matrices, respectively,
and xa is the a priori state vector. The cost function is minimized iteratively using
the Levenberg-Marquardt algorithm. At each iteration i, the algorithm searches for the
update dxi+1 on the state vector xi which satisfies the equation

(
(1 + γ)S−1a + KT

i S
−1
ε Ki

)
dxi+1 =

(
KT
i S
−1
ε (y− F (xi)) + S−1a (x− xa)

)
(2.12)

where γ is the Levenberg-Marquardt parameter and Ki is the Jacobian matrix that
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represents the sensitivity of the simulated spectrum to the state vector and is obtained
using the finite perturbation method

K =
∂F (x)

∂x
∼=
F (x + δx)− F (x)

δx
. (2.13)

Finally, after convergence, the a posteriori error covariance matrix is obtained as

Ŝ =
(
KTS−1ε K + S−1a

)−1 (2.14)

while the averaging kernel matrix is given by

A =
∂x̂
∂x

= ŜKTS−1ε K. (2.15)

XCH4 is calculated as XCH4 = kT x̂, where kT =
(
hT ,0

)
and h is the pressure weighting

vector, which is based on a priori surface pressure and the H2O VMR profile. The XCH4

averaging kernel function is obtained as follows. Using the identity

∂XCH4

∂x
= kTA, (2.16)

elements of the column averaging kernel vector are expressed as

aCH4
i =

(
∂XCH4

∂x

)
i

1

hi
=
(
kTA

)
i

1

hi
, i = 1, q (2.17)

where q is the number of levels in the CH4 VMR profile. Finally, the XCH4 retrieval
uncertainty is estimated as

σ2
XCH4

= kT Ŝk. (2.18)

The identical procedure is applied to obtain XCO2 , σ2
XCO2

and aCO2 . Then, the Xproxy
CH4

uncertainty is given by the expression

σ(Xproxy
CH4

) = Xproxy
CH4

√(
σ(XCH4)

XCH4

)2

+

(
σ(XCO2)

XCO2

)2

. (2.19)

The accuracy of the Xproxy
CH4

estimate also depends on reliable knowledge of the proxy
XCO2. In practice, the latter is also subject to errors. However, these are more challenging
to evaluate and are not included in the expression for σ(Xproxy

CH4
). As a result, the XCH4

uncertainty is likely to be underestimated. The original UoL XCH4 retrievals utilize
proxy CO2 calculated as a median of three model CO2 simulations: GEOS-Chem (from
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the University of Edinburgh), LMDZ/MACC-II, and NOAA CarbonTracker, that was
smoothed with GOSAT scene-dependent CO2 averaging kernels. CO2 fields in all three
models were produced by assimilating in-situ surface CO2 observations. In this thesis, we
use a different proxy XCO2, which is based on optimized CO2 fields from a GEOS-Chem
CO2 surface flux inversion analysis that used GOSAT XCO2 retrievals over land (Deng
et al., 2014). For the period of February-May 2010, the XCH4 retrievals using both
CO2 proxies are unbiased against each other with scatter of 3 ppb and a correlation of
R = 0.99. Figure 2.3 shows the mean difference between the two products and points to
some systematic regional discrepancies of up to 8 ppb. However, global mean statistics
are also unbiased with 90% of all regional differences smaller than 3 ppb. Generally, the
modelled GEOS-Chem CH4 fields agreed better with the XCH4 retrievals using this new
proxy.
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Figure 2.3: Difference between GOSAT XCH4 retrievals based on two different CO2 proxy
fields. The original CO2 proxy is based on the median of GEOS-Chem (University of Edinburgh),
LMDZ/MACC-II and NOAA CarbonTracker models constrained by in-situ surface CO2 obser-
vations; the new CO2 fields are from GEOS-Chem CO2 surface flux inversion constrained by
GOSAT ACOS CO2 retrievals over land.

Spectra over ocean (glint observations) or with a signal-to-noise ratio (SNR) below
50 were not used for retrievals. Cloud-contaminated scenes were filtered if co-located
ECMWF surface pressure and clear-sky surface pressure retrieved in the O2 A band were
different by 30 hPa or more. Additionally, we excluded all retrievals over Greenland and
to the north of 75◦N due to possible biases in retrievals over snow (see Fig. 2.2).

Equation (2.12), which defines the state vector estimate at the next iteration, can be
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rewritten as follows, once convergence is achieved

x̂ = xa +
(
K̂
T
S−1ε K̂ + S−1a

)−1
K̂
T
S−1ε (y− F (x̂) + K̂(x̂− xa)) =

= xa + Ĝ(y− F (x̂) + K̂(x̂− xa))
(2.20)

where Ĝ is referred to as the gain matrix. The forward model can also be linearized as

y = F (x) + ε = F (x̂) + K̂(x− x̂) + ε (2.21)

where x is the true CH4 profile. Here we simplify the discussions by assuming that the
state vector does not contain non-CH4 elements. Eq. (2.20) can then be rewritten as

x̂ = xa + ĜK̂(x− xa) + Ĝε

= xa + A(x− xa) + Ĝε

= (Iq −A)xa + Ax + Ĝε.

(2.22)

Hence, the retrieved quantity includes contributions from both the a priori and the truth.
In the ideal case, all contributions come from the truth and A is the identity matrix. In
practice, the averaging kernel A reflects the smoothing of the true profile x and is also
referred to as the smoothing matrix. The last term on the r.h.s. of Eq. (2.22) represents
the retrieval error due to spectral and forward model errors and is ignored in further
discussions for simplicity.

Similarly to x̂, XCH4 is defined as

XCH4 = Xa
CH4

+ hTA(x− xa) = Xa
CH4

+

q∑
i=1

hia
CH4
i (x− xa)i. (2.23)

When the true profile is replaced by the modelled profile, Xmodel
CH4

provides the modelled
dry-air mole fraction of CH4 as if the model fields were observed by GOSAT

Xmodel
CH4

= Xa
CH4

+ hTA(x− xa) = Xa
CH4

+

q∑
i=1

hia
CH4
i (xmodel − xa)i (2.24)

where, for simplicity, x and A were assumed to consist only of the elements correspond-
ing to a CH4 VMR profile. In this context, Eq. (2.24) maps the modelled CH4 into
measurement space and is used for comparing simulated fields with GOSAT observations.

XCH4 retrievals contain about 1 degree of freedom for signal (DOFS) (defined as
the trace of A) and have relatively flat averaging kernels (AKs) in the troposphere that
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slowly decrease in the stratosphere. The overall mean GOSAT averaging kernel profile
from the UoL Proxy XCH4 retrieval algorithm is shown in Fig. 2.4 and reveals that the
retrieval contains little vertical information. GOSAT has the potential to retrieve vertical
information by combining information from the SWIR and TIR spectral bands. However,
this has not yet been accomplished due radiometric calibration errors in the TIR band
(Kuze et al., 2016).
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Figure 2.4: The overall mean GOSAT SWIR XCH4 averaging kernel profile from the UoL
Proxy XCH4 retrieval algorithm.

Errors in GOSAT Proxy XCH4 retrievals (v5.2), with the original XCO2 proxy, were
assessed against co-located TCCON ground-based retrievals by Hewson et al. (2015). That
validation study found that GOSAT retrievals contain random errors of 12.55 ppb and
systematic errors of 4.8 ppb (although per-site biases ranged from -2.15 ppb (Wollongong)
to 13.44 ppb (Garmisch)). Overall, GOSAT and TCCON were highly correlated with a
correlation coefficient of 0.86. However, errors away from TCCON sites could be larger.
In principle, the given accuracy would be enough in many regions of the world to improve
a priori knowledge of CH4 surface emissions. However, model errors may significantly
undermine this potential.

2.1.2 TCCON

The Total Carbon Column Observing Network (Wunch et al., 2011) is a global network of
ground-based high-resolution Fourier transform infrared (FTIR) spectrometers retrieving
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CH4 from solar absorption spectra in the NIR spectrum. TCCON XCH4 is defined
by Eq. (2.2). The retrievals are based on the radiative transfer theory described in
Section 2.1.1, but with differences relative to GOSAT mainly due to different instrument
geometry (measurements of transmitted sunlight with no surface reflection) and different
spectral characteristics of the retrievals (spectral range of 5880 - 6145 cm−1, or 1.63 - 1.7
µm, and 0.02 cm−1 resolution). The retrieval algorithm is implemented using the GGG
code developed in the Jet Propulsion Laboratory by Geoffrey C. Toon. Typical TCCON
XCH4 averaging kernels for the Lamont site are shown in Fig. 2.5, and have a relatively
flat structure. At small SZAs, more information in the retrievals comes from the upper
troposphere and the stratosphere, while at high SZAs, it comes from the middle and lower
troposphere. We used the GGG2014 version of the TCCON XCH4 data from multiple
stations around the globe (Blumenstock et al., 2017; Griffith et al., 2017; Hase et al., 2017;
Kivi et al., 2017; Notholt et al., 2017; Sherlock et al., 2017; Sussmann and Rettinger.,
2017; Warneke et al., 2017; Wennberg et al., 2017a,b). The estimated uncertainty and
precision of XCH4 retrievals are less than 0.5% and 0.3%, respectively (Wunch et al.,
2015). Retrievals are bias corrected based on comparisons with calibrated aircraft and
AirCore profiles measurements. In order to compare modelled CH4 fields with TCCON
observations, we smooth the former with TCCON SZA- and station-dependent XCH4

averaging kernels using the expression similar to Eq. (2.24).
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Figure 2.5: SZA-dependent TCCON XCH4 averaging kernels for the Lamont site. Adapted
from Wunch et al. (2011).
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2.1.3 ACE

We used data from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform
Spectrometer (Bernath et al., 2005)) on-board the SCISAT satellite to evaluate the
modelled vertical distribution of CH4 in the stratosphere. SCISAT was launched into
orbit on August 12, 2003. The orbit is about 650 km above the surface and has an
inclination of 73.9◦. The satellite carries ACE-FTS, two imagers, and the Measurement
of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation
(MAESTRO) instrument. ACE-FTS is a high-resolution (0.02 cm−1) Fourier transform
infrared spectrometer recording atmospheric solar absorption spectra in the spectral
range from 750 to 4400 cm−1. Measurements are performed in the limb direction (solar
occultation measurements, see Fig. 2.6) over a range of tangent heights.

Sunlight 

Figure 2.6: ACE-FTS observation geometry. Adapted from Bernath (2017).

The latitudes of the occultations repeat every year. Figure 2.7 shows the typical
annual pattern. The satellite makes 15 occultations for both sunrise and sunset per day,
separated by about 24◦ in the longitudinal direction. Measurements cover an altitude
range from the cloud tops, at about 5 km, up to 150 km. Spectra are recorded continuously
during 2 s scans, which implies that the altitude and tangent point changes slightly during
the scan. As a result, the instrument has coarse horizontal resolution of about 300 km
in the limb direction. The vertical resolution determined by the instrument field-of-view
is about 3 km at a tangent point 3000 km away from the satellite. However, vertical
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sampling ranges from 2 to 6 km depending on viewing geometry.

Figure 2.7: Annual pattern of the latitude of ACE occultations at sunrise (blue) and sunset
(red), and the angle between the orbital plane and the Earth-Sun vector referred to as beta angle
(gray). Adapted from Bernath (2017).

ACE-FTS CH4 retrievals are performed in several steps (Bernath et al., 2005). First,
temperature and pressure profiles, as well as the tangent altitudes, are retrieved using CO2

absorption lines. The retrievals of CH4 are performed using the temperature and pressure
profiles from the previous step. Retrievals are performed by fitting the simulated spectra
to the recorded ones in a set of microwindows defined for each altitude. Atmospheric
transmission spectra are modelled using the Beer-Lambert law, the HITRAN 2004 spectral
database (Rothman et al., 2005) and the Voigt lineshape function. Retrieved VMR profiles
are interpolated onto a vertical grid with 1 km spacing. Here, we use version 3.6 CH4

retrievals (Boone et al., 2013; Waymark et al., 2014).
A number of studies have performed validation of ACE-FTS CH4 retrievals. De Mazière

et al. (2008) showed that the older v2.2 was accurate to within 10% in the upper
troposphere and lower stratosphere, to within 25% from the middle stratosphere up to
the lower mesosphere (at about 60 km), and contained significant biases above 60 km.
Waymark et al. (2014) evaluated v3.0 and found that this version of CH4 retrievals was
smaller by 10% in the stratosphere between 35 and 40 km than the previous v2.2. Olsen
et al. (2017) compared ACE-FTS v3.5 and MIPAS CH4 vertical profiles coincident with
TANSO-FTS measurements, and found small differences except in the tropics. The mean
differences were larger than 20% below about 450 hPa, within 5% between 450 and 40
hPa, and larger than 5% above 40 hPa.
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2.1.4 In situ measurements

Another source of information about CH4 distributions is the in situ observations from the
NOAA-ESRL global cooperative air sampling network (Dlugokencky et al., 2016). Each
site in the network collects air samples by opening a stopcock on an evacuated glass flask.
Samples are later analyzed at NOAA ESRL in Boulder, Colorado by gas chromatography
with flame ionization detection. At stationary sites, samples are collected once per week.
Shipborne samples from the Pacific Ocean and South China Sea are collected once every
three and one week, respectively, per each latitude zone. The NOAA tall tower network
(Andrews et al., 2008) provides daily CH4 measurements from a number of sites across
North America (Andrews et al., 2014) with air samples collected using an automated
programmable flask package at altitudes from about 10 to 500 m above ground level
(agl). We use data collected at six sites: Argyle, Maine (AMT, 45.03◦N, 68.68◦W); Erie,
Colorado (BAO, 40.05◦N, 105.01◦W); Beech Island, South Carolina (SCT, 33.406◦N,
81.833◦W); West Branch, Iowa (WBI, 41.725◦N, 91.353◦W); Walnut Grove, California
(WGC, 38.265◦N, 121.4911◦W); and Moody, Texas (WKT, 31.32◦N, 97.33◦W). Surface
and tower measurements have precision of 1-3 ppb and absolute accuracy of about 3 ppb
(0.2%).

CH4 measurements were also provided by the network of sites with towers operated
by Environment and Climate Change Canada (ECCC) (Worthy et al., 2003). These sites
are: Bratt’s Lake, Saskatchewan (50.20◦N, 104.71◦W); Chibougamau, Quebec (49.69◦N,
74.34◦W); East Trout Lake, Saskatchewan (54.35◦N, 104.99◦W); Egbert, Ontario (44.23◦N,
79.78◦W); Estevan Point, British Columbia (49.38◦N, 126.54◦W); Esther, Alberta (51.67◦N,
110.21◦W); Fraserdale, Ontario (49.88◦N, 81.57◦W); Lac La Biche, Alberta (54.95◦N,
112.47◦W); and Sable Island, Nova Scotia (43.93◦N, 60.01◦W). Continuous measurements
are performed at altitudes from 20 to 105 m above ground level (agl) using an Agilent 6890N
gas chromatograph with flame ionization detection, and have precision of approximately
1.5 ppb. We use hourly mean estimates produced by averaging all valid measurements
within an hour.

Additionally, we exploit CH4 measurements from the NOAA aircraft program (Sweeney
et al., 2015) over North America. Aircraft flights are performed several times per month,
however can also be as frequent as only once per three weeks. During each flight, 12 flask
samples are collected at different altitudes (up to 13 km) using the programmable 12-flask
sampling system. Data have accuracy and precision of about 1-2 ppb.

Airborne data are also provided by the third HIAPER Pole-to-Pole Observations
(HIPPO) aircraft campaign (Wofsy et al., 2011), which took place between 20 March 2010
and 20 April 2010. Measurements sampled the atmosphere from the north pole to the
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coast of Antarctica along the central Pacific Ocean and from the surface to 14 km altitude.
We used CH4 measurements performed by a quantum cascade laser spectrometer (QCLS)
at 1 Hz frequency. CH4 was measured by the QCLS with precision of 0.5 ppb and accuracy
of 1 ppb, while the mean bias relative to simultaneous flask-based measurements is 0.44
ppb (Santoni et al., 2014). We exploited the Merged 10-second Meteorology, Atmospheric
Chemistry, and Aerosol Data product (Wofsy et al., 2012), which was derived from 1-sec
measurements by applying a median filter.

2.2 Modelling

2.2.1 Dynamical fields

Dynamical fields that drive tracer transport are generated by numerically solving several
governing equations (Kalnay, 2003). The first is the Navier-Stokes equation

dv
dt

= −∇p
ρ
−∇φ+ F− 2Ω× v (2.25)

where v is the 3D wind velocity vector, φ is geopotential, Ω is Earth’s angular velocity, F
is a frictional force, and ρ is air density. Another is the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (2.26)

A third is the state equation for an ideal gas

p = ρRT, (2.27)

where T is air temperature and R is the gas constant for air. The thermodynamic
equation,

cp
1

θ

dθ

dt
=
Q

T
(2.28)

is also solved, where cp is specific heat at constant pressure, Q is the diabatic heating rate
and θ is potential temperature. Finally, there are the continuity equations for various
gases such as H2O, O3, CO2 and CH4, etc.

∂ρq

∂t
+∇ · (ρvq) = E − S (2.29)

where q is tracer mass mixing ratio, E is the gas source (e.g., evaporation for H2O or
surface emissions for CH4) and S is the gas sink (e.g., condensation for H2O or chemical
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destruction for CH4).
The governing equations are solved on a discretized grid using a variety of numerical

methods. Due to the finite size of a grid cell, processes happening on a sub-grid scale
cannot be explicitly resolved and have to be parametrized in terms of resolved scales.
These processes include convection, turbulent mixing in the boundary layer, radiative
heating, chemistry, cloud processes and interaction with radiation, topographic and non-
topographic forcing, atmosphere-land and atmosphere-ocean heat and moisture fluxes
and others. Therefore, Eqs. (2.26) and (2.29) can be rewritten as

∂ρ

∂t
+∇ · (ρv) = Ma

∂ρq

∂t
+∇ · (ρvq) = E − S +Mq

(2.30)

where Ma and Mq represent additional air and tracer sources/sinks, respectively, due to,
for example, parametrized mixing through convection and turbulence.

In the global domain, the solution of these equations is an initial condition problem,
whereas in the regional domain it is also a boundary condition problem. Due to the
chaotic nature of the atmosphere, even small but inevitable errors in estimates of the
initial conditions may grow quickly in time and produce very different numerical solutions
(forecasts). In order to keep the solution trajectory from diverging too far from the truth,
the short-term forecast is statistically combined with atmospheric observations using
various data assimilation techniques that account for uncertainties in both the model and
measurements.

2.2.2 Transport modelling: tracer advection

The action of parametrizing the terms on the r.h.s. of Eq. (2.30) is split into separate
steps. Pure tracer advection is addressed by the equation (flux form)

∂ρq

∂t
+∇ · (ρvq) = 0, (2.31)

which can also be written in advective form as

∂q

∂t
+ v · ∇q = 0. (2.32)

A detailed discussion of sub-grid scale turbulence and convective parametrization repre-
sented by terms Ma and Mq in Eqs. (2.30) is beyond the scope of this thesis, but a brief
description of these parameterizations in the model that is used in the thesis is given in
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Section 2.3.3. We just briefly mention that parametrization schemes are one of the most
uncertain components of transport and vary between different models.

Most commonly, tracer advection is implemented using finite volume (FV) numerical
schemes. Compared to spectral and finite difference methods, these are based on physical
principles and have certain advantages. First, they conserve tracer mass by design. Second,
they do not produce dispersion errors or spectral ringing at tracer field discontinuities
and, therefore, do not heavily rely on ad hoc filters and fixers to damp the numerical noise.
Third, they are easily configured to guarantee monotonicity and positivity of tracer fields.

In FV schemes, Eq. (2.31), integrated over the model time step and volume of a given
grid box, takes the following form

ˆ tn+1

tn

ˆ
δV

∂ρq

∂t
dV dt+

ˆ tn+1

tn

ˆ
δV

∇ · (ρvq)dV dt = 0 (2.33)

or

∆V

ˆ tn+1

tn

∂Q

∂t
dt+ ∆t

ˆ
δV

(∇ · F)dV = 0 (2.34)

where

F =
1

∆t

ˆ tn+1

tn

(ρvq)dt

Q =
1

∆V

ˆ
δV

(ρq)dV.

After applying the divergence theorem, Eq. (2.34) is transformed to

ˆ tn+1

tn

∂Q

∂t
dt+

∆t

∆V

‹
∂V

F · ndS = 0 (2.35)

where ∂V is the surface around the grid cell volume and n is a unit vector normal to
the surface and pointing outwards. Assuming a rectangular longitude-latitude horizontal
model grid with uniform vertical thickness, Eq. (2.35) can be rewritten in a discretized
form as

Qn+1 = Qn + F (Qn) +G(Qn) +H(Qn) (2.36)

where F , G and H are operators that define increments to Qn in the zonal, meridional
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and vertical directions and can be written as

F (Qn) =
∆t

∆S

(
∆yi− 1

2
,jXi− 1

2
,j,k −∆yi+ 1

2
,jXi+ 1

2
,j,k

)
(2.37)

G(Qn) =
∆t

∆S

(
∆xi,j− 1

2
Yi,j− 1

2
,k −∆xi,j+ 1

2
Yi,j+ 1

2
,k

)
(2.38)

H(Qn) =
∆t

∆z

(
Zi,j,k− 1

2
−Zi,j,k+ 1

2

)
(2.39)

where all terms are defined at the grid box edges, ∆S is the model grid cell area, and ∆x

and ∆y are its zonal and meridional extent, X , Y and Z are components of the mass flux
vector F = (X ,Y ,Z)T .

The tracer mass flux is a product of the air mass flux and the tracer mass mixing
ratio, both of which need to be determined at the grid box edges. This can be done
using a sub-grid-scale field reconstruction based on the assumption of either a constant
distribution (which is first-order accurate), a piecewise linear distribution (e.g., a van
Leer-type, which is second-order accurate), a piecewise parabolic (which is third-order
accurate), or a piece-wise cubic sub-grid distribution. For example, the van Leer-type
linear distribution in two dimensions is given by Jablonowski and Williamson (2011)

h(x, y) = h+ ∆axx+ ∆ayy (2.40)

where h is the grid box average that has to be conserved, and ∆ax and ∆ay are the slopes
at the grid box centre in the x and y directions, respectively. The 2D piecewise parabolic
(PPM) distribution can be defined as

h(x, y) = h+ δaxx+ bx
(

1

12
− x2

)
+ δayy + by

(
1

12
− y2

)
(2.41)

where δax, bx, δay and by are parabolic coefficients. The coefficients are defined using
information from several neighbouring grid cells. Usually, a monotonicity constraint is
imposed on the reconstructed distribution to ensure that no local maxima or minima
(overshoots and undershoots) are created. Such a constraint is used in the advection scheme
of the GEOS-Chem chemical transport model described in more detail in Section 2.3. By
definition, the monotonicity constraint introduces non-linearity in the advection scheme.
Some constraints can be less stringent and require only that the numerical scheme, for
example, does not produce negative fields (the so-called positive definite constraint). The
standard PPM scheme by Colella and Woodward (1984) generates a sub-grid distribution
that is within the range of adjacent grid box averaged values or is constant if the the grid
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box contains a local extremum of the field. Some modifications of this constraint include
the positive definite constraint after Lin and Rood (1996), and the “relaxed” constraint
after Lin (2004). The constraint is achieved by adjusting the values of coefficients in
Eqs. (2.40) and (2.41). In the case of a first-order accurate (constant) distribution, this
constraint is referred to as the slope limiter.

2.2.3 Numerical diffusion

A monotonicity constraint inevitably adds diffusion to the numerical scheme, with different
types of constraints adding different amounts of implicit diffusion. While the latter is an
inherent property of FV schemes with monotonicity constraints, other types of numerical
schemes would require the diffusion to be added explicitly. In spectral or finite difference
schemes, the added diffusion can be used to reduce numerical noise due to spectral
ringing and dispersion errors, to prevent accumulation of energy at small scales and,
generally, to ensure numerical stability. Inherent diffusion or diffusion added explicitly to
damp numerical noise may also have physical meaning. It can serve as a parametrized
representation of sub-grid scale processes, such as vertical transport by turbulent mixing
in the planetary boundary layer (PBL) or the sub-grid eddy mass flux of salinity in
oceans. However, excessive diffusion can be detrimental for transport, particularly in
the presence of sharp field gradients. Therefore, the imposed monotonicity constraint in
the FV schemes has to balance the amount of diffusion it introduces with the numerical
errors (overshoots/undershoots, negative values, etc.) it leaves undamped.

The advantage of speed in CTMs gained from coarsening the model resolution comes
at the cost of increased numerical diffusion in the advection scheme and loss of information
on sub-grid scales. Diffusion can be viewed as happening on both inter- and sub-grid
scales. On a sub-grid scale, this means that any tracer entering the grid box must entirely
fill it according to the pre-defined sub-grid distribution, such as van Leer-type or PPM.
Diffusion between model grid boxes is usually caused by the use of non-linear monotonicity
constraints designed to prevent over- and undershoots and preserve positivity of the tracer
fields (Jablonowski and Williamson, 2011). Although some diffusion must be present
implicitly or be added explicitly to the scheme (Whitehead et al., 2011), excessive diffusion
can lead to rapid destruction of tracer gradients. The diffusivity of the advection schemes
depends on how well they approximate the sub-grid tracer distribution and how much of
this information is transferred to the next time step. For example, as shown by Prather
et al. (2008), the two commonly used FV schemes, the second-order moments (SOM)
algorithm (Prather, 1986) and the Lin and Rood (1996) scheme (LR), have different
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effects on simulated tracer fields with coarsening of the model resolution. The LR scheme
is described in Section 2.3.2 and is used to drive advection in the GEOS-Chem chemical
transport model. The SOM scheme is less diffusive as it keeps two moments of the
sub-grid tracer distribution and transfers them to the next step, whereas LR does not
maintain any of the moments and produces a new sub-grid tracer distribution each time
step based on tracer concentrations in several adjacent cells. Therefore, the SOM scheme
is less sensitive to coarsening of model resolution and performs better at preserving strong
concentration gradients, for example, at the edges of the polar vortex (Searle et al., 1998).

Eventually, the choice of advection scheme depends on a number of factors such as the
particular model application, model resolution, and the number of advected tracers. For
example, although less diffusive, the SOM scheme may produce over/under shoots and
needs an additional diffusion term to eliminate them, whereas the LR scheme implicitly
contains a diffusion term in the form of monotonicity constraints. Also, the SOM scheme
is stable only for Courant numbers less than unity, which puts a limit on the length of
the transport time step and slows down the numerical simulation, while the LR scheme
remains stable for Courant numbers larger than unity by switching to a flux form semi-
Lagrangian scheme. Additionally, the SOM scheme requires much more storage to save
two moments of sub-grid tracer distribution.

Both horizontal and vertical resolutions are important for reliably simulating the tracer
distribution. Vertical resolution is often overlooked, but the gain in performance from
increasing vertical spacing can be more substantial than that achieved from a comparable
increase in horizontal resolution. Kent et al. (2012) performed a set of experiments using
the dynamical core of a GCM where they showed that when increasing the horizontal
resolution of the model, convergence of 3D tracer transport to the “true” (very high
resolution) solution is strongly diffusion-limited due to too-coarse vertical spacing of the
model. Their conclusions are valid for CTMs. For example, Eastham and Jacob (2017)
arrived at the same conclusions by examining the impact of vertical resolution on the 3D
transport in the GEOS-Chem CTM.

Model resolution is a significant issue in the tropopause region. Unresolved winds and
increased mixing due to numerical diffusion can accelerate the STE and significantly bias
the vertical distribution of atmospheric gases (Locatelli et al., 2015). Vertical resolution
is also important in the PBL as the coarse model spacing may introduce errors in the
PBL height and transport of tracers from the PBL to the free troposphere. Both vertical
and horizontal diffusion strongly affect tracer fields with sharp concentration gradients.
For example, in the troposphere, it may affect the advection of surface emission plumes
and transport in narrow frontal zones of extra-tropical cyclones. In the stratosphere,

38



sharp tracer gradients are found at the borders of dynamic transport barriers, such as the
tropopause, the polar vortex, and the stratospheric tropical pipe. Transport of chemicals
in the polar vortex has been investigated at different horizontal resolutions and using
different advection schemes. Searle et al. (1998) assessed O3 loss in the Arctic polar vortex
in a model driven by the SOM advection scheme. They found weak sensitivity of O3 loss
to model resolution in the range from 1.4◦ × 1.4◦ to 5.6◦ × 5.6◦. Bregman et al. (2006)
showed that the SOM scheme at 3◦ × 2◦ performed as well as a more diffusive first-order
moments scheme at 1◦ × 1◦. Strahan and Polansky (2006) evaluated the isolation of the
polar vortex in the LR scheme at different horizontal resolutions. They found that the
4◦ × 5◦ resolution was too coarse and allowed too much mixing through the edges of
the polar vortex. Significant improvement was achieved by doubling the resolution to
2◦ × 2.5◦ with little sensitivity to further doubling (1◦ × 1.25◦). However, their 1◦ ×
1.25◦ wind fields were linearly interpolated from 2◦ × 2.5◦ and did not include additional
possible eddy transport. Strahan and Polansky (2006) also showed that at 4◦ × 5◦, too
much CH4 leaked from the tropical pipe, however, it remained unclear whether the 2◦ ×
2.5◦ resolution would be enough to maintain this barrier. Finally, Strahan et al. (2007)
evaluated transport in the upper troposphere and lower stratosphere (UTLS) (including
cross-tropopause transport) in the same model using a set of observations and concluded
that the extratropical tropopause barrier can potentially be maintained using the LR
scheme at 2◦ × 2.5◦ resolution. Unfortunately, only one model resolution was used,
therefore the sensitivity of transport to higher model resolution cannot be ruled out.

Despite the different properties of the various advection schemes available, tracer fields
should converge to a single true solution as resolution increases. This was the idea behind
the study by Prather et al. (2008), who compared the performance of the SOM and LR
schemes in similar model environments. Consistent with earlier studies (e.g., Searle et al.,
1998), the SOM scheme showed monotonic convergence to the true solution with weak
sensitivity to model resolution in the range from 4◦ × 5◦ to 1◦ × 1.25◦. The LR scheme
did not show similar convergence. However, the differences between the two schemes
significantly decreased as the resolution of the LR scheme was doubled from 4◦ × 5◦

to 2◦ × 2.5◦. Still, the discrepancies between the SOM and LR schemes at the higher
resolution were larger than those between different resolutions of the SOM scheme. This
again indicated that transport at 4◦ × 5◦ resolution using the LR scheme is too diffusive,
which is consistent with Strahan and Polansky (2006). Furthermore, tracer transport
with the LR scheme at 2◦ × 2.5◦ may still contain unresolved numerical errors.

Unfortunately, running simulations at high resolution is not always feasible due to
the issue of computational time, especially in data assimilation applications. A number
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of assimilation studies have constrained global CH4 emissions using models at coarse
resolution, ranging from about 2◦ × 2◦ to 4◦ × 6◦ (Chen and Prinn, 2006; Meirink et al.,
2008; Bergamaschi et al., 2009, 2013; Fraser et al., 2013; Cressot et al., 2014; Houweling
et al., 2014; Monteil et al., 2013; Bruhwiler et al., 2014; Alexe et al., 2015; Locatelli et al.,
2015; Feng et al., 2017). The models used different numerical schemes, however, the impact
of model resolution on simulated CH4 fields and surface fluxes has not been thoroughly
evaluated. Here we build on the Strahan and Polansky (2006) study and examine the
impact of model resolution on the simulation of CH4 throughout the troposphere and
stratosphere.

2.2.4 Chemical modelling of CH4

The chemical component of modelling can be reduced to three CH4 reactions with OH,
Cl and O(1D) (reactions (1.1), (1.16) and (1.17), respectively). However, most CH4 loss
is through the first reaction. The rate of reaction (1.1) can be written as

− d[CH4]

dt
= k(T )[CH4][OH] (2.42)

where [ ] implies that concentrations are given as number densities and k(T ) is the
temperature-dependent rate coefficient. The solution of Eq. (2.42) is given by

[CH4](t) = [CH4]0e
k(T )[OH]t. (2.43)

The rate constant k(T ) is often expressed by the empirical Arrhenius equation

k(T ) = Ae
Ea
RT , (2.44)

where A is the pre-exponential factor, R is the universal gas constant and Ea is the
reaction activation energy. Both A and Ea are determined experimentally. Over a range
of atmospheric conditions, they are approximated to be independent of temperature as
their effect is noticeably smaller compared to variability of the exponential term.

The most complete way to set up the CH4 simulations is within a full description of the
chemistry where all chemical species are active and their changes feedback on the dynamics.
However, such a setup can be computationally expensive and unnecessary depending on
the purpose of the simulation. In this thesis, we focus on regional partitioning of sources
and sinks of CH4 and do not aim to evaluate long-term CH4 emission trends. Because of
this, we can make several valid simplifications. First, on short (monthly to seasonal) time
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scales, the radiative effect of variations in CH4 and its oxidation products such as O3 and
H2O is too small to noticeably affect atmospheric dynamics. Therefore, CH4 transport
can be decoupled from dynamics and the associated radiative effects can be prescribed
using gas climatology. Second, the chemical loss of CH4 is too slow to have regional
impacts, although the large-scale OH distribution still matters. Fortunately, changes in
the latter caused by seasonal climatological changes in CH4 concentrations (one of the
major net sinks of OH) can be credibly predicted. Therefore, on short time scales, OH
chemistry can also be decoupled from the CH4 simulation and OH concentrations can be
prescribed by a seasonally varying climatology derived from a separate model simulation
with detailed chemistry or from estimates inferred from CH3CCl3 measurements. The
simplified modelling approach proposed above can be formulated as off-line tracer transport
in off-line chemistry mode and is implemented in CTMs driven by assimilated meteorology.

2.3 GEOS-Chem

2.3.1 Metfields

The CH4 fields are simulated using the configuration of GEOS-Chem from version v9-
02 of the model. GEOS-Chem is driven by archived meteorological fields from the
Goddard Earth Observing System (GEOS-5) produced by the NASA Global Modelling
and Assimilation Office (GMAO) Data Assimilation System (DAS). We use version
GEOS-5.2.0 of the GEOS-5 meteorological fields. A detailed description of GEOS-5 model
physics and data assimilation system is given in Rienecker et al. (2008).

The atmospheric GCM (AGCM) in the GEOS-5 DAS is driven by a FV dynamic
core that is based on the LR flux-form semi-Lagrangian scheme (Lin and Rood, 1996)
with vertically Lagrangian control-volume discretization (Lin, 2004). It has a horizontal
resolution of 0.5◦ × 0.667◦ with 72 hybrid-sigma vertical levels and a model lid at
0.01 hPa. Variables are discretized on a staggered D-grid. The dynamical core is
coupled with physics parametrization components under the Earth System Modelling
Framework (ESMF). These include parametrization of convection, precipitation, cloud
cover, radiation, turbulent mixing in PBL, vertical diffusion, gravity wave drag and surface
fluxes from land, ocean and sea ice. The time step of the physics parametrization is 30
min. Convection is parameterized using the Relaxed Arakawa-Schubert (RAS) scheme
(Moorthi and Suarez, 1992). Cloud processes, including condensation, evaporation and
precipitation, are parametrized according to Bacmeister et al. (2006). The shortwave
radiative transfer algorithm is from Chou and Suarez (1999) and includes absorption and
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Rayleigh scattering due to water vapor, O3, clouds and aerosols as well as absorption due
to O2 and CO2. The longwave radiative transfer model is based on Chou et al. (2001)
and includes absorption due to water vapor, CO2, O3, N2O, CH4, CFCs, clouds and
aerosols. CH4, N2O, CFC-11, CFC-12, HCFC-22 and stratospheric H2O are specified
from the climatology of the Goddard two-dimensional CTM. O3 is produced from the Ox

family (Ox = O3 + O(3P) + O(1D)) which is transported in the model. Turbulent mixing
parametrization in the PBL follows Louis et al. (1982) for stable conditions and Lock et al.
(2000) for unstable conditions. Gravity wave drag is parametrized in two ways: unresolved
orographic waves forced by sub-grid mountains are modelled after McFarlane (1987),
while non-orographic waves in the stratosphere and mesosphere are based on Garcia and
Boville (1994). Heat and moisture fluxes, as well as exchange of momentum between
the atmosphere and land, ocean and sea ice, are parametrized based on Monin-Obukhov
similarity theory. Sea surface temperatures and sea ice distribution are prescribed from
either observations or climatology. Exchange between the atmosphere and land processes
is implemented using the Catchment Land Surface Model (Koster et al., 2000) which
combines a catchment-based hydrologic model and a multi-layer snow model.

The GEOS-5 DAS is based on the three-dimensional variational data assimilation
(3D-Var) algorithm with a Gridpoint Statistical Interpolation (GSI) solver. The 3D-
Var approach estimates the atmospheric state, surface temperatures and coefficients for
radiance bias correction at the centre of a 6-hour model time window. The system is
constrained by winds, temperature, humidity and surface pressure measurements from
a variety of conventional data sources such as radiosondes, balloons, aircraft, Doppler
radars, surface stations, ships and buoys. Observations also include wind retrievals from
MeteoSat, GOES, QuikSCAT satellites and MODIS instrument, rain rate estimates from
SSM/I and the TMI satellite instruments and TOA radiances from a suite of different
meteorological satellites.

GEOS-Chem uses assimilated meteorological fields, most of which are archived as
6-hourly averages, while surface pressures are provided as instantaneous fields every 6
hours. Meteorological fields are degraded to a horizontal resolution of 4◦ × 5◦ or 2◦ × 2.5◦

to perform global simulations. The vertical grid is reduced to 47 levels by binning layers
above about 80 hPa. The final vertical spacing ranges from about 150 m in the lower
troposphere to about 1 km in the upper troposphere and lower stratosphere to about 4
km in the upper stratosphere. Metfields are interpolated to the internal GEOS-Chem
model transport time step of 30 min (15 min) for 4◦ × 5◦ (2◦ × 2.5◦) horizontal resolution.
In one experiment, we also utilize the nested (regional) capability of GEOS-Chem over
North America at the native GEOS-5 horizontal resolution with a 10 min dynamic time

42



step.

2.3.2 Advection

As mentioned above, advection in GEOS-Chem is implemented using the Lin and Rood
(1996) scheme, however, the global and regional (nested) versions of the model have
certain differences in the algorithm. The numerical solution for tracer advection in the
global domain can be represented by the following formula:

qn+1 =
1

ρn+1
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ρnqn + F

(
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1

2
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)
+
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(
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2
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)))
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(2.45)

where n is a time index, q is the tracer volume mixing ratio, F , G and H are the flux-
form advection operators that are given by Eqs. (2.37)-(2.39), f and g are advective
form operators derived from Eq. (2.32) using 2nd-order accurate scheme. The numerical
scheme in the form of Eq. (2.45) eliminates directional operator splitting errors and
preserves linear correlations between advected tracers. It is worth stressing that vertical
advection is accomplished on a fixed hybrid-sigma grid where the pressure thickness of
the layers changes with surface pressure. Vertical air mass fluxes are calculated based
on the divergence of horizontal air mass fluxes. Horizontal air mass fluxes at cell edges
are not archived but are derived on-line from pressure and horizontal wind fields, which
are degraded from the native resolution cell-centred winds using a pressure weighting
procedure (Wang et al., 2004). This method does not conserve mass fluxes at grid cell
interfaces between different model resolutions. Moreover, as discussed in Chapter 4, it
cancels some of the horizontal motion and, consequently, weakens vertical transport at
coarse resolution. In Chapter 4, we partly correct for this issue by driving model advective
transport by means of remapped air mass fluxes instead of winds. The cell-averaged winds
in the inner advective form operators f and g are also derived from airmass fluxes at the
cell edges. Horizontal airmass fluxes are also corrected using a “pressure fixer” (Rotman
et al., 2004) so that the vertical integral of the air mass flux divergence remains consistent
with the surface pressure tendency in each surface cell.

In the nested domain, at high resolution, advective transport is reduced to two
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dimensions and is expressed by
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. (2.46)

This 2D advection is performed between two floating vertical Lagrangian surfaces. The
tracer distribution is then remapped in a mass conserving way from the predicted La-
grangian surfaces to an Eulerian hybrid-sigma vertical grid at each transport time step.

At high latitudes at each vertical level, when the Courant number in the x-direction
(Cx) becomes larger than unity, the algorithm switches to the flux-form semi-Lagrangian
scheme, which makes the advection scheme stable for long time steps. Cx is partitioned
into K integer and c fractional parts. The semi-Lagrangian scheme performs integer
translation for the K grid boxes and the FV scheme accomplishes the remaining advection
based on fractional Courant number c. For transport across the polar caps, the tracer
fields are averaged in the two most northern (southern) latitudinal bands.

In the standard GEOS-Chem setup, tracer concentrations at cell edges in horizontal
directions are reconstructed using the PPM scheme with a full monotonicity constraint
(to eliminate both overshoots and undershoots). However, we find that a semi-monotonic
constraint (which eliminates only undershoots) is less diffusive and produces better results.
A quasi-monotonic method with Huynh’s 2nd monotonicity constraint (Huynh, 1997; Lin,
2004) is applied in the vertical.

2.3.3 Parametrization: convection and turbulent mixing

Convection is performed by a moist convective plume scheme that is driven by upward
convective mass fluxes and mass detrainment rates (mass deposition rates into each layer)
from the GEOS-5 RAS scheme. The coarse resolution fields are obtained by conservative
remapping of the original high resolution fields. The scheme represents a slightly modified
version of the convective plume model of Allen et al. (1996) inside the GEOS-Chem grid
boxes.

Several assumption are made in the model. First, the plume is set to originate
anywhere above the second model layer. Second, air in the plume at each level is mixed
instantaneously before leaving it. The schematic of the Allen et al. (1996) plume model is
shown in Fig. 2.8. We use this diagram with some changes to describe the implementation
of the convection scheme in GEOS-Chem. Ck stands for convective mass flux out of the
top of the plume in layer k, which is balanced by the downward air mass flux in the rest
of the box (−Ck). We also use Ek and Dk terms to represent air entrainment into the
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Figure 2.8: Schematic representation of moist convective plume inside the model column. C is
convective mass flux at layer edges inside the plume, q is tracer mixing ratio at layer centres and
S is mass flux due to subsidence at layer edges in the rest of vertical column. Adapted from
Allen et al. (1996).

plume and detrainment out of the plume in layer k, respectively. The air mass balance
equation for the plume in layer k is defined as

Ek + Ck+1 = Dk + Ck. (2.47)

The general equation for the evolution of the tracer mixing ratio can be written as

∂q

∂t
= g

∂

∂p
(C(qc − q)) . (2.48)

After discretization, Eq. (2.48) is transformed into

Mkq
n+1
k = Mkq

n
k + ∆t

(
Ck+1(q

n+1
c,k − q

n
k )− Ck(qn+1

c,k − q
n
k−1)

)
(2.49)

where Mk = ∆pk/g is the air mass per unit area, qk is the tracer mixing ratio in layer k
and qc,k is the tracer mixing ratio for the air inside the plume in the same layer that is
being transported up to the next level. Here, we use the assumption of instantaneous
mixing of air entering the plume. Tracer mixing ratio qn+1

c,k inside the plume in layer k at
next time step n+ 1 is defined in the following way. For the layer just below the cloud
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base qc,k is set equal qk
qc,k = qk (2.50)

and the updated layer tracer mixing ratio qn+1
k is derived from the reduced Eq. (2.49)

Mkq
n+1
k = Mkq

n
k −∆tCk(q

n+1
k − qnk−1). (2.51)

For each subsequent vertical layer comprising the cloud, qc,k is obtained from the balance
equation

(Ck +Dk) q
n+1
c,k = Ekq

n
k + Ck+1q

n+1
c,k+1. (2.52)

Integration is performed from the surface to TOA in several iterations with a reduced
internal integration time step of 5 minutes (for better accuracy).

Mixing in the PBL takes place instantaneously from the surface to the height of the
mixed layer, which is archived from the GEOS DAS, so that CH4 attains a constant
mixing ratio over the depth of the PBL. The height is based on the bulk Richardson
number with surface friction (Holtslag and Boville, 1993). The tracer mixing ratio in the
PBL is defined as the mass-weighted mean

qn+1 =

∑L
k=1Mkq

n
k

Ms

(2.53)

where L is the number of layers in the PBL and Ms =
∑L

k=1Mk. The other option for
turbulent mixing parametrization in GEOS-Chem is a non-local PBL mixing scheme
following Lin and McElroy (2010). However, we found that the choice of scheme had only
a weak impact on modelled XCH4 fields.

2.3.4 Sources and sinks

The CH4 emissions and loss processes in GEOS-Chem are as defined in Wecht et al.
(2014). Anthropogenic emissions are based on the 2004 anthropogenic inventory from the
Emission Database for Global Atmospheric Research (EDGAR) v4.2, with a 0.1◦ × 0.1◦

resolution and no seasonality (European Commission Joint Research Centre/Netherlands
Environmental Assessment Agency, 2009). This includes CH4 emissions from natural gas
and oil extraction, coal mining, livestock, landfills, waste water treatment, rice cultivation,
biofuel burning and other minor sources. Natural CH4 sources include termite emissions
(Fung et al., 1991), daily fire emissions from the Global Fire Emissions Database Version 3
(GFED3) (van der Werf et al., 2010; Mu et al., 2011) and wetland emissions after Kaplan
(2002) and Pickett-Heaps et al. (2011). The emission flux E in molecules of CH4 per
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square meter per second for each model surface grid box in the wetland model is given by
the following equation (Pickett-Heaps et al., 2011):

E = δWFβA exp

(
− E0

T − T0

)(
C1

τ1
+
C2

τ2

)
(2.54)

where C1 and C2 (mol C m−2) represent soil and carbon pools, respectively, with fixed
residence times τ1 = 32 yr and τ1 = 2.8 yr. k = A exp

(
− E0

T−T0

)
is the Arrhenius factor

which specifies the temperature dependence of respiration, with A = 1.0e+3, E0 = 309 K,
T0 = 227 K and soil temperature T taken as the GEOS-5 skin temperature. β (mol CH4

per mol C respired) is the methane emission factor, F is an additional scaling factor used
to match observed tropical and boreal CH4 fluxes, W is the maximum potential fraction
of wetlands in the model grid box, and δ = 1 if a wetland is actually present over the
fraction W , otherwise δ = 0. Wetlands are assumed to be present in the model grid box if
the soil moisture, taken from the GEOS-5 metfields, is higher then a predefined threshold.
Total CH4 emissions at different model resolutions are slightly different due to non-linear
dependence of wetland emissions on the meteorology. In order to conserve total emissions
and separate the effect of transport on the CH4 fields, we remapped the coarse (4◦ × 5◦)
resolution emissions to the higher model resolutions.

The modelled CH4 lifetime in GEOS-Chem is about 8.9 years. The majority of CH4

loss is due to oxidation by OH in the atmosphere. Tropospheric OH fields are prescribed as
a 3D monthly climatology from a GEOS-Chem simulation of tropospheric chemistry (Park
et al., 2004) and result in a tropospheric CH4 lifetime of 9.9 years. The mean modelled
tropospheric OH concentration is about 10.8×105 molecules cm−3, which corresponds
to the tropospheric methyl chloroform lifetime against OH oxidation of about 5.3 yr
(Pickett-Heaps et al., 2011). Stratospheric loss due to reaction with OH, O(1D) and Cl is
estimated based on archived climatology of CH4 loss frequencies from the NASA Global
Modelling Initiative (GMI) model (Murray et al., 2012). The remaining CH4 sink is due
to soil absorption after Fung et al. (1991). The CH4 simulation is performed in off-line
chemistry mode so that OH fields are not altered during a model run, which also simplifies
assessment of transport in the model. It should be noted that in the active chemistry
mode, the production and loss of atmospheric OH could also be affected by, for example,
model resolution which would project onto the CH4 fields.
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2.4 Data assimilation

When given a model simulation and atmospheric measurements of CH4, together with
their corresponding uncertainties, we seek the best representation of the atmospheric CH4

field that optimally fit observations and a priori constraints. The process of generating
such a representation is referred to as data assimilation and can involve adjusting, for
example, initial conditions of a short-range forecast as in numerical weather prediction
(NWP) models, or model parameters such as CH4 surface emissions, OH concentrations
and others.

Data assimilation can be viewed as probabilistic problem and be defined in the
framework of estimation theory where the task is to find the most likely solution given
the probability distribution of both the model state and measurements. In inverse
theory, it can also be interpreted as search for an inverse solution to infer unknown
model parameters provided observational constraints. This approach is often used in
satellite remote sensing and geophysics applications to infer geophysical parameters of the
atmosphere, surface and solid earth given measurements of radiance or seismic signals.
There are also other interpretations of the data assimilation process. One of them is
given by control theory where data assimilation can be viewed as the process of searching
for the model trajectory in space and time that optimally passes through the available
atmospheric measurement. This interpretation is exploited by variational optimization
methods such as 4D-Var. Finally, observations can be considered as noisy irregular time
series, while data assimilation is a tool (e.g., the Kalman filter approach) to filter this
noise and interpolate atmospheric fields to fill gaps in the measurements.

2.4.1 Basics: Optimal interpolation, 3D-Var and the Kalman fil-

ter

In the following chapters we introduce the mathematical basics of data assimilation from
the standpoint of estimation theory. The atmospheric state (x) generated by the model,
together with the associated uncertainties, can be represented by a multidimensional
Gaussian probability density function (p.d.f.) of the form N(xa,B)

p(x) ∝ exp

(
−1

2
(x− xa)TB−1(x− xa)

)
. (2.55)
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Likewise, atmospheric measurements (y) are distributed according to p(y). The latter
can be related to the model state by the expression

y = Hx + ε (2.56)

where H is the linear observation operator defined by Eq. (2.24) and ε is observation error.
Hence, the conditional probability to observe y given the model state x is given by p.d.f.

p(y|x) ∝ exp

(
−1

2
(y−Hx)TR−1(y−Hx)

)
, (2.57)

where we assume unbiased normally distributed errors ε with covariance matrix R.
The goal of data assimilation is to infer the model state (x) when given atmospheric

measurements (y), i.e. to obtain the conditional p.d.f. p(x|y), which is given by Bayes
theorem

p(x|y) =
p(y|x)p(x)

p(y)
. (2.58)

After substituting Eqs. (2.55) and (2.57) into (2.58), and considering p(y) as a propor-
tionality constant we obtain that

p(x|y) ∝ exp

(
−1

2
(x− xa)TB−1(x− xa)−

1

2
(y−Hx)TR−1(y−Hx)

)
. (2.59)

Here, p(x|y) is also referred to as the a posteriori distribution.
The estimate of the model state (x̂) can be obtained by maximizing the a posteriori

probability (the MAP method) or by minimizing the error variance of x̂ (the minimum
variance (MV) method). However, for normally distributed errors and linear operator H,
both methods yield identical results. The MAP method can be reduced to minimizing
the cost function

J(x) =
1

2
(x− xa)TB−1(x− xa) +

1

2
(y + Hx)TR−1(y−Hx). (2.60)

The solution can be defined mathematically as

x̂ = xa + K(y−Hx) (2.61)

where weight matrix K is given by

K = BHT (HBHT + R)−1. (2.62)
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This analytical solution is also referred to as optimal interpolation (OI). In atmospheric
modelling, the Hessian matrix HBHT + R is usually large and ill-conditioned, Therefore,
computation of the inverse Hessian requires some approximation. The solution can also
be found approximately using a search algorithm such as the conjugate gradient method
with a limited number of iterations. This approach is usually referred to as the 3D
variational (3D-Var) method. The drawback of using 3D-Var and OI methods is that
covariances do not take into account the temporal evolution of the atmosphere. They
only account for errors at the current assimilation time step. While observation errors ε
can be assumed to be temporally uncorrelated, the covariance B has to evolve together
with the model dynamics, where growing instabilities in the atmospheric flow amplify
the initial estimate of B. This amplification is also a consequence of the chaotic nature
of atmospheric flow and is similar to the one predicted by the Fokker-Planck equation
(which describes the p.d.f. evolution of the Brownian particle velocity). At the same time,
the model dynamics and the observations at the previous time step could attenuate the
uncertainty. More advanced data assimilation techniques such as the sequential Kalman
filter (KF) or 4D-Var are built to account for the dynamic evolution of the system.

In order to formulate the standard Kalman filter (KF) algorithm we assume a linear
forecast model M which translates the model state xt at current time step to the next
one:

xt+1 = Mxt + ut (2.63)

where ut represents model errors at the current time step with unbiased Gaussian statistics
N(0,Qt). The model state produced by the action of the linear model operator M is
referred to as the “forecast” x̂ft with covariance matrix Pf

t . The estimate of the current
state produced by combining the “forecast” with observations is referred to as “analysis”
x̂at with covariance matrix Pa

t . The operator M acts on the current “analysis” to produce
the next “forecast” according to

x̂ft+1 = Mx̂at . (2.64)

The model state covariance evolves as

Pf
t+1 = MPa

tM
T + Qt. (2.65)

The KF theory derives an analytic expression for the “analysis” x̂at in Eq. (2.64) and
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its covariance matrix Pa
t in Eq. (2.65), which are given by

x̂at = x̂ft + Kt(yt −Hx̂ft ), (2.66)

Pa
t = (I−KtH)Pf

t , (2.67)

where the Kalman gain matrix K is defined as

Kt = Pf
tH

T (HPf
tH

T + Rt)
−1. (2.68)

It should be noted that observations in the form of Rt in Eq. (2.68) damp the error growth
in Eq. (2.65) through their influence in Eq. (2.67).

Similar to 3D-Var and OI, the KF uses only observations available at a given time
step to produce the “analysis”. However, the KF can be considered as a special case
of the Kalman smoother (see, for example, Bruhwiler et al. (2005)), which can include
observations available at any number of time steps. By definition, in the 4D-Var, the
“analysis” is also constrained by all available observations in the assimilation time window.
Under a perfect model assumption (Qt = 0), 4D-Var can be viewed as a method of
optimizing initial conditions (x0), or model parameters p, to produce a model trajectory
that optimally fits all available observations. Therefore, the 4D-Var trajectory would be
smooth and more dynamically consistent, while the KF trajectory would contain jumps
in between short assimilation time windows.

Although the described theory is concerned with estimation of the model state, it
is straightforward to modify the equations to estimate model parameters. In order
to accomplish that, the current state can be related to model parameters through an
additional operator, which can be linear in the case of surface emissions.

2.4.2 Weak and strong constraint 4D-Var

For the 4D-Var method, the 3D-Var cost function defined by Eq. (2.60) is transformed
into

J(x0) =
N∑
t=0

1

2
(yt −Hxt)TR−1t (yt −Hxt) +

1

2
(x0 − x0,a)

TB−1(x0 − x0,a), (2.69)

where the sum is over all time steps within an assimilation window. J can also be equally
defined with respect to model parameters p with a priori error statistics given by the
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normal p.d.f. N(pa,B), i.e., Eq. (2.69) can be transformed into

J(p) =
N∑
t=0

1

2
(yt −Hxt)TR−1t (yt −Hxt) +

1

2
(p− pa)

TB−1(p− pa), (2.70)

where the model states at consecutive time steps are related by the expression

xt+1 = M(xt,p). (2.71)

The previous equation is different from Eq. (2.63) in several ways. First, we do not make
assumptions about the linearity of the forward model in contrast to Section 2.4.1. Second,
in Eq. (2.71) it is assumed that there are no errors in propagating the state forward in
time. Eqs. (2.70) and (2.71) define the cost function of the so-called “strong constraint”
(SC) 4D-Var method where the name implies that the model trajectory is used as a strong
constraint in the optimization. However, as described by Trémolet (2006), Eq. (2.71) can
be modified to account for model errors (“weak constraint”) by adding corrections (forcing
terms) ut+1 to the CH4 state at time step t + 1, so that Eq. (2.71) becomes similar to
Eq. (2.63)

xt+1 = M(xt,p) + Gut+1 (2.72)

where ut represents forward model errors and G is an operator that maps them into the
model state. The operator G can also be a mask that defines the 3D spatial region where
errors in the model state occur. Therefore, the second term on the r.h.s. of Eq. (2.72)
can represent additional sources and sinks of CH4 in the atmospheric region defined by
G. The weak constraint 4D-Var method allows evaluation of model errors ut, which we
also refer to interchangeably as state corrections or forcing terms in the rest of this thesis.
The WC 4D-Var cost function is given by

J(p,ut) =
N∑
t=0

1

2
(yt −Hxt)TR−1t (yt −Hxt)+

1

2
(p− pa)

TB−1(p− pa) +
N∑
t=1

1

2
uTt Q

−1
t ut

(2.73)

and is minimized with respect to both model parameters p and state corrections ut. Here,
Qt defines the a priori model error covariance matrix and model errors are assumed
unbiased. As described by Trémolet (2006), ui can be considered to represent model
errors on time scales as short as each model time step or as long as the full assimilation
period, and is assumed to be constant over the appropriate interval. In the case where the
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forcing is estimated over the full assimilation window, the optimized forcing will represent
a constant model bias over the whole model trajectory.

The WC 4D-Var approach was recently implemented into the GEOS-Chem model by
Keller (2014), and here we describe that approach. In variational analysis, the minimum
of the cost function (Eq. (2.73)) subject to equality constraints (Eq. (2.72)) can be found
using the adjoint method. For simplicity, we show the derivation using the Lagrange
multipliers method which, in practice, is identical to the adjoint method. The Lagrangian
function is given by the equation

L(p,xt,λt,ut) =
1

2
(p− pa)

TB−1(p− pa)+

N∑
t=0

1

2
(yt −Hxt)TR−1t (yt −Hxt) +

N∑
t=1

1

2
uTt Q

−1
t ut−

N∑
t=1

λTt (xt −M(xt−1,p)−Gut).

(2.74)

We define gradients of the Lagrangian L with respect to λt, xt, p and ut by a system of
equations

∂L
∂λt

= xt −M(xt−1,p)−Gut (2.75)

∂L
∂xt

= −HTR−1t (yt −Hxt)− λt +

(
∂M

∂xt

)T
λt+1 (2.76)

∂L
∂xN

= −HTR−1t (yN −HxN)− λN (2.77)

∂L
∂p

= B−1(p− pa)−
N∑
t=1

λTt
∂M

∂p
(xt−1,p) (2.78)

∂L
∂ut

= Q−1t ut + GTλt (2.79)

where M = ∂M
∂xt is the tangent linear model (TLM) and MT is its adjoint. At the

minimum, the gradients of L defined by Eqs. (2.75)-(2.79) are equal to zero. Eq. (2.75)
then transforms into Eq. (2.72), while Eqs. (2.76)-(2.77) yield the adjoint model equations

λN = −HTR−1t (yN −HxN)

λt =

(
∂M

∂xt

)T
λt+1 −HTR−1t (yt −Hxt) .

(2.80)

53



Values of λt are derived from the forward and the adjoint model integrations and sub-
stituted into Eqs. (2.78)-(2.79). In general, ∂L

∂ut and ∂L
∂p are not equal to zero as the

minimum has yet to be reached by iteratively minimizing the Lagrangian function L using
a gradient-based algorithm. In GEOS-Chem, this is done using the L-BFGS-B algorithm
(Byrd et al., 1995). In summary, the entire WC 4D-Var algorithm consists of the following
steps:

1. Run the forward model (Eq. (2.72)) from time t1 to tN using the current estimates
of parameters p and forcing terms ut.

2. Run the adjoint model and simultaneously accumulate the estimates of λt based on
Eq. (2.80).

3. Calculate the gradients of L with respect to p and ut using Eqs. (2.78)-(2.79) and
estimates of λt.

4. Update the estimates of p and ut using the minimization algorithm (for example,
L-BFGS-B) using ∂L

∂ut and
∂L
∂p .

5. Repeat steps 1-4 until convergence is reached.

Similar to the KF, the 4D-Var scheme propagates the covariance matrix B forward in
time with the model dynamics. Unlike the KF, it does not directly calculate the “analysis”
covariance matrix, due to the way the cost function is minimized. Different approximate
methods exist to obtain estimates of the a posteriori covariance matrix, such as the Monte
Carlo approach or using the Davidon-Fletcher-Powell formula to approximate calculation
of the Hessian.

Generally, CH4 surface emissions, but not OH, are optimized as part of assimilation.
Variations in the signal of chemical loss are relatively weak and smooth and, therefore,
are challenging to constrain. At most, inversion systems may attempt to estimate global
scaling factors on a priori prescribed OH concentrations. However, there is a more robust
way to do that using methyl chloroform observations (Montzka et al., 2011), which provide
global OH estimates with uncertainty of about 15%.

2.4.3 Adjoint

In order to integrate the adjoint model, Eq. (2.80), backward in time, the algorithm

requires the adjoint of the tangent linear model
(
∂M
∂xt

)T
. For these purposes, we use

version v35 of the GEOS-Chem adjoint, which is based on version v8-02-01 of the forward
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model, with updates up to v9-02. The adjoint model is described by Henze et al. (2007)
and has been used for assimilation of CH4 observations by Wecht et al. (2012, 2014) and
Turner et al. (2015). Derivation of the adjoint would be simplified if all processes in the
model could be represented in a matrix form. For example, the effect of chemistry and
emissions can be represented by simple linear operators acting on the CH4 state. The
adjoint of these operators is straightforward to code and implement. Turbulent mixing
parametrization, defined by Eq. (2.53), can be expressed as qn+1

1,L = Hqn1,L, where the
linear matrix operator H is defined as

H =


M1

Ms
· · · ML

Ms... . . . ...
M1

Ms
· · · ML

Ms

 . (2.81)

The adjoint of turbulent mixing would be defined as a transpose of the matrix H. The
adjoint of convection defined by Eqs. (2.48)-(2.52) is less straightforward and is calculated
using the Tangent and Adjoint Model Compiler (TAMC, Giering and Kaminski, 1998).

Derivation of the advection adjoint in GEOS-Chem is based on the continuous adjoint
approach: the equation for the adjoint is first obtained in a continuous form and then
discretized. The tracer continuity equation in advective form is given by Eq. (2.32)

∂q

∂t
+ v · ∇q = 0.

Using the concept of tangent linear model, we obtain

∂δq

∂t
= −v · ∇δq = Mδq. (2.82)

For the adjoint operator M∗, we seek a form that satisfies

∂λ

∂t
= M∗λ. (2.83)

It is derived from the Lagrange identity

ˆ T

t0

˚
V

(Mδqλ) dV dt =

ˆ T

t0

˚
V

(δqM∗λ) dV dt. (2.84)

Integrating by parts and applying the divergence theorem, we obtain

−
ˆ T

t0

‹
∂V

δqλv · ndSdt+

ˆ T

t0

˚
V

δq (∇ · (vλ)−M∗λ) dV dt = 0. (2.85)
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The first term on the l.h.s. contains the surface integral over the boundary of volume V
where the unit vector n is defined at the surface ∂V and points outward. In the global
domain, the atmosphere contains only the upper (TOA) and lower (surface) boundaries
where the first term vanishes as either v and n are orthogonal to each other or v = 0. In
one-way nested regions, with prescribed tracer boundary conditions, the adjoint variable
λ is set equal to zero at the boundary (λ(ζ, t) = 0,∀ζ ∈ ∂V ) so that the first term
also vanishes. Then, the second term on the l.h.s. should equal zero for any arbitrary
perturbations δq, which can be satisfied only if

M∗λ = ∇ · (vλ). (2.86)

Therefore, the equation for the advection adjoint is defined as

∂λ

∂t
= ∇ · (vλ). (2.87)

If we define new adjoint variables λ̂ = λ/ρ and v− = −v and assume that grid box density
is constant during one integration time step, Eq. (2.87) transforms into

∂ρλ̂

∂t
+∇ · (v−ρλ̂) = 0 (2.88)

which is equivalent to Eq. (2.31) (the continuity equation for tracer advection). Therefore,
the adjoint of advection can be obtained using the original forward model code. In order
to do that, one needs to reverse the sign of the winds, divide the adjoint variables by
density fields before integration, and multiply by the density fields afterwards.
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Chapter 3

Diagnosing model biases using weak
constraint 4D-Var

3.1 Introduction

Significant effort has been put into characterizing surface emissions of CH4 in order to
attribute recent trends in the atmospheric CH4 concentrations. A number of satellites,
such as Envisat carrying SCIAMACHY (Schneising et al., 2011), GOSAT carrying TANSO-
FTS (Kuze et al., 2009), Sentinel-5P with TROPOMI on-board (Veefkind et al., 2012),
MERLIN (Kiemle et al., 2014), GOSAT-2 (Nakajima et al., 2017), and GeoCarb (Polonsky
et al., 2014), have been launched or are proposed to measure atmospheric CH4 in order to
constrain its sources. However, current regional CH4 emissions remain largely uncertain
(Saunois et al., 2016a). One of the biggest challenges for reducing uncertainty on emission
estimates is the relatively weak signal of emissions in the atmospheric column of CH4,
which puts tight requirements on the accuracy of satellite measurements. However, while
future satellite instruments and improved spectroscopy are expected to provide better
CH4 measurements, errors in the atmospheric models used to simulate CH4 remain poorly
characterized. While random model errors can be accounted for in flux assimilation using
various methods, the impact of biases in chemistry and transport are often neglected.
In the case of CH4, which is a relatively long-lived gas with an atmospheric lifetime of
about 9 years (Prather et al., 2012), chemistry plays a critical role in long-term trends
(McNorton et al., 2016) while transport, alone or coupled with chemistry, defines how total
surface emissions are distributed on a regional scale. Therefore, transport errors, such as
those produced by numerical advection schemes, biases and uncertainties of meteorological
fields, and parametrization of sub-grid scale processes, may significantly undermine our
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ability to use models to relate emissions to atmospheric observations, and thus our ability
to improve CH4 emission estimates (Prather et al., 2008; Locatelli et al., 2015; Patra
et al., 2011).

One potential solution is to apply a bias correction to the model in the context of the
inversion analysis. Simple bias correction schemes with uniform or latitudinally dependent
bias estimates have been attempted before (Fraser et al., 2013; Monteil et al., 2013; Alexe
et al., 2015; Locatelli et al., 2015). Here we explore the utility of a weak constraint
4D-Var method to characterize forward model errors. In contrast, the traditional strong
constraint 4D-Var method assumes that the model is perfect. The WC 4D-Var method was
introduced by Sasaki (1970) and used in numerical weather prediction (NWP) models by
Derber (1989), Zupanski (1997) and Trémolet (2006, 2007). It was first applied by Keller
(2014) in a CTM, to characterize biases in the GEOS-Chem simulation of atmospheric
CO. One of the first attempts to apply bias correction in chemical data assimilation
was done in the framework of the suboptimal Kalman filter by Lamarque et al. (2004),
who used the bias estimation approach of Dee and Da Silva (1998) to constrain the
CO state using measurements from the Measurement of Pollution in the Troposphere
(MOPITT) instrument. The study pointed to the possibility of errors in the model vertical
transport, however most of estimated biases were attributed to poor a priori estimates
of CO surface emissions in the model. The major challenge for such type of analyses is
the limited information that is available about the global vertical distribution of CH4

in the atmosphere. There are satellite observations that contain information about the
CH4 distribution in the middle and upper troposphere, such as the thermal infrared
CH4 retrievals from the TES instrument on-board the NASA Aura satellite (Worden
et al., 2012), or in the stratosphere, such as the solar occultation measurements from the
ACE-FTS (Bernath et al., 2005)) on-board SCISAT satellite. However, the accuracy of
these measurements (for example, Wecht et al., 2012; De Mazière et al., 2008) may not be
sufficient to detect model errors. The most accurate satellite measurements are those of the
dry-air mole fraction of CH4 in the total atmospheric column (XCH4) obtained by TANSO-
FTS on-board GOSAT. However, these measurements provide less vertical information on
CH4 than those from TES or ACE-FTS. Highly accurate aircraft CH4 profile measurements
would be an ideal source of information, but they are limited in space and time. We
explore here the information content of GOSAT CH4 observations and show that despite
being designed to constrain surface emissions, they contain sufficient information to help
characterize possible model errors. We assimilate the GOSAT observations using the WC
4D-Var data assimilation approach to estimate biases in GEOS-Chem. This approach
is shown to provide a valuable tool for diagnosing and determining the origin of model
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errors.
This chapter is organized as follows. Section 3.2 gives an overview of the forward

model, observations, and the WC 4D-Var method. It also contains a description of the
various sensitivity experiments conducted through a series of Observing System Simulation
Experiments (OSSEs). In Section 3.3, we present the results of the sensitivity experiments
as well as the results of the assimilation of real GOSAT observations. Section 3.4 provides
an interpretation of the pattern of model biases estimated from the GOSAT assimilation.
Finally, conclusions are given in Section 3.5.

3.2 Data and methods

3.2.1 The GEOS-Chem model

We use the GEOS-Chem v8-02-01 global forward and adjoint model (Henze et al., 2007),
which are described in Sections 2.3 and 2.4.3, respectively. For the analysis presented here,
we focus on the period of 1 February 2010 to 31 May 2010. The CH4 fields were spun up at
a resolution of 4◦ × 5◦ and 2◦ × 2.5◦ for about 5.5 years until July 2009. From July 2009
to January 2010, we assimilated the GOSAT Proxy XCH4 retrievals (Parker et al., 2015)
to obtain monthly mean emission estimates at the 4◦ × 5◦ resolution. The optimized
emissions were then regridded and used to perform forward model simulations at the 2◦ ×
2.5◦ resolution for the same period from July 2009 to January 2010. The updated model
fields on 1 February 2010 at both model resolutions were taken as initial condition for
the analysis period. As a result, the initial conditions at both resolutions contain similar
amounts of CH4 in the atmosphere. However, CH4 is distributed differently, reflecting
the balance between emissions and transport at each model resolution.

3.2.2 Measurements

We obtain information about the CH4 distribution in the atmosphere from XCH4 retrievals
(Parker et al., 2011) from the TANSO-FTS on-board GOSAT, which are described in
Section 2.1.1. We use GOSAT averaging kernels and a priori profiles to smooth the
GEOS-Chem CH4 fields and map them onto the measurement space of the GOSAT
retrievals. The absence of vertical information in the measurements is a challenge for
constraining the 3D structure of model errors. However, we expect vertical structure to
emerge from atmospheric transport patterns. For example, the majority of the CH4 mass
is transported into the North American domain through the western boundary in the
jet stream in the upper troposphere. Therefore, XCH4 observations over North America
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would be more sensitive to past CH4 concentrations in the upper troposphere, upwind
over the Pacific and Asia. Here, we explore the potential utility of the weak constraint
4D-Var scheme to discern model biases using the GOSAT XCH4 data.

Figure 3.1 shows the mean XCH4 fields from February to May 2010 modelled by
GEOS-Chem at 4◦ × 5◦ resolution (top panel) and as measured by GOSAT (bottom
panel). A number of features in modelled XCH4 can be identified. There is a clear
inter-hemispheric difference with smaller XCH4 in the Southern hemisphere. Enhanced
XCH4 concentrations can be observed over China, India, equatorial Africa and South
America, with weaker signals also present over Europe and the eastern US, which, to
first approximation, are related to local surface CH4 emissions. Major features generally
agree between the modelled and observed XCH4 fields, however there are also a number
of discrepancies that are discussed in Section 3.3.
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Figure 3.1: Mean XCH4 fields from February to May 2010. Top: XCH4 modelled by GEOS-
Chem at 4◦ × 5◦ resolution, co-located with GOSAT observations and smoothed with GOSAT
averaging kernels. Bottom: GOSAT XCH4 retrievals based on the new CO2 proxy.

The a priori and constrained model CH4 fields were also validated against in situ
NOAA-ESRL surface CH4 measurements (Dlugokencky et al., 2016), HIPPO-3 aircraft
measurements (Wofsy et al., 2011), TCCON ground-based XCH4 retrievals (Wunch et al.,
2011) and ACE-FTS space-based CH4 retrievals (Boone et al., 2005), and results are
shown in Section 3.3. Description of the datasets and instruments can be found in
Sections 2.1.2-2.1.4
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3.2.3 Weak constraint 4D-Var approach

The weak constraint (WC) 4D-Var was introduced in Section 2.4.2. Here, we describe
the specific configuration of the WC 4D-Var method that was used in this chapter. We
utilized the reported uncertainty on the GOSAT XCH4 retrievals as observation errors
(with the median value of approximately 10 ppb) and inflated it to match the GOSAT
scatter against TCCON observations. It was assumed that the observation errors are
uncorrelated, so that the observation error covariance matrix R was assumed to be
diagonal. The a priori error covariance matrix B was also assumed to be diagonal, with
50% uncertainty on CH4 emissions in each surface grid box. Emissions were not split into
categories but optimized as monthly totals in each surface grid box. GOSAT provides
global coverage with a period of three days. Therefore, we did not attempt to characterize
the global model errors on time scales shorter than that and explored keeping the forcing
terms constant over a time interval that varied from the minimum of three days up to
one month. Little is known about the a priori structure of the model errors, so in the
design of the cost function, a priori estimates of model errors were set to zero.

The WC algorithm optimizes scaling factors (SFs) for both the forcing terms and the
model parameters (surface emissions). Emission SFs are ratios of optimized emissions to
a priori emissions, while forcing SFs are the ratios of optimized forcing terms to some
constant scaling parameter u0. The WC inverse method becomes sensitive to the choice
of scaling parameter when working with multidimensional problems. This choice does not
affect the Lagrangian L (Eq. (2.74)), however, it does change the relative magnitude of
L gradients with respect to forcing terms ∂L

∂ui
(Eq. (2.79)) and to surface emissions ∂L

∂p

(Eq. (2.78)). The state vector of the WC inversion is largely dominated by a number of
forcing SFs as opposed to emission SFs (with the ratio of up to 500:1). Due to the high
dimensionality of the problem, the L-BFGS-B optimization algorithm can search only a
fraction of parameter space in the direction of the largest gradient descent. Therefore,
it becomes sensitive to the relative magnitude of forcing gradients ∂L

∂ui
versus emission

gradients ∂L
∂p . For large values of u0 (for example, u0 ≥ 50 ppb), the algorithm descends

in the direction of forcing gradient and the WC inversion is transformed into the so-called
“full state assimilation”. Meanwhile, small values of u0 (for example, u0 ≤ 0.05 ppb)
force the algorithm to minimize the cost function in the direction of emission gradients
(“flux assimilation”). The value of u0 = 1.0 ppb was also empirically chosen to perform
simultaneous optimization of the emissions and forcing terms (“flux+state assimilation”).

Application of the WC 4D-Var method is sensitive to the specification of the covariance
matrix Q, which is difficult to characterize. We adopted a diagonal structure of matrix Q
as our standard option. This implies there was no explicit temporal or spatial correlation
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assumed between model errors. However, some correlation is implicitly present in the
model and emerges from both atmospheric transport patterns and the definition of
constant forcing time window. Still, assigning adequate model error uncertainty is one of
the major challenges for using WC method. Generally, there is no single recipe for that,
as model errors come from variety of sources, with different characteristics and, moreover,
vary on daily to seasonal time scales. Additionally, in practice, there is usually no way to
properly validate whether the inversion correctly attributed biases in CH4 fields as being
caused by surface emissions, model errors, or observational biases. This latter statement
is related to the fact that surface emission, observational bias, and some model errors
may leave similar signatures in the CH4 fields that would not be easy to distinguish even
with perfect observational coverage. The situation may even be worse for CH4 biases if
incorrect emissions and model errors mask each other and do not show up in the model
comparison with GOSAT data.

Given these issues, our focus here is not on estimating surface emissions of CH4.
Instead, we use the WC 4D-Var method to optimally constrain the CH4 state and explore
the nature of the errors in the model CH4 simulation. We performed two types of
inversions: “full state assimilation” and “flux+state assimilation”. Given that little is
known about the distribution of model errors, in both cases we chose a uniform spatial
and temporal structure of model error uncertainty q so that the model error covariance is
defined as Q = q2I.

We conducted a series of parameter tuning experiments where the WC 4D-Var analysis
was performed using values of q ranging from 0.05 ppb to about 2000 ppb, and optimized
CH4 fields were validated against independent observations. The experiments showed
that for any values of q above 50 ppb, the fit of optimized CH4 fields to independent
observations did not change noticeably. However, for values of q below 50 ppb the fit
deteriorated as q became smaller. Therefore, q was set to 50 ppb. Although the latter is
too large for the actual model error uncertainty estimate, it reduces the weight of the
model error term in the WC cost function defined by Eq. (2.73) and, perhaps, makes
the latter easier to minimize. It is important to note that the magnitude of estimated
forcing terms change with changing q, but the general pattern of positive and negative
corrections was not significantly affected by the choice of q. In the experiments, described
in Section 3.2.4, we found that the WC method was still able to significantly improve
the model and capture the bias in the CH4 state. Therefore, we considered a uniform
structure for Q to be a satisfactory assumption for the initial assessment of model errors
in the context of the WC 4D-Var analysis.

Generally, at some point during the convergence process, the assimilation will start
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fitting the noise in GOSAT observations. This can be prevented by stopping the iterative
algorithm when the reduced chi-squared value for the fitted model approximately equals
unity. In practice, the real uncertainty on GOSAT XCH4 retrievals is unknown due to
unaccounted errors in the CO2 proxy fields, for example, so we used a different approach.
For each WC inversion that was performed, we monitored the evolution of optimized
model fields and compared them to independent observations (from TCCON, the NOAA
in situ network, and from the HIPPO-3 aircraft campaign). The iterative process was
terminated when the fit to independent observations did not improve any further or
started to get worse, based on the assumption that after this threshold the optimization
began to fit noise in GOSAT observations. On average, the level of noise was estimated
to correspond to GOSAT XCH4 uncertainty of about 10 ppb.

3.2.4 Sensitivity experiments

To evaluate the performance of the WC 4D-Var scheme, we conducted a series of OSSEs.
We began with an analysis of the sensitivity of the GOSAT observational coverage to
the CH4 state in the model. Following Liu et al. (2015) and Byrne et al. (2017), we
constructed the sensitivity function

J =
N∑
n=1

(XCHmodel
4 )n (3.1)

where XCHmodel
4 are modelled CH4 dry-air mole fractions sampled at the times and

locations of the GOSAT observations and convolved with GOSAT scene-dependent
averaging kernels. The sensitivity function is summed over all N observations available
over the assimilation period. The sensitivity of the GOSAT observations to the modelled
state is obtained by taking the derivative of J with respect to the state, using the model
adjoint

∂J

∂xi,j,k,t
=

N∑
n=1

∂(XCHmodel
4 )n

∂xi,j,k,t
(3.2)

where xi,j,k,t is the CH4 at longitude i, latitude j, altitude k, and time t. The sensitivities
are expressed in units of ppb kg−1 and can be understood as the propagated backward-in-
time GOSAT averaging kernels weighted by the value proportional to the local surface
pressure. The sensitivities can be summed in space or time to give an aggregated view of
the sensitivity of the GOSAT observational coverage to the modelled CH4 state.

We then conducted four OSSEs in order to evaluate the performance of the WC 4D-Var
method in regards to mitigating artificially introduced model errors for February-May
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2010. We investigated model biases from four different sources: surface emissions, vertical
transport, chemical loss, and initial conditions. The “true” model state was defined as
optimized CH4 global fields obtained from an inversion analysis to constrain estimates of
monthly CH4 fluxes using GOSAT XCH4 Proxy retrievals during the same time period.
We also refer to these constrained fluxes as “true” CH4 surface emissions. The CH4 initial
conditions are described in Section 3.2.1. This “true” model state was used to produce
pseudo GOSAT XCH4 measurements by sampling it at the corresponding times and
locations of the real GOSAT measurements and then convolving them with GOSAT
averaging kernels. The perturbed model was defined by introducing bias in the “true”
model from one of the four specified sources of model bias. Then the pseudo-observations
were used to constrain and mitigate biases in the perturbed model CH4 state. The
performance of the pseudo-inversion was evaluated by comparing the recovered CH4 fields
to the “true” ones. The analyses were conducted for the standard period of four months
(February-May 2010), but most of the results are presented for the second month of the
assimilation period, March 2010. This gives the model errors time to accumulate during
February, and provides two months of pseudo-data, in April and May, to constrain the
CH4 state in March. No noise was added to the pseudo-observations. Given that and the
fact that, usually, the state is most optimally constrained in the middle of the assimilation
period, we believe that the OSSEs should reveal the best performance of the WC method.

The emission bias was introduced by replacing the “true” CH4 emissions with the
original a priori emissions. Convection and chemistry were artificially biased by completely
turning them off in the model for the duration of the assimilation period. Finally, a bias
in initial conditions was introduced by replacing the “true” initial conditions with the ones
obtained by running the forward model without convection and with 70% of the a priori
emissions from July 1, 2009, to February 1, 2010, the beginning of the assimilation period.
Generally, the effect of transport and chemistry on the CH4 fields in GEOS-Chem is only
weakly non-linear which allows us to use large state perturbations. The applied biases
were intentionally designed to be extreme; for the real world applications, we expect to
deal with less extreme model errors.

We configured the WC method to carry out “full state assimilation” (as described
in Section 3.2.3) and have the freedom to determine independently the location of the
bias. The constant forcing time window was set equal to three days and forcing terms
were optimized throughout the entire atmosphere (mask G equals unity everywhere).
This particular configuration may not be optimal to mitigate a specific type of bias in a
real assimilation with limited observational coverage. Here, we intend to investigate the
performance of the measurements and the assimilation method when no information is
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given about the sources and magnitude of model errors. We also conducted a SC 4D-Var
assimilation experiment for comparisons with the WC approach in the OSSE with biased
surface emissions.

3.2.5 Assimilation configuration with real GOSAT data

For the assimilation of the real GOSAT CH4 data, we used the WC 4D-Var configuration
as in the OSSEs. The CH4 initial conditions are described in Section 3.2.1. The CH4

state was constrained during the standard four-month period of February-May 2010
using GOSAT observations during the same period. Modifications to the WC 4D-Var
configuration included tuning the length of constant forcing time window T and the
horizontal/vertical structure of the forcing maskG. We also performed additional tuning of
the method in order to explore the nature of the model errors. The quality of constrained
CH4 fields was evaluated against independent observations. Additionally, we compared
results of the WC inversions with results of the SC surface flux assimilation.

The a priori model validation presented in Section 3.3.2.2 pointed to the fact that the
stratosphere in GEOS-Chem at 4◦ × 5◦ resolution, particularly, at high latitudes, may
be positively biased. A similar result was obtained by Saad et al. (2016). The OSSE
results also suggested that the WC assimilation may benefit from additional constraints on
stratospheric forcing terms. Therefore, we imposed a negativity bound in the L-BFGS-B
algorithm for the optimization of the forcing terms in the extra-tropical stratosphere
(above about 210 hPa and poleward of 44◦) at 4◦ × 5◦ resolution. No bound was imposed
on forcing terms in the 2◦ × 2.5◦ resolution assimilation.

In one set of experiments, we performed “full state assimilation” and changed the length
of the time window over which the forcing terms are held constant in the assimilation. The
forcing mask G comprised the entire atmosphere, and biases in the CH4 state potentially
induced by incorrect surface emissions were treated as just another source of model errors
included in forcing terms. The length for the forcing window was varied from three to
30 days. Short time windows would be more appropriate if the model was affected by
temporally changing biases such as those related to transient mesoscale eddies. However,
the observations may not be able to constrain the short time scales. Also, for short
temporal correlation length scales, there is a higher risk that the inversion will fit noise
or possible biases in observations. In contrast, the use of long time windows introduces
additional temporal correlations between forcing terms that may be suitable only for the
mitigation of stationary systematic biases in the model, such as those related to surface
emissions, chemistry or stationary transport errors.
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Table 3.1: Summary of experiments with real GOSAT data

Parameter Parameter options Type of assimilation

Length of forcing time window 3, 7, 14 or 30 days “full state assimilation”
Vertical extent of forcing mask • from surface to TOA “source+state assimilation”

• from 750 hPa to TOA
• from 500 hPa to TOA
• from 250 hPa to TOA

Horizontal extent of forcing mask • globally “source+state assimilation”
• stratosphere
+ four regions in the troposphere

Horizontal model resolution • 4◦ × 5◦ “full state assimilation”
• 2◦ × 2.5◦

In a different set of experiments, we carried out WC 4D-Var “source+state assimilation’
and explored the optimal design of the forcing mask G. Here, the forcing window was
set equal to three days. First, we explored the vertical structure of G. The algorithm
was configured to optimize forcing terms in 1) in the whole atmosphere, or 2) above
about 750hPa, or 3) above about 500hPa, or 4) above about 200hPa. Then the horizontal
structure of G was modified as well. Forcing terms were applied globally throughout the
stratosphere and in the troposphere only over four separate regions: the three regions
defined by the boundaries of the GEOS-Chem nested model domains (North America
(NA), Europe (EU), and China with South-East Asia (CH)) and over Equatorial Africa
(EQAf). In these experiments we also attempted to narrow down the origin of the biases
affecting the model at the location of the TCCON and NOAA measurement sites.

All the above experiments were conducted at the 4◦ × 5◦ model resolution. In one
additional experiment, we applied WC 4D-Var “full state assimilation” to constrain errors
in GEOS-Chem at 2◦ × 2.5◦ resolution. We used the standard method configuration with
a forcing time window of three days. The only difference between the 4◦ × 5◦ and the 2◦

× 2.5◦ assimilation was in the initial conditions which are described in Section 3.2.1.

3.3 Results

3.3.1 OSSE experiments

We began with an analysis of the sensitivity of the GOSAT observation coverage to the
CH4 state in the model. Shown in Fig. 3.2 is the total zonal adjoint sensitivity (upper
panel), which is a sum of adjoint sensitivities over time and longitude. Additionally,
we included a vertical slice of total adjoint sensitivity over 34◦N latitude, which is a
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sum of adjoint sensitivities over time (lower panel). As suggested by the upper panel
in Fig. 3.2, the entire GOSAT observing system from February to May 2010 has the
greatest sensitivity to CH4 changes in the UTLS in the northern hemisphere. This can
be explained by the fact that winds in the UTLS region are stronger than in the lower
troposphere, hence any change in CH4 fields in the former region will eventually affect
a larger number of GOSAT measurement locations in the model. The sensitivity in the
tropics is approximately half that in mid-latitudes. The lower panel in Fig. 3.2 also shows
that over the oceans not covered by GOSAT observations (for example, over the Pacific
Ocean, between 120◦E and 130◦W) the sensitivity is reduced near the surface and is
increased in the UTLS where most of CH4 mass flux from Asia enters the North American
domain. Increased sensitivity between approximately 30◦W and 30◦E is due to the large
number of GOSAT measurements over the Sahara desert.
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Figure 3.2: Map of the total adjoint sensitivity of GOSAT observations in February-May 2010
to the CH4 state during the same period (sum over time). Top: total zonal adjoint sensitivity
(sum of adjoint sensitivities over longitude). Bottom: slice over 34◦N.

In the first OSSE, we tested the ability of both the SC and WC 4D-Var schemes to
reproduce mean CH4 atmospheric concentrations for the case of biased emissions. It is
expected that the SC 4D-Var method will produce better results than the WC 4D-Var
due to the fact that, when using the SC method, we implicitly supply the assimilation
with knowledge about the source of the bias. The results of the OSSE are presented in
Fig. 3.3, which shows the mean difference between the recovered state and the “true” CH4
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fields. The results confirm that the SC 4D-Var method is better at removing CH4 biases
due to emissions. As shown in Fig. 3.4, the major challenge for the WC 4D-Var was to
constrain CH4 fields in the boundary layer below about 800 hPa above large emission
sources. Here the method failed to properly correct the vertical structure of the model
biases. Due to weak vertical sensitivity of the pseudo-data, it is difficult for the WC
4D-Var method to mitigate strong localized vertical bias. Instead, it compensates for the
bias by applying relatively weak CH4 state adjustment of the opposite sign in the column
of the atmosphere above, particularly in the stratosphere (see Fig. 3.4).
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Figure 3.3: Results of the OSSE with biased surface emissions. Mean negative difference in
March 2010 between the “true” CH4 state and the biased CH4 state (first column), the WC
optimized CH4 state (second column), the SC optimized CH4 state (third column).

In order to improve the WC 4D-Var performance, additional information is required
about the location (which can be specified using forcing mask G) and properties of the
model errors. For example, the equivalent of perfect temporal correlation can be accounted
for using a constant forcing time window (one month instead of three days for emissions).
Improvement in the performance can also be achieved by constraining the magnitude
of vertical model errors by assigning non-uniform vertical structure to the forcing error
covariance matrix Q, with larger uncertainty in the boundary layer and smaller in the free
troposphere. A simple example of gain in the performance by using a 30-day forcing time
window is shown in Fig. 3.4. In a another example, shown in the same figure, we changed
forcing mask G so that model errors should be located in the troposphere (approximately,
from the surface to 200 hPa). However, this appeared to be a rather loose constraint on
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Figure 3.4: Results of the OSSE with biased surface emissions. Mean difference profiles in
March 2010 for the four regions depicted in Fig. 3.3 as black boxes. The differences are between
the biased a priori and the “true” CH4 fields (black lines), and between the WC/SC optimized
and the “true” CH4 fields (see colors in the legend). G = [...] represents the vertical extent of the
forcing mask, and T is the constant forcing time window.

the potential location of model errors and did not result in a significant improvement in
CH4 state in the troposphere beyond the previous experiments.

In the second OSSE, we investigated the ability of the WC 4D-Var method to mitigate
errors in vertical transport by turning off convection in the model. This resulted in
enhanced CH4 concentrations in the lower troposphere and reduced CH4 in the upper
troposphere over the main source regions. Furthermore, the positive CH4 anomalies in the
lower troposphere were partly advected upstream. For example, over Equatorial Africa
and South America, instead of being convectively transported up over the continent, CH4

emissions were transported westwards by winds in the lower and middle troposphere (see
Fig. 3.5, first column, third row). As shown, the state corrections capture the general
horizontal and vertical structure of the a priori bias. The largest corrections are co-located
with the regions of deep moist convection. Positive corrections are found in the upper
troposphere and negative corrections in the lower. Still, this was not sufficient to fully
mitigate the bias, but, at least, it shows that GOSAT retrievals possess sensitivity to
biases in vertical transport and can distinguish them even when the sources and magnitude
of model errors are unknown.

Figure 3.6 shows the mean vertical distribution of the a priori and a posteriori residual
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Figure 3.5: Results of the OSSE with biased convection. Mean negative difference in March
2010 between the “true” CH4 state and the biased CH4 state (first column), the WC optimized
CH4 state (second column); the mean WC state corrections in March 2010 (third column).

biases in the CH4 state over four key regions. In mid-latitudes over Europe, the convection
bias was much weaker than over the tropics and reached just about 16 ppb near the
surface. The WC 4D-Var method was able to strongly mitigate this bias above 800 hPa
level and reduce it by more than a factor of two below 800 hPa. The worst results in terms
of the fractional reduction of the bias were achieved over Equatorial South-East Asia,
most likely due to fewer GOSAT retrievals over this region and limited constraints on the
CH4 distribution in the outflow region. The assimilation has also removed a large fraction
of the bias in the CH4 fields over Equatorial Africa and South America, particularly, in
the middle and upper troposphere over Africa and in the lower troposphere over South
America.

The chemistry bias created by turning off the reaction of CH4 with OH was the least
challenging for the WC 4D-Var scheme to mitigate. This bias was rather smooth in the
troposphere and did not contain small-scale features. Although the actual chemistry bias
in the model may have more complex vertical structure, we do not expect chemical biases
to be as strongly localized as the biases associated with emissions and vertical transport.
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Figure 3.6: Results of the OSSE with biased convection. Mean difference profiles in March
2010 for the four regions depicted in Fig. 3.5 as black boxes. The differences are between the
biased a priori and the “true” CH4 fields (black lines), and between the WC optimized and the
“true” CH4 fields (red lines).

The a priori and a posteriori residual biases, as well as WC forcing terms, are shown in the
Fig. 3.7. The WC state optimization performed best over land where the a priori biases
were almost completely removed. The optimization was least successful over the oceans
in the lower troposphere. This situation is consistent with the distribution of the adjoint
sensitivities shown in Fig. 3.2, which points to the lower GOSAT sensitivity to variations
in CH4 in the lower troposphere as compared to the upper troposphere and the absence
of GOSAT observations over oceans in our analysis. Shown in Fig. 3.8 are the mean
vertical profiles of the prior and posterior bias over the same four regions represented
in Fig. 3.6. The model does indeed successfully mitigate the bias. Over the convection
regions in the tropics, there is some compensatory corrections in the lower troposphere
and in the UTLS, which is probably due to the fast vertical transport in these regions
and the limited vertical information in the GOSAT retrievals.

We noticed that forcing terms (Fig. 3.7, third column) decrease in magnitude from the
mid-troposphere to the surface. In order to understand this pattern, the GOSAT adjoint
sensitivity in Fig. 3.2 should be converted from units of ppb kg−1 to units of ppb ppb−1.
It appears that the chemistry forcing terms closely follow the pattern of adjoint sensitivity
when expressed in units of ppb ppb−1. This is because the imposed chemistry bias in

71



90° S

60° S

30° S

0° N

30° N

60° N

90° N

180° W 120° W 60° W 0° W 60° E 120° E

Mean a priori CH4 difference at
the SURFACE [ppb]

−40

−20

0

20

40

90° S

60° S

30° S

0° N

30° N

60° N

90° N

180° W 120° W 60° W 0° W 60° E 120° E

Mean a posteriori WC CH4 difference at
the SURFACE [ppb]

−40

−20

0

20

40

90° S

60° S

30° S

0° N

30° N

60° N

90° N

180° W 120° W 60° W 0° W 60° E 120° E

Mean CH4 forcing corrections at
the SURFACE [ppb]

−0.04

−0.02

0.00

0.02

0.04

90° S

60° S

30° S

0° N

30° N

60° N

90° N

180° W 120° W 60° W 0° W 60° E 120° E

300 hPa [ppb]

−40

−20

0

20

40

90° S

60° S

30° S

0° N

30° N

60° N

90° N

180° W 120° W 60° W 0° W 60° E 120° E

300 hPa [ppb]

−40

−20

0

20

40

90° S

60° S

30° S

0° N

30° N

60° N

90° N

180° W 120° W 60° W 0° W 60° E 120° E

300 hPa [ppb]

−0.04

−0.02

0.00

0.02

0.04

1000

800

600

400

200

90° S 60° S 30° S 0° N 30° N 60° N 90° N

Mean zonal [ppb]

P
re

ss
ur

e,
 h

P
a

−40

−20

0

20

40

1000

800

600

400

200

90° S 60° S 30° S 0° N 30° N 60° N 90° N

Mean zonal [ppb]

P
re

ss
ur

e,
 h

P
a

−40

−20

0

20

40

1000

800

600

400

200

90° S 60° S 30° S 0° N 30° N 60° N 90° N

Mean zonal [ppb]

P
re

ss
ur

e,
 h

P
a

−0.04

−0.02

0.00

0.02

0.04

Figure 3.7: Results of the OSSE with biased chemistry. Mean negative difference in March
2010 between the “true” CH4 state and the biased CH4 state (first column), the WC optimized
CH4 state (second column); the mean WC state corrections in March 2010 (third column).
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Figure 3.8: Results of the OSSE with biased chemistry. Mean difference profiles in March 2010
for the four regions depicted in Fig. 3.7 as black boxes. The differences are between the biased
a priori and the “true” CH4 fields (black lines), and between the WC optimized and the “true”
CH4 fields (red lines).

units of ppb had almost uniform vertical structure in the troposphere, while WC forcing
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terms can be approximated as real model errors convolved with averaging kernels of the
entire GOSAT observing system where the latter is represented by the adjoint sensitivity.

In the final OSSE, we biased the initial conditions by introducing biases in both the
vertical distribution of CH4 (due to the absence of convection) and in the total CH4

mass in the atmosphere (due to running the model with different surface emissions in the
previous seven months). The initial condition bias is shown on the left panel in Fig. 3.9.
The stratosphere and southern troposphere were positively biased, whereas the northern
troposphere was negatively biased. The right panel shows the structure of the a posteriori
bias after the WC assimilation, on the last day of the assimilation window, May 31. It
shows that the CH4 state converged to the “true” concentrations everywhere except in
the upper stratosphere; the positive upper stratospheric bias was compensated for in the
column by a small negative CH4 bias in the troposphere and the lower stratosphere.
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Figure 3.9: Results of the OSSE with biased initial conditions. Left: a priori bias in initial
conditions. Right: a posteriori bias at the end of assimilation window. The dashed line represents
the mean tropopause height on May 31, 2010 taken from GEOS5 meteorological fields.

In Fig. 3.10, we show the evolution of the initial condition bias, relative to the total
atmospheric CH4 mass, in four altitude bins in each hemisphere. What this figure does
not show is how much the bias was adjusted in the actual initial conditions. The perfect
observing system would completely remove it on February 1. However, what is shown on
February 1 is just an 8% reduction, in each of the eight regions, relative to the a priori
with the rest of the bias propagated onto the assimilation period. The different regions
converged to the “true” CH4 mass at different rates. The tropospheric CH4 burden in
both hemispheres (in the 1000-700 hPa, 700-400 hPa, and 400-200 hPa bins) converged
mainly during the first month, however, convergence was slower near the surface in the
SH. Above 200 hPa, the convergence rate was slow, such that by the third month the CH4

mass had not fully recovered, particularly, in the SH where there is reduced sensitivity
due to the limited GOSAT observational coverage. The slower convergence (compared to
the troposphere) is believed to follow from weak vertical mixing in the stratosphere. This
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suggests that additional vertical correlation between forcing terms in the stratosphere
would be beneficial to accelerate convergence in the stratosphere.
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Figure 3.10: Results of the OSSE with biased initial condition. CH4 mass difference between
the WC optimized and the “true” CH4 fields in eight regions of the atmosphere outlined in the
legend (“SH” and “NH” stand for the southern hemisphere and northern hemisphere, respectively).

3.3.2 Assimilation of real GOSAT retrievals

The bias between the GOSAT data and the 4◦ × 5◦ a priori and a posteriori model is shown
in Fig. 3.11. Here we will refer to the a posteriori results as the WC_T3_G1000_4x5
assimilation, which is for WC 4D-Var assimilation at 4◦ × 5◦ resolution with a three-day
forcing time window and a forcing mask G comprising the entire atmosphere. As can be
seen, there are large positive a priori biases at high latitudes in the northern hemisphere
and in some low latitude regions, such as Equatorial Africa and eastern China. The
WC_T3_G1000_4x5 assimilation successfully reduces the a priori bias. There is some
residual high-latitude bias, which resembles noise or bias in the GOSAT observations.
In Chapter 4, where we examine the impact of model resolution on the modelled CH4

distribution, we show that the large positive a priori CH4 bias over China may partly be
explained by weakening of the vertical transport in the model due to the coarse 4◦ × 5◦

resolution. The large bias in Equatorial Africa may also represent the combined effect
of biased vertical transport and incorrect surface emissions. In Chapter 4, we also show
that a significant fraction of the high-latitude bias comes from the stratosphere and is a
consequence of running the model at 4◦ × 5◦ resolution. As a result, here we repeated the
GOSAT WC assimilation at a higher resolution of 2◦ × 2.5◦. The results, which are shown
in Fig. 3.12, reveal that the high-latitude a priori bias is indeed smaller in the 2◦ × 2.5◦

model. At the higher resolution, the WC assimilation also successfully reduces the model
bias. For comparison, we repeated the assimilation at 4◦ × 5◦, but optimized the emissions
instead of the CH4 state. The results for this experiment, referred to as SC_4x5, are
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shown in Fig. 3.13. As can be seen, the SC assimilation leaves significantly larger residual
biases. The pattern of the residual bias indicates that there were other biases that the
assimilation could not fit at the expense of the emissions. We will investigate possible
sources for these biases below.
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Figure 3.11: The 4◦ × 5◦ resolution model mean monthly fields. First column: a priori XCH4 dif-
ference between GEOS-Chem and GOSAT. Second column: a posteriori WC_T3_G1000_4x5
XCH4 difference between GEOS-Chem and GOSAT. Third column: the optimized stratospheric
XCH4 bias calculated as difference between forward model runs with optimized forcing terms
applied in the troposphere only and throughout the entire atmosphere, co-located with GOSAT
observations and smoothed with GOSAT averaging kernels.

The signal of surface emissions is mixed with possible model errors in the troposphere,
such as those related to vertical transport. Biases in CH4 fields caused by incorrect surface
emissions will in some cases have identical structure to those caused by biased uplift, which
may complicate the interpretation of WC 4D-Var state corrections in the troposphere.
On the other hand, it takes much longer for the surface emissions signal to mix into the
stratosphere. We assumed that, on the short (four-month) time scale of the simulation,
optimized forcing corrections ui in the stratosphere can be considered independent from
the influence of surface emissions. The third column in Fig. 3.11 and 3.12 shows the actual
mean monthly bias in the a priori CH4 fields that was corrected by the stratospheric
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Figure 3.12: Same as Fig. 3.11 but for the 2◦ × 2.5◦ resolution model.
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Figure 3.13: Mean monthly a posteriori XCH4 difference between GEOS-Chem and GOSAT.
First column: SC “flux assimilation” at 4◦ × 5◦ resolution (SC_4x5). Second column: SC “flux
assimilation” at 2◦ × 2.5◦ resolution (SC_2x25).
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Table 3.2: Validation of a priori, SC_4x5 and WC_T3_G1000_4x5 optimized CH4 fields
using TCCON XCH4 and NOAA surface in situ observation (mean statistics for the period of
February-May 2010).

Bias [ppb] Scatter [ppb] Correlation (R) Slope of regression
Prior SC WC Prior SC WC Prior SC WC Prior SC WC

TCCON 9.1 8.2 5.3 15.0 13.8 9.9 0.83 0.86 0.93 1.16 1.14 1.07
NOAA 15.1 9.7 9.6 34.5 30.3 28.9 0.88 0.89 0.90 0.90 1.02 0.99

forcing terms alone. The bias corrections in the 2◦ × 2.5◦ CH4 simulation are smaller than
for the 4◦ × 5◦ simulation, which is consistent with results in Chapter 4, where we showed
that part of the stratospheric bias at 4◦ × 5◦ resolution is due to the model resolution
itself. The WC inversion results suggest that the 4◦ × 5◦ model is positively biased in
the stratosphere at the high latitudes and weakly negatively biased in the tropics. In
contrast, the 2◦ × 2.5◦ model is mainly negatively biased in the stratosphere, particularly,
around 30-40◦N, except for a few high-latitude regions, possibly related to the polar
vortex. Generally, the negative bias in the GEOS-Chem stratosphere at the 2◦ × 2.5◦

resolution around 30-40◦N identified by the WC method agrees with the GEOS-Chem
bias against ACE-FTS and HIPPO-3 observations shown in the evaluation discussion
below (see the first column in Fig. 3.16).

3.3.2.1 Evaluation with TCCON and NOAA data

Table 3.2 presents the results of the evaluation of the SC_4x5 and the
WC_T3_G1000_4x5 assimilation with the NOAA in situ and TCCON data, whereas
Table 3.3 gives the comparison results at the individual TCCON sites. Based on the
OSSE results in Section 3.3.1 and provided that the only model bias is due to incorrect
surface emissions, we would anticipate the WC assimilation to produce generally worse fits
to the surface measurements than the SC assimilation. The comparisons show that both
approaches produced similar improvements in the fit to the NOAA observations, with
slightly better performance from the WC method. The SC assimilation also had limited
impact on the overall fit to the TCCON XCH4 retrievals. Table 3.3 shows the benefits of
using the WC method, which significantly improved the correlation and reduced the bias
between the model and the TCCON observations. The results suggest that GEOS-Chem
a priori CH4 simulation suffered from biases which were not related to incorrect surface
emissions.

The evaluation of the WC tuning experiments are summarized in Fig. 3.14. The series
of WC experiments described in Section 3.2.5 were organized into four groups. The most
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sensitive indicator of the quality of the model-observations fit is the correlation. The
scatter was close to the level of GOSAT measurement noise and did not change as much
among the different assimilation experiments. In the first group of experiments we changed
the vertical extent of the forcing mask G. We found that restricting the optimized forcing
to the stratosphere (altitudes above 200 hPa) resulted in correlation statistics that were
only slightly worse than when we optimized the forcing throughout the whole atmosphere.
This suggests that a significant part of model errors above all TCCON stations may
be related to the representation of the stratosphere in the model. In addition, the bias
and scatter plots show that optimization of forcing terms above 200 hPa produced the
best fit to NOAA surface observations. In the second group of experiments, we modified
the horizontal extent of the forcing mask G. We found that optimization of the forcing
throughout the stratosphere and only over North America, Europe, China, and Equatorial
Africa in the troposphere, as described in Section 3.2.5, produced almost identical fits to
the case of the “full state assimilation”. These are major emission source regions and our
results suggest that the model above the TCCON sites was likely affected by errors in
emissions and the transport of the emission signal over these regions. Henceforth, we refer
to these assimilation results as WC_T3_G-NA+CH+EU+EQAf+STRAT_4x5.
In the third group of experiments, we varied the length of the forcing window. We found
that the agreement at some of the stations, such as Lamont, Park Falls, and Sodankyla,
were generally insensitive to increasing the length of the forcing window, which could
suggest that the model above these stations was affected by slowly varying biases. The
model fit at other stations, particularly, Bialystok, Bremen and Karlsruhe, degraded when
the window length was increased. The three latter stations are located close to each other
and are, probably, affected by the similar model errors on synoptic times scales of about
one week.

In the last group of experiments, we compared the performance of the two 4D-Var
assimilation modelling approaches (WC “full state assimilation” and SC “flux assimilation”)
at the two model resolutions (4◦ × 5◦ and 2◦ × 2.5◦). The comparison suggested that
the SC method brings limited improvements to the a prior CH4 fields at both resolutions.
Indeed, we conclude that the SC assimilation at the 4◦ × 5◦ resolution is futile as the
a priori model at 2◦ × 2.5◦ resolution produces a significantly better fit to the TCCON
observations. The performance of the SC assimilation at the 2◦ × 2.5◦ resolution was
similar to but was surpassed by the “best fit” WC state assimilation at the 4◦ × 5◦

resolution in term of its fit to TCCON and NOAA measurements. Overall, the WC state
assimilation at 2◦ × 2.5◦ resolution generated the best model fit to TCCON observations.
However, in all 2◦ × 2.5◦ resolution experiments the model bias against NOAA surface
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Table 3.3: Validation of a priori, SC_4x5 and WC_T3_G1000_4x5 optimized CH4 fields
using TCCON XCH4 (mean station-wise statistics for the period of February-May 2010).

Bias [ppb] Scatter [ppb] Correlation (R)
Prior SC WC Prior SC WC Prior SC WC

Sodankyla 30.0 25.7 13.7 18.9 19.1 12.6 0.49 0.50 0.81
Bremen 6.3 3.2 0.7 14.3 15.2 10.5 -0.37 -0.28 0.47
Bialystok 11.9 7.3 5.1 9.3 10.6 8.0 0.39 0.43 0.65
Karlsruhe 6.4 4.4 0.8 9.7 9.9 8.9 0.33 0.29 0.49
Orleans 3.9 3.5 2.5 8.9 9.6 8.3 0.31 0.30 0.51
Garmish 9.9 10.0 5.7 9.0 9.7 8.4 0.46 0.56 0.65
Park Falls 1.9 3.6 2.3 9.7 10.6 8.5 0.37 0.47 0.65
Lamont 1.4 3.7 4.4 11.1 11.5 9.4 0.27 0.30 0.49
Izana -5.8 -5.3 3.1 7.6 8.2 6.7 0.64 0.58 0.72
Wollongong 7.5 3.9 3.7 8.9 8.8 8.4 0.58 0.55 0.59
Lauder 9.6 9.2 5.9 5.6 5.7 5.4 0.72 0.72 0.73

FORCING MASK G: vertical extent

Prior 4x5
WC state 4x5, T=3,  G=[1000−0hPa]

WC state+flux 4x5, T=3,  G=[750−0hPa]
WC state+flux 4x5, T=3,  G=[500−0hPa]

WC state+flux 4x5, T=3,  G=[200−0hPa]
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Figure 3.14: Validation of a priori, SC and WC optimized CH4 fields using TCCON XCH4

and NOAA surface in situ observation (mean statistics for the period of February-May 2010).
Results are shown for a set of WC inversions organized in separate characteristic groups for
better representation.

measurements was increased compared to the 4◦ × 5◦ experiments. For example, the
smallest WC a posteriori bias at 4◦ × 5◦ was about 10 ppb, whereas at 2◦ × 2.5◦ it was
about 17 ppb.
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Another important conclusion can be draw from the fact that the WC assimilation at
both model resolutions significantly improved the model fit to Izana measurements. The
Izana station is located at an altitude of 2370 m above sea level on a small island near the
coast of Africa that has no local CH4 emission sources. The model at 2◦ × 2.5◦ and 4◦

× 5◦ resolutions is not able to resolve the inland. Therefore, the model transport in the
vicinity of high-altitude station, particularly, in the lower troposphere, may be subject to
similar errors. Hence, the improvement in the assimilated CH4 fields should mainly be
related to the corrected transport in the upper troposphere and the stratosphere, which
also supports the conclusions drawn from the first group of experiments.
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Figure 3.14: Continued.

The WC full state assimilation at 4◦ × 5◦ leaves weak positive bias in GEOS-Chem
fields against TCCON observations (except at Sodankyla where the bias is significantly
larger). Mean a posterior inter-station bias at 4◦ × 5◦ (2◦ × 2.5◦) resolution is 3.4 (4.0)
ppb (excluding Sodankyla), while scatter equals 8.6 (7.3) ppb (including Sodankyla). It is
not clear if the GOSAT data is positively biased or if this could be caused by differences
between the GOSAT and TCCON averaging kernels in the stratosphere and the fact that,
for example, the stratospheric model bias was not fully recovered by the assimilation,
particularly, during the first couple of months of the assimilation period (see Fig. 3.10).
The results also do not indicate the presence of a latitudinal bias between TCCON and
GEOS-Chem and, hence, between TCCON and GOSAT.
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There is larger positive XCH4 bias between the model and Sodankyla measurements,
12.6 ppb and 11.2 ppb for the WC assimilation at 4◦ × 5◦ and 2◦ × 2.5◦ resolution,
however, the correlation is also high, 0.81 and 0.93, respectively. Tukiainen et al. (2016)
and Ostler et al. (2014) pointed to the fact that polar vortex conditions at high latitude
stations may induce biases in TCCON XCH4 retrievals. It has been claimed that a
priori profiles in the retrievals do not account for and are not adjusted to these dynamic
conditions, hence, they significantly deviate from the real CH4 profiles. When there is not
enough information in the spectra to correct for such discrepancies, the XCH4 retrievals
can be systematically biased. It is possible that both the GOSAT and TCCON could have
been affected by the polar vortex conditions in February-April 2010 so that the biases in
co-located retrievals are partially cancelled. It should also be noted that the negative a
priori correlation between the model and Bremen XCH4 measurements is partly caused
by the limited number (84) of measurements during the four-month assimilation time
window.

3.3.2.2 Evaluation with ACE-FTS and HIPPO-3 data

Figures 3.15 and 3.16 show the results of GEOS-Chem comparison with the ACE-FTS
and HIPPO-3 data. Model bias versus ACE-FTS data is shown only in the stratosphere
in order to exclude potentially biased data due to interference with clouds in the upper
troposphere. The mean XCH4 difference between GEOS-Chem and ACE-FTS that is
shown was obtained by applying the GOSAT averaging kernels to the residual CH4 profiles
where hypothetical ACE-FTS CH4 profiles in the troposphere were assumed to be equal
to the GEOS-Chem fields.

Consistent with Saad et al. (2016), the XCH4 difference reveals that the a priori 4◦ ×
5◦ model has a positive stratospheric bias as large as 250 ppb in the upper stratosphere
(see Fig. 3.15). The HIPPO-3 comparison also showed that the 4◦ × 5◦ model is posi-
tively biased in the stratosphere and slightly negative in the troposphere. The 4◦ × 5◦

WC assimilation reduced the positive stratospheric bias with respect to both HIPPO-3
and ACE-FTS, however, did not remove it completely. For example, the maximum
model−ACE-FTS XCH4 bias due to the stratosphere was reduced from about 40 ppb to
30 ppb. The average negative tropospheric CH4 bias relative to HIPPO-3 was reduced. It
is possible that the WC method was not able to properly localize the stratospheric bias.
However, the validation analysis may also reflect the influence of the slow recovery of
the stratospheric CH4 fields from bias in the initial conditions. Therefore, discrepancies
in the stratospheric CH4 field from the initial conditions in the first two months of the
WC assimilation could be contributing to the observed HIPPO-3 and ACE-FTS bias.
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Unfortunately, the measurement are either too sparse or limited in space and time to
verify this assumption.
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Figure 3.15: Evaluation of the a priori and WC_T3_G1000_4x5 optimized CH4 fields using
ACE-FTS and HIPPO-3 CH4 measurements (mean bias for the period of February-May 2010).
Columns: a priori bias (left), a posteriori bias (middle), reduction is absolute bias (right). Rows:
XCH4 bias between GEOS-Chem and ACE-FTS (top), CH4 bias between GEOS-Chem and
ACE-FTS zonally averaged among available measurement profiles (middle), CH4 bias between
GEOS-Chem and HIPPO-3 (bottom). We used ACE-FTS retrievals in the stratosphere only.
XCH4 bias between GEOS-Chem and ACE-FTS was obtained by augmenting the ACE-FTS
profile in the stratosphere by the GEOS-Chem profile in the troposphere and smoothing the
vertical CH4 bias profile with mean meridional GOSAT averaging kernels. The dashed line
represents the mean tropopause height.

The positive a priori stratospheric bias relative to ACE-FTS and HIPPO-3 was
significantly reduced at 2◦ × 2.5◦ compared to the 4◦ × 5◦ resolution (see Fig. 3.16),
however, it was not completely removed. Stratospheric CH4 fields in the NH above 200
hPa even became negatively biased, particularly around 30-40◦N, where the absolute
bias became larger than at 4◦ × 5◦ resolution. The WC method further corrected the
positive biases and significantly reduced the negative bias around 30-40◦N. As can be
inferred from Fig. 3.12, the latter covered the entire latitudinal band but was particularly
pronounced over the Himalayas. Despite the reduction of the stratospheric bias, the 2◦ ×
2.5◦ WC assimilation introduces a positive CH4 bias relative to HIPPO-3 in the NH lower
troposphere.
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Figure 3.16: Same as Fig. 3.15 but for the 2◦ × 2.5◦ resolution model.

The results in Fig. 3.15 were further processed to better illustrate the mean model
bias reduction. The zonal stratospheric ACE-FTS bias was averaged into one vertical
profile. The zonal HIPPO-3 bias was separated into the tropospheric and stratospheric
components and separately averaged to produce tropospheric and stratospheric vertical
profiles. The final result is presented in Fig. 3.17 for both the a priori and a posteriori
CH4 fields. The WC assimilation partially mitigated the positive stratospheric bias
against ACE-FTS and HIPPO-3 and reduced the negative HIPPO-3 bias in the mid-upper
troposphere. Unfortunately, ACE-FTS and HIPPO-3 measure different airmasses, and
neither of the datasets is representative of the mean state of the atmosphere or even one
particular meridional slice. Therefore, the mean HIPPO-3 and ACE-FTS bias profiles
cannot be directly compared to each other.

3.4 Discussion of model biases

3.4.1 Stratospheric bias

The sensitivity experiments carried out in Section 3.2.4 suggested that a stratospheric
bias introduced in the system through the initial conditions has the slowest convergence
rate. However, by the start of the last month of the assimilation, May 2010, the bias is
either removed or does not change much with time. Therefore, we focus the discussion
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Figure 3.17: Evaluation of a priori and WC_T3_G1000_4x5 optimized CH4 fields using
ACE-FTS and HIPPO-3 CH4 measurements (mean bias profiles for the period of February-May
2010). The mean bias profiles were obtained by, first, averaging the biases in zonal and, after
that, meridional directions. The HIPPO-3 bias was initially split into the tropospheric and
stratospheric components and averaged into separate bias profiles.

here on the stratosphere in the month of May 2010, with the assumption that the model is
free of the influence of the initial conditions. Figure 3.18 compares the a priori CH4 fields
to the ones optimized by WC_T3_G1000_4x5 and SC_4x5 assimilations. The top
panel shows that corrections in the stratospheric CH4 abundance are the most pronounced
feature of the WC optimized CH4 fields, and that changes are smaller in the zonal mean
tropospheric fields. Stratospheric CH4 was significantly reduced at high latitudes and
increased in the tropics relative to the a priori. The changes are more substantial in the
northern hemisphere due to the asymmetrically larger number of GOSAT measurements
in the northern hemisphere (see Fig. 3.2 with adjoint sensitivity).

Large biases in the stratosphere were also identified in other chemistry transport models
(Strahan and Polansky, 2006; Patra et al., 2011; Ostler et al., 2016). The problem was
mainly linked to biases in the meridional Brewer-Dobson circulation in the stratosphere
and in the rate of stratosphere-troposphere exchange. However, neither mechanism
was analysed in detail. Indeed, the observed changes in Fig. 3.18 may partly reflect
discrepancies in the Brewer-Dobson circulation projected from the initial conditions.
In particular, too-rapid meridional overturning in the months prior to the assimilation
would have transported excess of CH4 from the tropics and to the high latitudes. In
Chapter 4, we show that the stratospheric bias in GEOS-Chem can also form due to
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Figure 3.18: Monthly mean CH4 difference in May 2010. Top: between
WC_T3_G1000_4x5 optimized and a priori fields. Bottom: between SC_4x5 optimized
and a priori fields. Dashed line represents the mean monthly tropopause height.

increased numerical diffusion as a consequence of transport at coarse horizontal model
resolution. This leads to additional unphysical horizontal mixing between the troposphere
and the stratosphere and between the high latitudes and the tropics in the stratosphere.

The bottom panel in Fig. 3.18 is presented to contrast the behaviour of the two
4D-Var approaches. It shows that the SC assimilation attempts to correct the positive
high-latitude stratospheric CH4 bias at the expense of surface emissions. This results in a
negative CH4 bias in the lower troposphere, while the surface signal hardly impacts the
stratosphere.

3.4.2 Tropospheric bias

3.4.2.1 Pattern of forcing terms

The forcing terms are corrections applied to the CH4 fields at each model time step.
This time step is equal to 30 min and 15 min for the 4◦ × 5◦ and 2◦ × 2.5◦ simulations,
respectively. In order to compare the two simulations, we added together state corrections
at two successive 2◦ × 2.5◦ time steps. Therefore, all forcing terms discussed in this
chapter are presented for 30 min time intervals. The first column in Fig. 3.19 presents
forcing terms in the troposphere optimized by the WC_T3_G1000_4x5 assimilation.
The observed structure of the forcing terms simultaneously mitigated model errors from
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Figure 3.19: Mean optimized forcing terms (state correction) in March-May 2010. Left col-
umn: WC_T3_G1000_4x5 inversion at 4◦ × 5◦ resolution. Middle column: WC_T3_G-
NA+CH+EU+EQAf+STRAT_4x5 inversion at 4◦ × 5◦ resolution. Right column:
WC_T3_G1000_2x25 inversion at 2◦ × 2.5◦ resolution. Arrows represent direction and
relative magnitude of horizontal winds in each figure.

multiple sources. In this chapter, we attempt to give the most likely explanation of the
retrieved pattern of the state correction and identify sources of regional biases.

In general, the original a priori CH4 fields can be affected by model errors that either
occurred during the assimilation period or have been projected onto the assimilation
window from the initial conditions. Here, we investigate the former case. Therefore, given
the results of the OSSE with biased initial conditions in Section 3.3.1, we focus in Fig. 3.19
on mean forcing terms in the last three months of the assimilation (March-May 2010) as
they are much more likely to be related to recent model errors rather than to biases in the
initial conditions. The temporally averaged structure also gives insight into systematic
model errors and is easier to interpret. Figure 3.19 (the first column) shows that negative
forcing terms dominate near the surface and in the lower troposphere, particularly over
Europe, Equatorial Africa and East Asia. The CH4 reduction at the surface was consistent
with NOAA observations. Positive state corrections are more frequently found in the
upper troposphere, mainly in mid-latitudes over the Pacific and Atlantic oceans as well
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as over Europe and significant part of Russia. There are also several regions, such as
eastern China and equatorial Africa, where the forcing terms are negative throughout
the entire tropospheric column. Vertical slices over mid-latitudes (bottom right panel)
show that strong negative corrections over the east coast of Asia and North America are
accompanied by positive corrections in the upper troposphere downwind of the continents.
Forcing terms are generally weaker in the lower troposphere over the oceans where we
lack GOSAT observations.

Generally, corrections of one sign with monotonically decaying magnitude from the
surface to the upper troposphere could be associated with biases in the surface emissions,
while the dipole structures with corrections of the opposite sign in the upper and lower
troposphere could be related to errors in vertical transport. However, it is not feasible to
uniquely identify the origin of model errors from the pattern of forcing terms because
model errors from separate sources are mixed in the atmosphere and the estimation of
the forcing terms is an under-constrained inverse problem.

Still, we may try to identify possible sources of model errors. For example, initial
assessment of the state corrections pointed to potential issues in vertical transport. Indeed,
the dipole structure of the forcing terms could indicate that upward CH4 transport in
mid-latitudes may be insufficient, particularly, over regions with strong vertical CH4

gradients that are present over large CH4 emission sources. In NH mid-latitudes, the
major CH4 emitters are China, the US, and Europe. Moreover, the eastern parts of China
and North America are located in regions of significant extra-tropical cyclone activity
(Stohl, 2001; Shaw et al., 2016), where CH4 emitted from the surface is being lifted up in
the free troposphere in warm conveyor belts associated with these cyclones (Kowol-Santen
et al., 2001; Li et al., 2005; Sinclair et al., 2008; Lin et al., 2010). Moist convection over
land could also contribute to the total transport bias, however convective transport is
not strong over these mid-latitude regions during the months of February-May. Recently,
Andy Jacobson (personal communication) compared SF6 simulation in GEOS-Chem to
observations and showed that the modelled SF6 fields are too high at the surface at
northern hemisphere mid-latitudes, which indicated the reduced vertical transport in the
model.

Similar vertical structure of forcing terms was identified above and downwind of eastern
North America and China (see Fig. 3.19 (first column, fourth row)). The WC method
applied negative corrections over the land, from the surface to the upper troposphere, and
large positive corrections in the upper troposphere and weakly negative correction in the
lower troposphere over the oceans downwind of the continents. The WC method may
suggest that vertical transport over eastern parts of the continents has to be stronger. In
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such case, more CH4 emitted from local sources reaches the middle to upper troposphere
and is transported away from the continents by strong westerly winds. Meanwhile, CH4

concentrations in the entire atmospheric column over land and in the lower troposphere
over the adjacent oceans are reduced. Therefore, the large positive a priori bias between
the model and GOSAT over China (Fig. 3.11, first column) may partly be attributed to
weak local CH4 uplift.

The observed structure of the forcing terms cannot be uniquely attributed only to
biases in vertical transport. The WC method significantly reduced CH4 in the stratosphere
at high latitudes. If biases in the stratospheric CH4 fields are induced by transport errors,
the total CH4 budget has to be conserved. Therefore, CH4 removal from the high-latitude
stratosphere has to be compensated for in either the tropical stratosphere or the upper
troposphere. Hence, the positive forcing terms in the upper troposphere, particularly,
in the vicinity of the westerly jet, may also be partly related to model errors in the
stratosphere-troposphere exchange and may correct for CH4 leak from the troposphere to
the stratosphere. The negative forcing terms over China and North America may also
partly correct for positively biased a priori surface emissions.

Another region of interest, as suggested by the WC assimilation (Fig. 3.19 (first
column, third row)), is equatorial Africa. Similar to China, large positive a priori model
XCH4 bias was found here. However, due to the observational coverage, there are limited
direct constraints on the CH4 outflow from Equatorial Africa except for sparse GOSAT
observations over South America. While the African XCH4 bias could be related to
positively biased local a priori surface emissions, the WC assimilation also suggested
another transport-related explanation. The WC assimilation applied negative CH4 forcing
terms over central Africa and positive forcing terms downwind in the middle troposphere
(between 400 and 800 hPa) over the Atlantic Ocean. Such a pattern of state correction
could point to potential errors in CH4 outflow from the African continent. Southern Africa
is characterized by a persistent high pressure system that drives easterly outflow from
southern tropical Africa to the Atlantic in the lower to middle troposphere (Garstang
et al., 1996). In their analysis of the sources of moisture in the Congo Basin, Dyer et al.
(2017) showed that there is a strong export of moisture from southern tropical Africa
to the Atlantic between 800-500 hPa. Furthermore, Arellano et al. (2006) found, in
their inversion analysis of carbon monoxide (CO) data from the MOPITT instrument, a
discrepancy between their a posteriori CO and observations at Ascension Island, which
they speculated could be due to errors in the altitude dependence of the outflow from
Africa in the GEOS-Chem model. It is possible that too-much CH4 is being convectively
lofted to the upper troposphere over central Africa and not enough is exported out over
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the Atlantic in the lower troposphere. Figure 3.3 (first column) displays the bias in CH4

fields when convection was turned off in the model. This caused CH4 emitted over Africa
to take a different transport pathway. Instead of being lifted up over the continent, more
CH4 was transported out to the Atlantic in the lower to middle troposphere between 500
and 900 hPa. Under such conditions, CH4 is simultaneously depleted over the continent
and enhanced over the Atlantic, which is similar to what the WC forcing terms suggest.
We cannot determine the exact origin of the XCH4 bias over Africa, but the forcing terms
do suggest the presence of a transport bias.

The estimation of the forcing terms is an under-constrained inverse problem. Con-
sequently, here we evaluate the impact of reducing the dimensionality of the inverse
problem by limiting the region of the atmosphere where forcing terms should be ap-
plied. This was done in the WC_T3_G-NA+CH+EU+EQAf+STRAT_4x5 as-
similation, in which we restricted the forcing optimization to the stratosphere and over
the main CH4 anthropogenic emission regions in the troposphere. The results pre-
sented in Section 3.3.2.1 suggested that the WC_T3_G1000_4x5 and WC_T3_G-
NA+CH+EU+EQAf+STRAT_4x5 assimilations produced very similar fits to the
independent observations. Therefore, errors affecting the model, at least at the location
of the validation stations, could emerge from either the NA, CH, EU, EQAf, or STRAT
regions. The second column in Fig. 3.19 presents the structure of optimized forcing terms
from the WC_T3_G-NA+CH+EU+EQAf+STRAT_4x5 assimilation where the
number of optimized variables was reduced using the forcing mask G. Over China and
North America, the forcing terms acquired a better defined dipole structure with positive
correction in the upper troposphere and negative correction in the lower troposphere.
Over equatorial Africa, the region of positive corrections in the mid-troposphere moved
closer to the continent.

3.4.2.2 Dependence of the forcing terms on model resolution

Coarsening the model resolution from 2◦ × 2.5◦ to 4◦ × 5◦ can be considered as introducing
errors in the finer resolution model. Results in Chapter 4, as well as Yu et al. (2017), showed
that at coarse resolution, vertical transport in GEOS-Chem is weakened due to loss of eddy
mass flux and incorrect regridding of meteorological fields. In Chapter 4, we also show
that the efficiency of transport barriers is reduced due to increased numerical diffusion,
which causes unphysical mixing between the interior and the exterior of the polar vortex,
too rapid mixing of CH4 between the tropical and extratropical branch of the Brewer-
Dobson circulation, and the increased stratosphere-troposphere exchange. In Fig. 3.19,
we compare the forcing terms from the 4◦ × 5◦ assimilation (WC_T3_G1000_4x5)
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with those from the 2◦ × 2.5◦ WC assimilation (WC_T3_G1000_2x25). Differences
between the 2◦ × 2.5◦ and 4◦ × 5◦ forcing represent the response of the WC method to
the resolution-induced transport errors. We found that the magnitude of the negative
forcing term was reduced in the lower troposphere, particularly, over China. Similarly, the
magnitude of positive forcing terms was reduced in the upper troposphere. The pattern of
forcing terms on the vertical slice at mid-latitudes became significantly weaker. Analysis
of Figs. 3.11 and 3.12 also pointed to a significantly weaker magnitude of the stratospheric
corrections at the 2◦ × 2.5◦ resolution. At the same time, the structure and magnitude of
forcing terms at the equator (particularly, over equatorial Africa) was not significantly
affected by the increase of resolution.

Several conclusions follow from Fig. 3.19. First, the results suggest that a large
fraction of model errors at 4◦ × 5◦ resolution, particularly, in the stratosphere and over
mid-latitudes in the troposphere are resolution-induced. Second, although the magnitude
of forcing terms at the 2◦ × 2.5◦ resolution is weaker, the pattern remains similar, which
implies that the 2◦ × 2.5◦ resolution model may still be affected by the same type of
transport errors. Third, the assumptions made about sources of model errors in the tropics,
particularly, over equatorial Africa, still apply to the 2◦ × 2.5◦ simulation as the structure
and magnitude of forcing terms remained unresponsive to the model resolution. Finally,
the results strongly suggest that the WC assimilation and the GOSAT observations have
actually diagnosed transport errors at both model resolutions.

3.5 Conclusions

In this study, we assessed errors in the global GEOS-Chem chemistry transport model
during the four-month period of Ferbuary-May 2010 using the weak constraint 4D-Var
data assimilation method at the model resolutions of 4◦ × 5◦ and 2◦ × 2.5◦. This was
done by constraining simulated CH4 fields with GOSAT XCH4 retrievals. This represents
the first application of a WC 4D-Var scheme for assimilation of GOSAT XCH4 retrievals
to characterize model errors in a CTM.

An analysis of the sensitivity of the GOSAT measurements to the atmospheric CH4

state found that the XCH4 retrievals are most sensitive to CH4 mass changes in the
stratosphere and in the upper troposphere in the northern hemisphere, which was explained
by the GOSAT observational coverage and stronger horizontal winds in the UTLS, allowing
the CH4 perturbations to be observed by a larger number of measurements. Sensitivity
at the equator was about half that at northern mid-latitudes. In a series of OSSEs, the
observations and the WC method were tested to determine the ability of the system to
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recover “unknown” errors in CH4 fields associated with artificially introduced biases in
emissions, convection, chemistry, and initial conditions. We found that when not supplied
with any information about the errors, the WC method was able to significantly mitigate
biases in the CH4 fields with slowly changing spatial structures, but was not able to correct
strongly localized biases, particularly, those in the boundary layer. Despite having almost
flat averaging kernels in the troposphere, our analysis showed that the GOSAT XCH4

retrievals could help constrain the vertical distribution of model errors when convection
was turned off in the model. The WC method needed about a month to recover the bias
introduced in the initial condition in the troposphere and about two months to do so
in the stratosphere. Generally, the method was successful in mitigating model errors of
“unknown” origin and magnitude. However, more optimal performance could be achieved
by supplying the method with additional information about model errors, such as their
temporal and spatial correlation using the model error covariance matrix Q. However,
characterizing these correlations will be challenging.

The WC method was tuned in a set of experiments to diagnose real model errors
in GEOS-Chem CTM at 4◦ × 5◦ resolution. The a posteriori model fit to independent
observations, such as ACE-FTS, HIPPO-3, TCCON and NOAA surface measurements,
was used to evaluate the assimilation. Initial comparisons suggested that GEOS-Chem was
affected by biases not solely related to discrepancies in surface emissions. Results suggested
that, modelled CH4 fields at the location of most NH TCCON stations were affected by
slowly varying biases, however, at the location of few stations, such as Bialystok, Bremen
and Karlsruhe, CH4 fields were more likely influenced by errors varying on time scales of
one week. The evaluations pointed to a large positive bias in the stratosphere relative to
ACE-FTS and HIPPO-3 measurements, and weakly negative bias in the middle to upper
troposphere relative to HIPPO-3 data. The WC assimilation was able to mitigate the
negative tropospheric bias and partly removed the stratosphere bias. We found that the
SC 4D-Var assimilation that optimized the surface emissions had only limited impact on
the model fits. Furthermore, the WC assimilation at 4◦ × 5◦ resolution performed better
than the SC assimilation at 2◦ × 2.5◦ resolution. Meanwhile, the results also showed
that running the a priori model at 2◦ × 2.5◦ resolution produced better agreement with
TCCON observations than the a posteriori fields from the SC 4D-Var surface emission
optimization at 4◦ × 5◦.

State corrections at 4◦ × 5◦ resolution also explicitly pointed to issues with vertical
transport, suggesting that vertical transport of CH4 in mid-latitudes over large CH4

sources in eastern China and North America is too weak. In the tropics, the WC inversion
corrected for large positive XCH4 bias over Equatorial Africa. From the pattern of forcing
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terms, it remained unclear whether the bias was related to surface emissions. However, the
WC method suggested the possibility of biased CH4 outflow from the African continent
to the Atlantic Ocean in the mid-troposphere, which could be related to a discrepancy in
the partitioning between deep convective transport to the upper troposphere and shallow
outflow to the Atlantic Ocean.

In Chapter 4 we will examine the impact of model resolution on the CH4 simulation
and show larger model biases at 4◦ × 5◦ compared to 2◦ × 2.5◦. We found that assimilating
the GOSAT data at the higher resolution of 2◦ × 2.5◦ produced state corrections that
were similar to those obtained at 4◦ × 5◦, however, the magnitude of these corrections
in the stratosphere and in the mid-latitude troposphere was significantly reduced. This
suggested that the model at both resolutions was affected by transport errors of similar
origin, although much weaker at 2◦ × 2.5◦ resolution, and a significant fraction of these
errors was induced by the model resolution itself. The WC assimilation also corrected
for the negative CH4 bias relative to ACE-FTS and HIPPO in the northern mid-latitude
stratosphere, found only at 2◦ × 2.5◦ resolution, and located this bias particularly over
the Himalayas. However, the origin of this bias remained unclear.

In our analysis, we used only GOSAT CH4 data over land. However, XCH4 glint
measurements over oceans could help better constrain the vertical structure of the model
errors. The WC 4D-Var assimilation of shorter-lived species, such as CO, could also help
better diagnose model errors, especially when transport and emission errors mask each
other in CH4 fields, although shorter-lived species may also be more strongly affected
by errors in chemistry. The advantage of CH4 is its longer memory of model transport,
however shorter-lived gases are more strongly affected by and, hence, may be more
sensitive to the same model errors.

Clearly, the detected transport error at 4◦ × 5◦ resolution would have considerable
impact on inferred emissions if the model were assumed to be perfect, as is the case in SC
4D-Var. Instead of reducing positive high-latitude bias in the stratosphere, the 4◦ × 5◦ SC
4D-Var surface flux assimilation negatively biased the lower troposphere. The SC inversion
also significantly reduced Chinese CH4 emissions by incorrectly attributing model errors
in vertical transport. Some of the detected transport error were significantly smaller at
2◦ × 2.5◦ resolution, while others remained resolution-independent. The effect of these
remaining errors at 2◦ × 2.5◦ resolution has to be further investigated. One definite
outcome of the analysis is that the 2◦ × 2.5◦ SC 4D-Var surface flux assimilation had
only limited impact on the model fit to independent observations compared to significant
improvement when using the WC method.

Potentially, any CTM may be improved if the signal of surface emissions can be

92



separated from other model errors. This would be rather challenging task for GOSAT
XCH4 measurements. Further analysis is needed on this problem, particularly, focused
on a design of model error covariance matrix Q. For example, Trémolet (2007) proposed
a design based on statistics of model tendencies. The Q matrix had a rather primitive
structure in our analysis, although sufficient for the objectives of this work. Based on
our initial assessment of model errors, the structure of Q can be further improved. In
the meantime, the WC 4D-Var method has a number of immediate useful applications.
In general, it is a valuable instrument for diagnosing model errors. It can also be used
as a tool to produce a better estimate of the CH4 state in the model in order to provide
boundary and initial conditions for forecasting purposes or regional-scale analysis at
higher spatial resolution.
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Chapter 4

Impact of coarse model resolution

4.1 Introduction

Chemical transport models are widely used for inverse modelling of surface emissions of
environmentally important trace gases such as CO, CO2 and CH4. But in this inverse
modelling context, model errors become a major issue (Arellano and Hess, 2006; Baker
et al., 2006; Chevallier et al., 2010; Houweling et al., 2010; Jiang et al., 2011; Patra et al.,
2011; Locatelli et al., 2013; Chevallier et al., 2014; Houweling et al., 2015). Based on
the results from ten different simulations in the TransCom-CH4 model inter-comparison,
Locatelli et al. (2013) found that model errors could contribute to discrepancies that are
as large as 23%-48% in regional CH4 source estimates, and as much as 150% in source
estimates at the model grid-scale. Until recently, characterizing and mitigating these
errors for any given model has been challenging.

In Chapter 3, it was shown that the WC 4D-Var assimilation scheme in GEOS-Chem
can be useful for estimating errors in the GEOS-Chem CH4 simulation. The WC 4D-Var
identified large biases in the high-latitude lower stratosphere, which the assimilation
system was able to significantly reduce. The WC 4D-Var scheme also identified an issue
with vertical transport over the main continental source regions. For example, for eastern
North America and East Asia, the estimated corrections to the CH4 distribution exhibited
a dipole structure over and downwind of the source regions, suggesting too much CH4

is confined close to the source region and not enough is exported over the continent. It
was found that the pattern of model corrections was similar, but weaker in magnitude
when the model resolution was increased from 4◦ × 5◦ to 2◦ × 2.5◦, indicating the bias is
influenced by the model resolution. Yu et al. (2017) recently investigated the impact of
model resolution on transport in GEOS-Chem using 222Rn, 210Pb, and 7Be tracers, and
found that vertical transport is reduced in the model at coarse resolution. The analysis
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presented in this chapter complements Yu et al. (2017), with a specific focus on the
impact of model resolution on the CH4 simulation and the goal of better understanding
the source of the biases identified in Chapter 3.

As discussed in Chapter 1, to reduce computational costs, CTMs use meteorological
fields that are archived at lower spatial and temporal resolution than the native resolution
of the parent GCM that produced the fields, but this creates a number of issues in the
CTM (see Sections 1.3 and 2.2.3). For example, it can lead to inconsistencies between
archived horizontal winds (or air mass fluxes) and surface pressures (Jöckel et al., 2001),
which can result in the violation of mass conservation in the advection scheme. This
lack of mass conservation is typically corrected using a mass (pressure) fixer (Bregman
et al., 2003; Segers et al., 2002; Rotman et al., 2004). The degradation of the spatial and
temporal resolution and temporal averaging of the meteorological fields is also associated
with some loss of information about eddy transport and, consequently, the weakening
of vertical motion in the model (Grell and Baklanov, 2011; Yu et al., 2017). Another
consequence of reduced model resolution is increased numerical diffusion in the advection
scheme, which can lead to rapid destruction of tracer gradients.

As noted in Section 2.2.3, some advection schemes, such as the LR scheme (Lin and
Rood, 1996), are more sensitive to changes in the model resolution than others, such as
the SOM scheme (Prather, 1986). Strahan and Polansky (2006) evaluated the impact of
different horizontal resolutions on the isolation of the polar vortex in the Goddard Space
Flight Center (GSFC) three-dimensional CTM, which uses the LR advection scheme.
They focused on CH4, O3, and the age of air and found that the 4◦ × 5◦ resolution allowed
too much mixing through the edges of the polar vortex. Significant improvement was
achieved by doubling the resolution to 2◦ × 2.5◦. In this chapter, we extend the analysis
of Strahan and Polansky (2006) and focus on the impact of model resolution on the CH4

simulation in the troposphere and stratosphere in the GEOS-Chem CTM. There have
been a number of inverse modelling studies trying to quantify global CH4 emissions, and
the majority of these have utilized models at coarse horizontal resolution ranging from
about 2◦ × 2◦ to 4◦ × 6◦ (Chen and Prinn, 2006; Meirink et al., 2008; Bergamaschi et al.,
2009, 2013; Fraser et al., 2013; Cressot et al., 2014; Houweling et al., 2014; Monteil et al.,
2013; Bruhwiler et al., 2014; Alexe et al., 2015; Locatelli et al., 2015; Feng et al., 2017).
Because the different studies used different advection schemes, it is not possible to make
a general statement about the quality of transport in the models. But our goal here
is to quantitatively characterize the resolution-induced errors in the GEOS-Chem CH4

simulation and assess their potential implications for the use of GEOS-Chem for CH4

source inversion analyses.
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The Chapter is organized as follows. In Section 4.2, we evaluate the forward model
simulation at 2◦ × 2.5◦ and 4◦ × 5◦ using different sets of observations. We then assess
the impact of the resolution-induced model biases on optimized CH4 surface emissions in
Section 4.3. In Section 4.4, we investigate the origin of the model errors in the troposphere
and the stratosphere using a set of transport tracers, and possible mechanisms responsible
for the biases. Finally, in Section 4.5, we present a summary and discussion of our results.

4.2 GEOS-Chem model validation

4.2.1 Comparisons with GOSAT

We simulated CH4 in GEOS-Chem for the period of four months from 1 February 2010 to
31 May 2010 at the two horizontal resolutions of 4◦ × 5◦ and 2◦ × 2.5◦. The time period
was chosen to match the analysis period in Chapter 3. Also, for longer time periods,
incorrect a priori emissions can become the dominant source of model errors and confound
the analysis, whereas our main purpose was to assess transport errors in the model. As
in Chapter 3, CH4 fields at both resolutions were spun up for about 5.5 years until July
2009. From July 2009 to January 2010 monthly mean surface emission optimization
was performed using the 4◦ × 5◦ resolution model constrained by GOSAT Proxy XCH4

retrievals described in Section 2.1.1. The regridded optimized emissions were also used
to perform the 2◦ × 2.5◦ resolution simulation for the same period. The updated model
fields on 1 February 2010 at both model resolutions were taken as initial conditions for
the analysis period. All results were later converted to, and evaluated at, the 4◦ × 5◦

resolution. Modelled CH4 fields were smoothed with GOSAT scene-dependent averaging
kernels. Figure 4.1 (first and second columns) shows GOSAT XCH4 observations and
optimized XCO2 proxy fields. The third and the fourth columns present the monthly
mean difference between the simulated XCH4 fields at the two resolutions and the GOSAT
retrievals. Both difference fields represent the combined effects of errors in transport,
chemistry, and the emissions, as well as possible biases in the XCH4 retrievals. The fact
that these differences are generally smaller at 2◦ × 2.5◦ resolution implies that there
are transport errors in GEOS-Chem that are resolution-dependent and that worsen with
decreasing resolution. This is consistent with the model corrections (the forcing terms)
found in Chapter 3 using the GEOS-Chem weak constraint 4D-Var assimilation scheme.
The difference between the CH4 fields simulated at the two resolutions, co-located with
GOSAT observations and smoothed with GOSAT averaging kernels, is presented in the
last column in Fig. 4.1. In general, it shows that at finer resolution, XCH4 columns are
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smaller in the mid- and high latitudes and larger in the tropics. There are also several
regional features such as a large positive XCH4 bias over Northern Europe and Russia that
has been reduced but not completely removed at the 2◦ × 2.5◦ resolution. In addition,
the XCH4 fields simulated at the 2◦ × 2.5◦ resolution have a smaller positive bias relative
to the GOSAT observations over China.
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Figure 4.1: Monthly mean fields: GOSAT XCH4 retrievals (first column) based on new XCO2

proxy fields (in second column); a priori XCH4 difference between 4◦ × 5◦ resolution GEOS-Chem
and GOSAT (third column); a priori XCH4 difference between 2◦ × 2.5◦ resolution GEOS-Chem
and GOSAT averaged to 4◦ × 5◦ resolution (fourth column); XCH4 bias calculated as the
difference between 4◦ × 5◦ and 2◦ × 2.5◦ resolution GEOS-Chem CH4 fields co-located with
GOSAT observations and smoothed with GOSAT averaging kernels (fifth column).

It is difficult to say conclusively from this comparison if spatially dependent biases
are still present in the 2◦ × 2.5◦ simulation. The positive high-latitude bias relative to
GOSAT in the northern hemisphere (NH) was reduced compared to the 4◦ × 5◦ simulation.
However, a weak positive bias over the polar vortex is still present, although it is difficult
to say whether this bias is related to transport errors or to possible systematic errors in
GOSAT retrievals under the polar vortex conditions. The possibility of a weak positive
latitudinal 2◦ × 2.5◦ GEOS-Chem bias still exists in the southern hemisphere (SH) and
can be observed over southern South America, Australia, and the southern tip of Africa.
Negative XCH4 biases over the Himalayas and Andes were not affected by doubling the
model resolution. They could be related to discrepancies in surface pressure between
GEOS-Chem and the GOSAT retrievals, however, even filtering of GOSAT retrievals
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based on differences in surface pressure did not eliminate them. These biases may also
indicate errors in CH4 uplift over the mountains. Other XCH4 biases not significantly
affected by model resolution are located over Africa, including a positive bias over western
Equatorial Africa and a negative bias over southeastern Africa. These biases, as well as
biases over mountains, may also be related to the XCO2 proxy fields used in the GOSAT
CH4 retrievals. The proxy field were obtained by assimilating GOSAT XCO2 retrievals to
constrain CO2 fluxes in the coarse 4◦ × 5◦ resolution GEOS-Chem model. If the CO2

flux inversion did not remove all biases in CO2 state, the latter could be projected onto
the XCH4 retrievals. For example, the negative model bias in XCH4 in southeastern
Africa could be related to a positive bias in the XCO2 proxy due to an overestimate of
the regional CO2 fluxes, which was then transferred to the XCH4 retrievals.

4.2.2 Comparisons with ACE-FTS

Zonal median differences between GEOS-Chem and ACE-FTS in the stratosphere over
the four-month period (February-May 2010) are shown in Fig. 4.2. The figure also shows a
comparison of the modelled stratospheric CH4 fields to the GOSAT a priori stratospheric
CH4 profiles, which come from the TOMCAT (Chipperfield, 2006) model with assimilated
ACE-FTS CH4 retrievals (Parker and GHG-CCI group, 2016). The figure indicates that
the GEOS-Chem stratosphere at 4◦ × 5◦ resolution is positively biased against ACE-FTS
at middle to high latitudes and is weakly negatively biased in the tropics. A strongly
positive feature in the NH above 100 hPa, poleward of 45◦N, is most likely related to the
polar vortex. The mismatch relative to ACE-FTS was significantly reduced at 2◦ × 2.5◦

resolution. Furthermore, the CH4 differences in the NH stratosphere at 2◦ × 2.5◦ became
even weakly negative, although a positive anomaly remained in the lower stratosphere
and in the SH.

Figure 4.3 shows the impact of the CH4 mismatch in the stratosphere on the XCH4

fields. The XCH4 difference between GEOS-Chem and ACE-FTS was obtained by
augmenting the ACE-FTS profile in the stratosphere by the GEOS-Chem profiles in
the troposphere and smoothing the resulting vertical CH4 difference profile with mean
zonal GOSAT averaging kernels, averaged in 4◦ latitudinal bands. We used only those
ACE-FTS profiles that extended through the entire stratosphere for each GEOS-Chem
lon-lat grid cell for a particular time instance. The stratospheric boundary was defined
by the dynamic tropopause taken from the archived GEOS-5 meteorological fields. As
in Fig. 4.2, the median zonal mean value of the XCH4 differences was used to avoid the
effect of possible outliers and the sparsity of ACE-FTS retrievals. Fig. 4.3 indicates that
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Figure 4.2: CH4 differences (median value for the period of Feb-May 2010): between GEOS-
Chem and GOSAT CH4 a priori fields in the stratosphere which come from the TOMCAT model
with assimilated ACE-FTS CH4 retrieval (first column), between GEOS-Chem and ACE-FTS
CH4 retrievals in the stratosphere (second column). First (second) row shows CH4 difference
fields for 4◦ × 5◦ (2◦ × 2.5◦) model resolution. The dashed line represents the mean dynamic
tropopause over February-May 2010 from the archived GEOS-5 meteorological fields.

the XCH4 differences have a latitudinal structure. The differences are small in the tropics
at both resolutions. In NH mid-latitudes (30◦-60◦N), they reach about 15 ppb at 4◦ × 5◦,
but are reduced to less than 5 ppb at the 2◦ × 2.5◦ resolution. The SH in February-May
appears to be less sensitive to model resolution and the reduced XCH4 difference at 2◦ ×
2.5◦ resolution was 5 to 10 ppb in this region. We note that these results may be affected
by the sparsity of the ACE-FTS measurements and possible biases in ACE-FTS CH4

retrievals in the lower stratosphere (De Mazière et al. (2008) suggested potential biases
of 10% in the older version 2.2 of ACE-FTS CH4 retrievals in the UTLS region). There
is also a sharp positively biased feature in the SH stratosphere, the origin of which is
unclear.
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Figure 4.3: “XCH4” difference between GEOS-Chem and ACE-FTS due to the stratosphere:
4◦ × 5◦ model resolution (top), 2◦ × 2.5◦ model resolution (middle), zonally averaged for both
model resolutions (bottom). “XCH4” difference was obtained by augmenting the ACE-FTS
stratospheric profile with the GEOS-Chem troposphere and smoothing the vertical CH4 difference
profile with the mean meridional GOSAT averaging kernels.

4.2.3 Comparisons with TCCON

The third component of the model validation involved comparisons to ground-based
XCH4 retrievals from TCCON (Wunch et al., 2011). Table 4.1 gives a summary of the
model validation against TCCON at the two model resolutions. Similarly to GOSAT,
longer analysis periods became dominated by biases in the a priori surface emissions and
were less useful for transport validation. The results show that running the model at
the 2◦ × 2.5◦ resolution significantly improved the correlations and reduced the positive
model mismatch against TCCON, except for the northern- and southern-most stations
(Lauder, Wollongong and Sodankyla). For the 2◦ × 2.5◦ resolution, there is a 7-8 ppb
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Table 4.1: Evaluation of the a priori 4◦ × 5◦ and 2◦ × 2.5◦ resolution GEOS-Chem model fields
against TCCON XCH4 retrievals (mean station-wise statistics for the period of February-May
2010).

Mean difference [ppb] Standard deviation [ppb] Correlation (R)
4◦ × 5◦ 2◦ × 2.5◦ 4◦ × 5◦ 2◦ × 2.5◦ 4◦ × 5◦ 2◦ × 2.5◦

Sodankyla 30.0 15.6 18.9 11.6 0.49 0.88
Bremen 6.3 0.0 14.3 11.0 -0.37 0.34
Bialystok 11.9 3.7 9.3 7.7 0.39 0.67
Orleans 3.9 1.7 8.9 8.4 0.31 0.46
Garmish 9.9 -0.1 9.0 9.7 0.46 0.53
Park Falls 1.9 -2.4 9.7 8.4 0.37 0.58
Lamont 1.4 0.6 11.1 9.4 0.27 0.49
Izana -5.8 -3.2 7.6 6.8 0.64 0.68
Wollongong 7.5 6.5 8.9 8.7 0.58 0.55
Lauder 9.6 7.8 5.6 4.8 0.72 0.80

difference relative to Wollongong and Lauder in the SH and about a 15 ppb difference
relative to Sodankyla in the NH. Similar differences were also observed in model−GOSAT
comparisons (Fig. 4.1), with about a 3-4 ppb difference at Wollongong and Lauder and
about a 5 ppb difference at Sodankyla. Significant mismatch reduction was achieved for
Sodankyla (from 30 ppb to 15.6 ppb), and it is unclear whether the remaining difference is
due to the model or the observations. As shown by Tukiainen et al. (2016) and Ostler et al.
(2014), Sodankyla XCH4 retrievals can be subject to systematic errors during polar vortex
conditions due to incorrect CH4 a priori profiles. As with the GOSAT and ACE-FTS
comparisons, the TCCON results also suggest that a weak latitudinal bias may still be
present in the model at the 2◦ × 2.5◦ resolution and, given the results of the ACE-FTS
comparisons, it may be related to the stratosphere.

4.3 Impact on surface emissions

The primary reason why we are concerned about the magnitude of biases in the model
XCH4 fields is their possible impact on estimates of CH4 surface emissions. It was shown
in Fig. 4.1 (fifth column) that the resolution-induced bias between 4◦ × 5◦ and 2◦ × 2.5◦

resolution is comparable in magnitude to the mismatch between the 2◦ × 2.5◦ resolution
XCH4 fields and GOSAT data. This suggests that transport errors at 4◦ × 5◦ resolution
may have an adverse impact on optimized emissions.

We optimized monthly CH4 surface emissions for the period of February-May 2010
using GEOS-Chem at the two resolutions. Surface emissions were optimized as monthly
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totals in each model grid box. Monthly emissions in all four months were adjusted
simultaneously in order to best match GOSAT XCH4 measurements during the same
period. We used the strong constraint 4D-Var approach, which was also used in Chapter 3
and assumes that the model is perfect, except for potentially biased CH4 surface emissions.
The SC 4D-Var minimizes the cost function defined by Eq. (2.70) with a constraint given
by Eq. (2.71). Both a priori (R) and observational (B) error covariance matrices were
assumed to be diagonal. Uncertainty on the a priori emissions in each 4◦ × 5◦ and 2◦

× 2.5◦ grid box was set to 50% and 100%, respectively, in order to be approximately in
accord with the central limit theorem. In designing R, we used XCH4 retrieval errors
as the observational uncertainty and inflated them to match the global mean GOSAT
standard deviation (scatter) against TCCON observations (Parker et al., 2015).

Figure 4.4 shows the ratio of optimized to a priori CH4 emissions, which are referred
to as emission scaling factors. The optimized CH4 fields were evaluated against TCCON
and NOAA in situ surface measurements and results are given in Section 3.3.2.1 (see
Fig. 3.14). The 4◦ × 5◦ inversion suggested lower CH4 emissions at high latitudes and
higher emissions in the tropics compared to the 2◦ × 2.5◦ inversion. The differences are
particularly large over equatorial Africa and Europe. There are large reductions in the
emissions across mid-latitude Eurasia at 4◦ × 5◦, whereas the changes in this region were
minor at 2◦ × 2.5◦. Furthermore, at 2◦ × 2.5◦ there were increases in the emissions in
western Europe. The discrepancies between the two inversions are probably associated
with large positive high-latitude XCH4 bias at the 4◦ × 5◦ resolution.

The CH4 emissions aggregated into the widely used 11 TransCom regions (Gurney
et al., 2004) are plotted in Fig. 4.5. Because of the particular division of the TransCom
regions, the aggregated emissions at the two model resolutions were more similar to each
other than in Fig. 4.4. The largest changes are observed over Tropical South America
where the 2◦ × 2.5◦ inversion increased the optimized emissions relative to the a priori
emissions by 30% while the 4◦ × 5◦ inversions increased them by 60%. Over Temperate
South America, Europe and Boreal Eurasia, the 2◦ × 2.5◦ emissions remained at their a
priori level while the 4◦ × 5◦ emissions were reduced by 17%, 26% and 29%, respectively.
Additionally, the resulting emissions over Northern Africa, which partly comprised wetland
emissions from Equatorial Africa were about 16% smaller for 2◦ × 2.5◦ resolution. It is
likely that boreal North American emissions would be more biased, however the analysis
covered only the time period when local wetland emissions were not significant. The
moderate sensitivity of the emissions to the induced biases could be due to the sparse
observational coverage of GOSAT. With a greater observational constraint, such as from
the Sentinel-5p (Veefkind et al., 2012) or the future MERLIN (Kiemle et al., 2014)
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Figure 4.4: Ratio of optimized to a priori CH4 surface emissions (scaling factors (SFs)). First
column: SFs from 4◦ × 5◦ resolution inversion. Second column: SFs from 2◦ × 2.5◦ resolution
inversion. Third column: ratio of the SFs in the first column to the SFs in the second column.

satellites, the optimized emissions may be more sensitive to model errors.
Several studies have tried to address latitudinal biases in CH4 in models or observations.

For example, Turner et al. (2015) applied a mean uniform latitudinal correction to their
modelled CH4 fields prior to performing their inversion analysis, while other studies
(Fraser et al., 2013; Alexe et al., 2015) tried to fit a latitudinal correction in their inversion.
While this may partly mitigate the problem, a latitudinal correction does not work well if
the latitudinal bias is associated with biased initial conditions and surface emissions, for
example, due to systematic underestimation/overestimation of a priori CH4 emissions in
the tropics versus mid-latitudes. Moreover, as will be shown below, the actual latitudinal
bias may vary in time and may not be zonally uniform, such as features associated with
the polar vortex.
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Figure 4.5: Total CH4 emissions in 11 TransCom regions for the period of Feb-May 2010
including a priori emissions and optimized emissions using the 4◦ × 5◦ and 2◦ × 2.5◦ resolution
GEOS-Chem model.

4.4 Origin of model errors

4.4.1 Mean meridional circulation

To investigate the mechanisms responsible for the differences in transport between the
4◦ × 5◦ and 2◦ × 2.5◦ model resolutions, we used radon-222 (222Rn) and beryllium-7
(7Be), together with CH4, as tracers of atmospheric transport. In these experiments, the
sources and sinks of the tracers are identical across all model resolutions, so differences
in the tracer fields are due solely to transport. 222Rn is emitted from soils by decay of
radium-226 (226Ra) and is lost in the atmosphere through radioactive decay to lead-210
(210Pb), with a half-life of 3.8 days (Jacob et al., 1997). Due to its short lifetime and
sources at the surface, 222Rn is useful tracer of vertical transport in the troposphere. In
GEOS-Chem, land and ocean fluxes of 222Rn are set to 1 and 0.005 atoms cm−2 s−1,
respectively. Emissions over land in the polar regions beyond 60◦ are set to 0.005 atoms
cm−2 s−1. Corresponding emissions are reduced threefold when surface temperatures
are below zero. 7Be is produced in the atmosphere (mainly in the stratosphere) in a
process of spallation of nitrogen and oxygen atoms by cosmic ray bombardment (Lal and
Peters, 1967) and is immediately attached to aerosol particles. It is removed from the
atmosphere by radioactive decay with a half-life of 53.3 days and by dry deposition and
wet scavenging (Liu et al., 2001). 7Be sources in GEOS-Chem are prescribed following
Lal and Peters (1967) and Liu et al. (2001). We used 7Be (as well as CH4) as a tracer of
stratosphere-troposphere exchange (Liu et al., 2016) and stratospheric mixing. However,
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it can also be a useful indicator of tropospheric descent.
The experiments were run for two months (February-March 2010). The first month

was used to spin up the tracer fields. The first row in Fig. 4.6 gives the mean monthly
zonal tracer distribution modelled at the 4◦ × 5◦ resolution while the second row presents
the zonal mean differences between the 2◦ × 2.5◦ and 4◦ × 5◦ simulations. The 222Rn
experiment indicates that at 4◦ × 5◦ there is up to a 40% reduction in the tracer
concentrations in the mid-upper troposphere relative to 2◦ × 2.5◦, with a noticeable
increase in the tracer concentrations in the lower troposphere ranging from 10% to 25%
(see Fig. 4.6d). These results suggest that at coarser resolution, vertical transport in
GEOS-Chem is reduced. These results are similar to those shown by Yu et al. (2017).
Changes in tracer concentrations are aligned along isentropes and are, therefore, most
likely related to adiabatic transport as part of the large-scale advection. Figure 4.6d
also suggests that biases originate at mid-latitudes. Vertical transport in these regions is
associated with baroclinic wave activity: the tracers are lifted in warm conveyor belts
that are linked with extratropical cyclones (Stohl, 2001; Eckhardt et al., 2004; Hess, 2005;
Parazoo et al., 2011). However, discrepancies in orographic and convergent uplift may
also contribute to the total bias. Reduced vertical transport causes 222Rn to remain near
the surface and in the cold pocket at lower potential temperature surfaces. The largest
fractional overestimate of 222Rn at 4◦ × 5◦ resolution is aligned with the 265 K potential
temperature surface, while the largest fractional underestimate corresponds to the 310 K
surface. There are also large fractional changes in the stratosphere, although the 222Rn
concentrations are low there. In the stratosphere at 2◦ × 2.5◦, there is much less 222Rn
reduction at high latitudes and more in the tropics and in the upper stratosphere. These
differences may point to increased cross-tropopause transport at coarser resolution, which
may also contribute to lower 222Rn concentrations in the upper troposphere (UT) at 4◦ ×
5◦. They may also indicate increased isentropic mixing through the boundaries of the
tropical pipe in the stratosphere, transporting more air with high levels of 222Rn out of
the tropical pipe in the 4◦ × 5◦ simulation.

7Be in the 4◦ × 5◦ resolution simulation was reduced by up to 20% in the extratropical
lower stratosphere (LS) and increased by up to 20% in the tropical UT (see Fig. 4.6e).
The extra-tropical LS interacts with the UT across the tropopause through baroclinic
waves in the troposphere. Air in the UTLS region is stirred and subsequently mixed
by cutoff cyclones, tropopause folds and uplift in warm conveyor belts of extratropical
cyclones (Stohl et al., 2003). The 7Be experiment indicates that STE was enhanced at
4◦ × 5◦ resolution. The results also suggest that subsidence in the troposphere between
the 270 K and 300 K isentropes is stronger at 2◦ × 2.5◦ resolution, resulting in higher
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Figure 4.6: Evaluation of the mean meridional circulation in GEOS-Chem using 7Be, 222Rn
and CH4 transport tracers. First column represents results for 222Rn tracer, second column -
for 7Be tracer, third column - for CH4 tracer. First row: mean zonal tracer concentrations in
March 2010. Second row: mean difference between 2◦ × 2.5◦ and 4◦ × 5◦ simulations in March
2010. Third row: mean difference between R1 and 4◦ × 5◦ simulations in March 2010. Fourth
row: mean difference between R2 and 4◦ × 5◦ simulations in March 2010. Fifth row: mean
difference between R3 and 4◦ × 5◦ simulations in March 2010. R1 is 4◦ × 5◦ simulation driven
by remapped 2◦ × 2.5◦ hAMFs; R2 is 4◦ × 5◦ simulation with original calculated hAMFs over
NA, EU and CH regions replaced by remapped 0.5◦ × 0.67◦ hAMFs; R3 is 4◦ × 5◦ simulation
driven by remapped 2◦ × 2.5◦ hAMFs with additional CH4 eddy mass flux based on 2◦ × 2.5◦

simulation.

7Be concentrations in the lower troposphere at mid-latitudes (up to 35%) and lower 7Be
concentrations in the UT in polar regions (up to 20%).

The results of the CH4 experiment were similar to those from the other two experiments.
CH4 is well mixed in the troposphere and, therefore, is not a good tracer of tropospheric
transport. However, the difference plot in Fig. 4.6f shows similar evidence of reduced
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vertical transport, with lower CH4 concentrations below 900 hPa in the NH and higher
concentrations above. Higher CH4 fields in the middle and upper extratropical troposphere
in the NH are also explained by a stronger tropopause barrier at 2◦ × 2.5◦ resolution,
which prevents CH4 from mixing into the LS and leads to more CH4 accumulation in the
troposphere. Transport in the NH was more strongly affected by model resolution as CH4

gradients are larger in this region. It could also be explained by the fact that the results
are given for the month of March when baroclinic wave activity is stronger in the NH.
The ACE-FTS comparisons in Figs. 4.2 and 4.3 showed similar results, with the model
biases in the NH more sensitive to changes in model resolution than in the SH.

4.4.2 Polar vortex

The zonal mean plots in Figs. 4.6d-f hide some details of stratospheric transport related
to the polar vortex dynamics. To better understand the source of the stratospheric bias,
we carried out yearly comparisons of simulated CH4 fields at both model resolutions
with a focus on the polar lower stratosphere. Simulations were run from 1 July 2009 to
1 July 2010 with the identical model setup with the same initial conditions. Figs. 4.7
and 4.8 show mean monthly CH4 differences at the 50 hPa pressure surface for the NH
and SH. The dark blue colors correspond to the regions with lower CH4 at 2◦ × 2.5◦.
These regions of lower CH4 are aligned with and evolve together with the polar vortex,
which is illustrated in Fig. 4.9. A vivid example is the vortex splitting event in February
2010. As the polar vortex becomes stronger and develops sharper potential vorticity (PV)
gradients at its boundaries, the latter become barriers for mixing. Subsidence inside
the polar vortex brings air depleted in CH4 down from higher altitudes. This air mixes
inside the polar vortex but does not mix with the vortex exterior. However, as can be
seen in Figs. 4.7-4.8, this barrier is weaker at 4◦ × 5◦ and results in higher CH4 relative
to the 2◦ × 2.5◦ resolution. As expected, the model CH4 differences are also aligned
with the model−GOSAT XCH4 mismatch in Fig. 4.1 and are substantially reduced at
higher horizontal resolution. In case of the vortex splitting event in February 2010 these
mismatch were observed over both North America and Eurasia.

4.4.3 XCH4 bias

As described in Section 2.3, the number of vertical layers in GEOS-Chem, compared
to the original GEOS-5 model, can be reduced in the upper stratosphere above 80 hPa.
There are 36 vertical levels in this region in the original metfields, which are reduced to
just 11 levels here, so that the total number of vertical levels is reduced from 72 to 47.
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Figure 4.7: Monthly mean difference between 2◦ × 2.5◦ and 4◦ × 5◦ GEOS-Chem CH4

simulations at the 50 hPa pressure level (north pole projection).

We also assessed the impact of this vertical remapping on modelled XCH4 fields. We ran
the model with 72 and 47 vertical levels, at both horizontal resolutions. However, for
the comparison, all simulations were regridded to the 4◦ × 5◦ resolution with 47 vertical
levels. The CH4 differences between the model simulations were vertically smoothed with
mean meridional GOSAT averaging kernels, which were averaged in 4◦ latitudinal bands
over the entire period of the observations.

The purpose of these experiments was both to determine regional biases induced in
XCH4 fields by transport errors and to assess their impact on the total atmospheric CH4

budget. It was shown in previous sections that at 2◦ × 2.5◦, there is less CH4 in the
stratosphere and more in the troposphere. Such redistribution could result in additional
CH4 chemical loss as most of the OH mass is located in the tropical troposphere. Hence,
transport errors could potentially project onto an atmospheric CH4 sink. However, the
results did not show any noticeable sensitivity of the CH4 budget to horizontal resolution
and vertical resolution in the upper stratosphere. Changes in the total CH4 burden in
both cases were negligible and didn’t exceed 0.05% over the 6-year period.
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Figure 4.8: Monthly mean difference between 2◦ × 2.5◦ and 4◦ × 5◦ GEOS-Chem CH4

simulations at the 50 hPa pressure level (south pole projection).

The results of the experiments are presented in Fig. 4.10 and suggest that increased
model vertical resolution in the upper stratosphere had a modest impact on the CH4

fields. The result is consistent with Strahan and Polansky (2006), however the impact
may be larger if the model is run at high horizontal resolution where fine-scale winds in
the upper stratosphere could, potentially, produce additional eddy transport sensitive to
vertical model spacing. Although we didn’t have a chance to fully assess sensitivity to
vertical discretization, reduced vertical resolution in the vicinity of the tropopause layer
may have a significant adverse effect on modelled CH4 fields. For example, Locatelli et al.
(2015) showed that increased vertical spacing in their model caused an additional leak of
tropospheric CH4 into the stratosphere, significantly biasing vertical CH4 distribution.

The results of the second experiment with doubling of horizontal resolution show that
generally, at 2◦ × 2.5◦, CH4 is reduced in the column at high latitudes to the north of
about 40◦N and south of about 50◦S and is increased in tropics. As suggested by Fig. 4.6f,
the general bias structure is mainly a result of CH4 redistribution at 2◦ × 2.5◦ resolution
with more CH4 in the troposphere and less CH4 at high latitudes in the stratosphere.
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Figure 4.9: Mean monthly potential vorticity on 450 K isentropic surface from the archived
GEOS-5 metfields (north pole projection).
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Figure 4.10: First column: mean zonal CH4 difference (see below) after 6 years of simulation.
Second column: mean zonal XCH4 bias time-series obtained by smoothing CH4 difference profiles
with mean latitudinal GOSAT averaging kernels. First row: difference between GEOS-Chem
CH4 fields modelled using 72 and 47 vertical levels. Second row: difference between GEOS-Chem
CH4 fields modelled at 2◦ × 2.5◦ and 4◦ × 5◦ horizontal resolution).
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Additionally, this pattern is intensified by weaker quasi-isentropic mixing between the
tropics and high latitudes in the upper stratosphere at 2◦ × 2.5◦ resolution. The XCH4

increase in the tropics is largely in the SH, however after four years the pattern of biases
becomes more symmetric over the equator. The general bias pattern is also modulated by
seasonally changing XCH4 biases associated with the polar vortex in both hemispheres.
In the SH where the polar vortex is stronger and more isolated, negative XCH4 biases are
sharp, localized and as large as -31 ppb, while in the NH, the bias fields are more diffused
with maximum amplitude of -23 ppb. Strong seasonally varying negative XCH4 biases in
the polar regions are also accompanied by additional positive XCH4 anomalies of up to
12 ppb in the tropics.

4.4.4 Vertical transport in the troposphere

The tracer experiments in Section 4.4.1 also revealed issues in modelled vertical transport
in the troposphere. Here, we investigate possible causes of the reduced vertical transport
at the coarse model resolution. The structure of the 222Rn bias between the two model
resolutions suggested errors in tracer advection at mid-latitudes. Here we examine possible
sources of these transport errors and their impact on the modelled tracer fields.

4.4.4.1 Regridding mass flux versus horizontal winds

Figure 4.11 shows the mean spatial distribution of the vertical air mass fluxes (vAMFs)
at about the 590 hPa pressure level in GEOS-Chem at coarse (4◦ × 5◦) and native
(0.5◦ × 0.667◦) horizontal resolutions in May 2010 over east Asia. They show that the
high-resolution fluxes have more detailed structure due to the complex topography of
China, and point to the potential of producing inconsistencies in calculating the vAMFs at
different model resolutions due to the fact that at coarse resolution, vAMFs are obtained
from degraded coarse resolution cell-centred winds (see Section 2.3.2). To quantify the
potential impact of calculating the horizontal AMFs (hAMFs) at the grid cell interfaces
from the coarse resolution wind fields, we consider using archived hAMFs remapped from
the native resolution GEOS-5.2.0 fields. This ensures consistency between hAMFs at
different model resolutions and, therefore, preserves the derived vAMFs.

Unfortunately, neither native resolution hAMFs nor global surface pressure and
winds fields at the native GEOS-5.2.0 resolution were available for us, as GMAO has
transitioned to version GEOS-5.7.2 of their assimilation system. Instead, we performed two
experiments using the 2◦ × 2.5◦ and nested GEOS-5.2.0 model fields. In one experiment
(R1 experiment), the 2◦ × 2.5◦ hAMFs at the grid cell boundaries were remapped to 4◦
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Figure 4.11: Mean advective vAMFs at 4◦ × 5◦ and 0.5◦ × 0.67◦ resolution in March 2010 at
the 590 hPa pressure level.

× 5◦. In the other experiment (R2 experiment), we used the native 0.5◦ × 0.67◦ hAMFs
from the nested model for North America, Europe, and Asia. The remapped native
resolution hAMFs in the R2 experiment were merged with the ones calculated at the
coarse resolution over the rest of the globe. The hAMFs at 2◦ × 2.5◦ and 0.5◦ × 0.67◦

were calculated in GEOS-Chem, corrected using the pressure fixer, remapped and saved
for each 4◦ × 5◦ resolution model transport time step. This also allowed us to turn off the
pressure fixer in the R1 experiment as the high-resolution hAMFs already guaranteed mass
conservation. Later, the remapped and merged hAMFs were used to drive advection at
the coarse 4◦ × 5◦ model resolution. Figs. 4.6g-i and Figs. 4.6j-l summarize the results of
the R1 and R2 experiments, respectively. The R1 results show that the initial differences
between tracer fields at 4◦ × 5◦ and 2◦ × 2.5◦ resolutions (Figs. 4.6d-f) were partly due to
inconsistent AMFs. Using the corrected hAMFs, we were able to partly mitigate vertical
transport errors. For example, 222Rn was increased in the upper troposphere by up to
12% in the “fixed” 4◦ × 5◦ simulation. Still, the proposed model fix does not explain
all the differences between the 4◦ × 5◦ and 2◦ × 2.5◦ model resolutions. The R2 results
suggest that the induced AMF bias between 4◦ × 5◦ and native resolution is even larger:
regionally remapped native resolution hAMFs had a stronger impact on CH4 fields at 4◦

× 5◦ resolution than globally remapped 2◦ × 2.5◦ hAMFs. The general feature of the
results obtained is that the tropospheric correction to vertical transport easily propagates
into the lower stratosphere at 4◦ × 5◦ resolution and further biases the UTLS CH4 fields.
Thus, the weakened tropopause barrier is a major defect of the 4◦ × 5◦ model resolution.

Finally, we quantified the impact of the AMF bias on the XCH4 fields. Figure 4.12
shows the change in absolute bias between the model and GOSAT XCH4 in the R1
and R2 experiments. Generally, remapped 2◦ × 2.5◦ mass fluxes (first column) had a
relatively weak impact on XCH4. Some reduction in the model−GOSAT mismatch was
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observed in February at the position of the polar vortex over Europe and North America
and in March-May over China. However, this was accompanied by a weak increase in
the mismatch in other regions. In the R2 experiment (third column), the reduction in
the absolute bias was significantly larger. The transport corrections in R2 reduced the
positive XCH4 misfit at high latitudes. The mean positive misfit over Europe in February
was reduced by up to 16 ppb, whereas the positive model−GOSAT misfit over China
in March-May was reduced by up to 30 ppb. The model bias over China was caused
by weakened vertical advective transport, which we argue was due to a combination of
regridding the winds and the strong surface emissions in China, resulting in CH4 being
partly trapped in boundary layer over the continent. Generally, the results suggest that
the incorrect hAMFs produce noticeable local biases in the XCH4 fields.
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Figure 4.12: Difference in absolute XCH4 mismatch against GOSAT observations between
GEOS-Chem 4◦ × 5◦ simulation with corrected transport (“fixed”) and original GEOS-Chem 4◦

× 5◦ simulation. First column: “fixed” simulation is driven by remapped 2◦ × 2.5◦ hAMFs (R1
experiment). Second column: “fixed” simulation is driven by remapped 2◦ × 2.5◦ hAMFs with
additional CH4 eddy mass flux based on 2◦ × 2.5◦ simulation. Third column: “fixed” simulation
is the one with original calculated hAMFs over NA, EU and CH regions replaced by remapped
0.5◦ × 0.67◦ hAMFs (R2 experiment).
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4.4.4.2 Eddy mass flux

The transport correction implemented in Section 4.4.4.1 only partly accounted for the
missing vertical motion as inferred from Fig. 4.6 (third row). Here, we show that the
rest of the missing motion can be explained by the loss of tracer eddy mass flux. The
continuity equation for the tracer mass in the model grid box in the absence of sources
and sinks is defined as

∂(qδp)

∂t
+ ∇ · (qδpu) = 0, (4.1)

where q is tracer mixing ratio, δp is the pressure thickness and u is the 3D velocity.
Assuming that both q and δpu vary on sub-grid scales, Eq. (4.1) can be rewritten as

∂(qδp)

∂t
+ ∇ · (q · δpu) + ∇ · (q′ · (δpu)′) = 0 (4.2)

where ( ) is the grid box average and ( )′ is the deviation from the average. The third
term on the l.h.s. represents divergence of the tracer eddy mass flux which arises from
correlation between q′ and (δpu)′. This divergence term gets lost due to averaging of
sub-grid scale fields at coarse resolution.

To better understand the pattern of biases of Fig. 4.6 we briefly revisit the structure
of the tropospheric circulation. As shown by Pauluis et al. (2008) from the analysis
of atmospheric motion on dry and moist isentropes, tropospheric circulation is best
represented by a two-cell structure. In one large hemisphere-size overturning cell, air
ascends in the tropics and diverges poleward in the upper troposphere. Part of the air sinks
in subtropical regions through radiative cooling while the rest continues poleward motion
approximately along isentropes due to mixing by baroclinic waves. At high latitudes,
air again descends by radiative cooling and experiences cross-isentropic transport into
low latitudes near the surface accompanied by surface sensible heat release. The second
smaller circulation cell is similar to the first one but is shorter and confined to mid- and
high latitudes where extra-tropical cyclones supplied with moisture from the subtropics
in the lower troposphere raise air from the surface to the upper troposphere along moist
isentropes. The rest of the motion is as in the first branch. Tracer experiments performed
in Section 4.4.1 suggest that model vertical transport is affected by resolution in the
second circulation cell.

Vertical transport at middle and high latitudes is largely driven by synoptic scale
eddies (extra-tropical cyclones) generated by baroclinic instability (Stohl, 2001; Parazoo
et al., 2011). The combined action of convection and advection transports tracers upward
and polewards from the surface in warm conveyor belts (WCBs) that originate ahead
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of cold fronts and flow above warm fronts of cyclones. They transport air from the
boundary layer into the free troposphere, and thereby, are an important mechanism for
ventilating the lower troposphere (Kowol-Santen et al., 2001; Sinclair et al., 2008; Ding
et al., 2015). At the same time, these cyclones transport upper tropospheric air downward
and equatorward at mid-latitudes, following dry intrusions behind the cold fronts. This
creates a mean upward tracer flux for tropospheric species such as CH4 and 222Rn that
are emitted at the surface. At NH mid-latitudes, regions of extratropical cyclone activity
are located in the western part of the Atlantic and Pacific Oceans and partly overlap with
eastern parts of North America and China (Stohl, 2001; Eckhardt et al., 2004; Shaw et al.,
2016), which happen to be major CH4 source regions. This makes WCBs particularly
important for upward transport of CH4 at mid-latitudes. As shown by Stohl et al. (2002),
WCB trajectories over China experience rapid ascent and end up in the upper troposphere
over the western Pacific, whereas WCB trajectories over North America originate in the
PBL and extend to the upper troposphere over Europe.

Frontal uplift, however, may be sensitive to the horizontal resolution of the model.
Sinclair et al. (2008) shows that the efficiency of the uplift depends strongly on turbulent
mixing in the PBL that raises the tracer to the altitude penetrated by the WCB, and
horizontal Ekman transport which supplies the tracer into the frontal region. Furthermore,
the coarse-resolution model may not resolve narrow frontal zones and the associated
horizontal tracer convergence. Therefore, part of the vertical transport associated with
the sub-grid scale correlation between the vAMFs anomalies and the tracer mixing ratio
anomalies (“anomalies” = deviations from the coarse grid cell average) is lost. Increased
numerical diffusion acting on sharp inter-cell concentration gradients in the frontal zone
is another issue that may interfere with vertical transport. Horizontal diffusion would
create additional horizontal tracer mass flux which has to be extracted from the vertical
mass flux (according to mass conservation), reducing the altitude of tracer penetration
into the free troposphere.

In addition to frontal uplift, vertical advective CH4 transport at mid-latitudes is
through convergent uplift in the centre of cyclones and orographic uplift on the lee side of
mountains. There mechanisms are of less significance, however they may also be sensitive
to model resolution.

Figure 4.13 shows an example of CH4 fields produced by a cyclone passing over the
eastern United States modelled at three resolutions. It gives a snapshot of the cyclone at
12:00 UTC on March 21, 2010. The high-resolution (0.5◦ × 0.67◦) case was simulated
using the nested GEOS-Chem model with boundary and initial conditions from the 4◦

× 5◦ model run. Both the 4◦ × 5◦ and 2◦ × 2.5◦ resolution cases have the same initial
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CH4 conditions on 1 March 2010. Figure 4.13 shows that at 0.5◦ × 0.67◦ resolution, CH4

surface concentrations are higher in the frontal zones and the CH4 plume is lifted higher
in the atmosphere along the moist isentropes. Qualitatively, the 2◦ × 2.5◦ resolution CH4

fields are more similar to those at the 0.5◦ × 0.67◦ resolution than to those at 4◦ × 5◦.
This may suggest that the 2◦ × 2.5◦ resolution model approaches the spatial limit at
which circulation in frontal zones can be resolved, whereas the 4◦ × 5◦ resolution is just
too coarse for these purposes.
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Figure 4.13: GEOS-Chem CH4 fields at three resolutions at 12:00 UTC on March 21, 2010.
First row: at 950 hPa (long-dashed grey lines are contours of sea level pressure). Second and
third rows: vertical atmospheric slices through the grey horizontal and vertical bands drawn on
the first-row figures (solid grey lines are moist isentropes).

For February-May 2010, we calculated the CH4 and 222Rn vertical eddy mass fluxes
lost by degrading the model resolution from 2◦ × 2.5◦ to 4◦ × 5◦. This was done as
follows:

1. The 2◦ × 2.5◦ vertical tracer and air mass fluxes, and the tracer concentrations
were archived from the 2◦ × 2.5◦ forward model run and remapped to 4◦ × 5◦.

2. The 4◦ × 5◦ tracer mass fluxes were defined as a product of the remapped 2◦ × 2.5◦

vertical air mass fluxes and the tracer concentrations.
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3. The lost eddy mass flux was set equal to the difference between the remapped 2◦ ×
2.5◦ tracer mass fluxes in Step 1 and those calculated in Step 2.

Figure 4.14a shows the structure of the CH4 mass flux at 700 hPa. It can be inferred
from the figure that the calculated eddy mass flux is large in the mid-latitude storm track
regions of both hemispheres over eastern South America, South Africa, and particularly,
over eastern Asia, however, it is rather weak over North America. It also shows up
over some mountainous regions, especially over the Himalayas, and in the ITCZ over
Africa. The CH4 eddy mass flux also increased over Europe (particularly, its northern
part). One possibility is that this could be related to the ascent in the Icelandic low that
moved far east during the extremely negative phase of the North Atlantic Oscillation
in the winter/early spring 2010. However, the exact reason has not been determined.
Figure 4.14b shows the monthly CH4 tendency (integral of the eddy mass flux over each
global pressure surface) associated with the eddy mass flux, both globally and over North
America. For comparison, we also show the CH4 tendency for the eddy mass flux over
North America derived from the 0.5◦ × 0.67◦ nested CH4 simulation. Generally, because
CH4 is well mixed in the troposphere, the tendency terms are rather small. Eddy mass
flux acts to reduce CH4 concentrations from approximately 950 hPa to 600 hPa by as
much as 20 ppb month−1 and increase it in the upper troposphere by up to 7 ppb month−1.
It also increases CH4 concentrations near the surface below 950 hPa. The North American
example also shows that the 0.5◦ × 0.67◦ CH4 tendency in the lower troposphere is about
twice as large as 2◦ × 2.5◦ tendency.

We used the calculated eddy mass flux as a correction to the advective tracer mass
flux at 4◦ × 5◦. Figure 4.6m-n show the impact of the combined eddy mass flux correction
and the AMF correction in Section 4.4.4.1 on the zonal structure of 222Rn and CH4 fields.
The corrected 4◦ × 5◦ simulation recovers much of the structure of the 2◦ × 2.5◦ fields
(compare Figs. 4.6m and 4.6d). The issue for both the 222Rn and CH4 simulations at 4◦

× 5◦, as noted in Section 4.4.4.1, is that corrections to the vertical transport into the
troposphere leak into the stratosphere, hence the tracer transport at the coarse resolution
cannot be fully recovered. Generally, the eddy correction has a smaller impact on the CH4

and XCH4 fields (Fig. 4.12, second column), but has a significant impact on short-lived
222Rn. The influence of the eddy mass flux should be larger if it is derived from the global
native resolution simulation.

Generally, the vertical eddy mass flux is species-dependent and there is no way
to recover it exactly in the coarse resolution model. However, it may, potentially, be
parametrized in the model as an additional diffusive or advective mass flux correction.
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Figure 4.14: Top panel: mean CH4 eddy mass flux at the 700 hPa pressure level for February-
May 2010 lost by degrading the model resolution from 2◦ × 2.5◦ to 4◦ × 5◦. Bottom panel: left -
additional globally averaged vertical CH4 tendency caused by the CH4 eddy mass flux in the first
row, right - comparison of additional mean vertical CH4 tendencies over North America caused
by eddy mass flux in the first row (“red”) and by eddy mass flux which was lost by degrading
model resolution from 0.5◦ × 0.67◦ to 4◦ × 5◦ (“blue”).

The tracer continuity equation in the vertical direction can be modified as

∂(qδp)

∂t
+ ∇p · (qδpu) = ∇p · (κ∇p · (qδp)) (4.3)

where the term on the r.h.s. has the form of the diffusion operator, with κ being tracer
diffusivity. A similar approach was proposed by Wang et al. (2004). Coefficient κ can
be uniform, for example, just to best match the mean zonal vertical tracer distribution
however it can also be spatially varying. One possible solution is to set κ in Eq. (4.3)
proportional to the squared buoyancy frequency N2 in order to relate it to the uplift
associated with frontal zones of cyclones due to reduced static stability. Ferreira et al.
(2005) and Ferreira and Marshall (2006) showed a similar concept to be effective for
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mesoscale eddy parametrization in ocean GCMs at coarse resolution.

4.5 Summary and discussion

We used the GEOS-Chem model at the horizontal resolution of 4◦ × 5◦ and 2◦ × 2.5◦ to
understand the sources of resolution-induced biases in the model. We focused on the period
of February-May 2010 to match the analysis period in Chapter 3, in which we used a weak
constraint 4D-Var assimilation approach to characterize model errors in the GEOS-Chem
CH4 simulation. The GEOS-Chem CH4 simulation was evaluated using XCH4 retrievals
from TANSO-FTS on-board GOSAT, ground-based XCH4 retrievals from TCCON, and
solar occultation CH4 retrievals from ACE-FTS on-board SCISAT. Comparison of the
model to all three datasets pointed to the presence of significant transport errors at
the 4◦ × 5◦ resolution, which were greatly reduced at 2◦ × 2.5◦. Discrepancies in the
CH4 fields induced by the model resolution included a latitudinal XCH4 bias with large
positive XCH4 anomalies at high latitudes and small negative anomalies in the tropics. A
significant part of this bias was related to discrepancies in the stratosphere. In addition,
a positive XCH4 bias was associated with the polar vortex. In the troposphere, a positive
resolution-induced XCH4 bias in the model−GOSAT differences was also observed over
China and shown to be related to reduced vertical transport at 4◦ × 5◦. The model
evaluation against GOSAT, ACE-FTS and TCCON also suggested that a weak latitudinal
bias is present in the 2◦ × 2.5◦ model and may be related to the stratosphere. We found
that the magnitude of the resolution-induced differences between the 4◦ × 5◦ and 2◦ ×
2.5◦ fields was similar in magnitude to the remaining model−GOSAT mismatch at 2◦ ×
2.5◦ resolution.

We assessed the impact of the resolution-induced model biases on optimized CH4

surface emissions for February-May 2010 by performing inversion analyses at both model
resolutions using the 4D-Var method in GEOS-Chem. The 4◦ × 5◦ inversion suggested
reduced CH4 emissions at high latitudes and increased emissions in the tropics relative to
the 2◦ × 2.5◦ model. The differences were large at grid-box scales, but were less than 30%
when the inferred emissions were aggregated to the large TransCom regions. The moderate
sensitivity of the emissions to the induced biases may be due to limited data density and
observational coverage of GOSAT, particularly at high latitudes. However, the sensitivity
to model errors is expected to be higher for data from missions such as TROPOMI, which
will provide better observational coverage. Generally, given the magnitude of the model
biases, we do not recommend the 4◦ × 5◦ GEOS-Chem model for CH4 inverse modelling.
Although the estimated model errors are much smaller at 2◦ × 2.5◦ resolution, additional

119



work is needed to better quantify the resolution-induced errors at 2◦ × 2.5◦ and assess
their potential impact on inferred CH4 source estimates.

Using 222Rn, 7Be and CH4 tracers at the two model resolutions, we investigated
the origins of model errors related to coarsening of the model resolution. The results
showed that, fundamentally, the majority of the biases are caused by increased numerical
diffusion at the 4◦ × 5◦ model resolution. Numerical diffusion acts to smear sharp
tracer concentration gradients and is particularly detrimental in the regions with strong
potential vorticity gradients, including the tropopause layer, boundaries of the tropical
pipe, and the polar vortex. The results of this study are consistent with Strahan and
Polansky (2006) who also showed that the 4◦ × 5◦ resolution model, driven by a similar
advection scheme, cannot maintain adequate mixing barriers, which leads to enhanced
stratosphere-troposphere exchange across the tropopause and enhanced mixing in the
vicinity of the tropical branch of the Brewer-Dobson circulation and the polar vortex. As
a consequence, at 4◦ × 5◦, there is less CH4 in the troposphere and more CH4 is mixed
into the lower stratosphere at high latitudes. Overall, this produces lower XCH4 fields in
the tropics and higher XCH4 at high latitudes.

The tracer experiments also pointed to a weakening of vertical transport at coarser
resolution in the troposphere, mainly at middle to high latitudes. Partly, it was caused
by using the coarse resolution wind fields to recalculate the air mass fluxes at the grid
box interfaces. Biased AMFs produced non-negligible local biases in the XCH4 fields
such as a large positive bias over China. We showed that this problem can be mitigated
in GEOS-Chem by archiving and globally remapping the native resolution horizontal
AMFs in order to drive advection at the coarse resolution instead of calculating the
horizontal AMFs from the coarse-resolution wind fields. The remaining differences in
vertical transport were explained by the loss of tracer eddy mass flux due to coarsening
the model resolution and averaging the sub-grid model variability.

GEOS-Chem employs the Lin-Rood scheme for advection and, as mentioned by Prather
et al. (2008) and Strahan and Polansky (2006), doubling the resolution of the Lin-Rood
scheme from 4◦ × 5◦ to 2◦ × 2.5◦ may improve the model simulation. However, doubling
the horizontal resolution to 2◦ × 2.5◦ does not eliminate all of the issues related to the
off-line CH4 transport. Therefore, in order to determine the optimal combination of
computational time and accuracy, the ideal experiment would address the sensitivity of
CH4 fields to model transport errors in a cascade of model simplifications starting from
an ensemble of on-line GCM simulations, and to the off-line transport modelling at 2◦

× 2.5◦ resolution using ensemble mean meteorological fields. The option of using a less
diffusive advection scheme as the way to reduce sensitivity of simulated fields to model
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resolution could also be explored. Meanwhile, the results of this study can be used as
guidelines for future model evaluations and for inverse modelling CH4 emissions.
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Chapter 5

Sensitivity of regional emissions to
boundary condition biases

The analysis conducted in the previous chapters indicates that the GEOS-Chem model
at coarse spatial resolution contains biases that are reduced as the resolution increases.
Although computationally expensive, high-resolution transport modelling offers one
possible solution. In order to reduce computational time, simulations can be performed
over a small spatial domain such as North America (one-way nested simulation) instead
of a global one. However, a regional domain requires boundary and initial conditions
which may be evaluated only at coarse temporal or spatial resolution given current
observational coverage. Moreover, due to the relatively weak signal of local surface
emissions in CH4 observations, biases in boundary and initial conditions may still have a
significant impact on inverse estimates of emissions depending on the type of observing
system and measurements (Appendix A provides an in-depth analysis of the impact of
boundary conditions on modelled XCH4 observations).

In a small spatial domain, the memory of the initial conditions is short and the problem
may be reduced to evaluating boundary conditions (BCs). One direct way to do that is
to spatially and temporally interpolate sparse aircraft measurements in the troposphere
over the boundaries of the domain and combine them with modelled stratospheric fields.
This approach neglects some of the short-term variability in the background CH4 arriving
from the exterior of the domain. Although part of this variability may be filtered out
when estimating, for example monthly-averaged emissions, it may still have a significant
impact on shorter time scales. A different option is to optimize surface emissions and
BCs simultaneously (for example, as in Wecht et al. (2014)). The disadvantage of this
method is that the observations used to constrain the regional CH4 state may not be
able to distinguish between biases in emissions and boundary conditions and may also
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produce dynamically inconsistent BC estimates. A third approach is to optimize the
global CH4 state at coarse model resolution and sample it over the region of interest
(for example, Jiang et al. (2015); Turner et al. (2015)). This method is able to produce
smooth dynamically consistent BCs at high spatial and temporal resolution relative to
the other two methods.

This work uses two methods to optimize global CH4 fields and sample boundary
conditions around North America. In one method, we constrained CH4 surface emission
using the SC 4D-Var data assimilation technique. In the other method, WC 4D-Var
is used to directly constrain the CH4 state. Any differences between the models in the
sampled BCs would be due to the ability of both methods to fit biases in the CH4 state.
A number of previous studies based upon SC 4D-Var (Turner et al., 2015) or sub-optimal
Kalman filtering (Jiang et al., 2015) assumed that the forward model of the inversions is
perfect and fitted biases in the state by means of surface emissions only. On the other
hand, as shown in Chapter 3, WC 4D-Var is able to remove CH4 biases that are due to
various forward model errors and to produce better estimates of the CH4 state.

The goal of this study is to compare the performance of the WC and SC 4D-Var
methods for generating BCs and to evaluate the impact of differences between BCs on
regional CH4 surface emission estimates. In Section 5.1, we drive the regional GEOS-
Chem model with different BCs in order to determine the ones that produce the best
fit of simulated CH4 fields to independent observations. In Section 5.2, we investigate
the sensitivity of CH4 emissions, constrained by real GOSAT observations and pseudo
geostationary-like observations, to biases in BCs.

5.1 Boundary condition validation

Chapter 3 described the inversion setup that was used to perform SC and WC 4D-
Var inversions in GEOS-Chem at the 4◦ × 5◦ and 2◦ × 2.5◦ resolutions from February
to May 2010. We sample optimized CH4 fields generated in these inversions over the
North American domain every three hours and use them as boundary conditions for
regional CH4 simulations. In particular, we exploited CH4 fields generated by the WC
inversions with a three-day constant forcing time window and a forcing mask covering the
entire atmosphere (WC_T3_G1000_4x5 and WC_T3_G1000_2x25), which are
referred to as WC_4x5 and WC_2x25, respectively, in this chapter. Strong constraint
4D-Var inversions at 4◦ × 5◦ and 2◦ × 2.5◦ resolution are referred to as SC_4x5 and
SC_2x25, respectively.

We used the nested GEOS-Chem model over the North American domain (140◦W to
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40◦W and 10◦N to 70◦N) at 0.5◦ × 0.67◦ resolution and performed four CH4 simulations
from February to May 2010 with an identical setup, including a priori CH4 emissions but
different boundary and initial conditions, and compared the resulting CH4 fields with
a set of observations. Figure 5.1 shows mean latitudinal XCH4 difference between the
four simulations and GOSAT XCH4 retrievals. The figure suggests that the simulation
with SC_4x5 BCs contains a latitudinal bias compared to GOSAT, which is almost
completely removed after switching to WC_2x25 BCs. The other two BCs also produce
latitudinal biases that are significantly smaller than those for SC_4x5 BCs.
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Figure 5.1: Mean latitudinal XCH4 bias between nested GEOS-Chem CH4 simulations with
four boundary conditions and GOSAT XCH4 retrievals over the period of February-May 2010.
The bias was obtained by first averaging the “model−GOSAT” difference in each 0.5◦ × 0.67◦

model grid box, and then averaging zonally.

Table 5.1 presents results of the model comparison against NOAA in situ aircraft
measurements, NOAA and ECCC in situ tall tower data, and TCCON XCH4 retrievals
at Lamont and Park Falls (see Section 2.1 for description of the datasets). These results
suggest that neither the increase in resolution nor the use of the weak constraint technique
improved the model agreement with in situ measurements. There is a significant variation
in mean difference ranging from -6 ppb to 12 ppb for surface and from -3 ppb to 7 ppb for
aircraft measurements. However, it is not possible to define the best BCs, as the larger
mismatch may also imply under/overestimation of regional a priori CH4 surface emissions.

Comparison to TCCON retrievals points to the benefit of increasing the model
resolution and using the weak constraint method for generating BCs. WC_2x25 BCs
showed the best performance in regards to scatter and correlation against TCCON
measurements, whereas the mean difference is not a good indicator as stations are located
relatively close to CH4 sources. TCCON comparisons also suggest that the gain from
using WC BCs instead of SC BCs is larger than that from doubling the model resolution.
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Lamont Park Falls

Diff. [ppb] Scatter [ppb] R Diff. [ppb] Scatter [ppb] R

4◦ × 5◦ BCs:
SC 1.8 8.6 0.52 -0.9 9.3 0.43
WC 3.6 7.8 0.64 -1.2 8.4 0.54
2◦ × 2.5◦ BCs:
SC 1.9 8.8 0.59 -1.8 9.5 0.49
WC 4.7 7.3 0.69 1.0 8.0 0.61

NOAA surface (May only) NOAA aircraft

Diff. [ppb] Scatter [ppb] R Diff. [ppb] Scatter [ppb] R

4◦ × 5◦ BCs:
SC -6.1 43.0 0.33 -3.1 20.2 0.80
WC -1.3 43.0 0.32 -1.1 20.0 0.81
2◦ × 2.5◦ BCs:
SC 11.9 42.4 0.32 6.8 20.7 0.79
WC 9.4 42.6 0.32 3.9 20.1 0.81

Table 5.1: Results of the evaluation (mean difference, scatter (1σ standard deviation) and
correlation (R)) of the four modelled CH4 fields in the nested GEOS-Chem simulation over North
America with different boundary conditions (sampled from WC_4x5, WC_2x25, SC_4x5
and SC_2x25 global inversions) against TCCON Lamont and Park Falls XCH4 and NOAA in
situ aircraft CH4 measurements in February-May 2010, and NOAA and ECCC in situ tall tower
CH4 measurements in May 2010.

5.2 Inversion of regional emissions: results and discus-

sion

Here, we investigate whether inversions of regional CH4 emissions are sensitive to the way
in which the BCs are generated. We used the same four types of BCs as described above,
sampled from the global CH4 fields constrained by the GOSAT observations, but using
different data assimilation methods and at different GEOS-Chem resolutions. Although
WC_2x25 BCs provided the best model fit to regional TCCON measurements, WC
4D-Var state optimization at 2◦ × 2.5◦ resolution is more costly to run than, for instance,
4◦ × 5◦ SC 4D-Var emissions optimization, and may not be the optimal choice for BCs in
the case of weak sensitivity of emissions to the differences in BCs.

The OSSE results in Chapter 3 showed that it may take several months for the WC
method to recover biases in the global CH4 state due to initial conditions, particularly in
the stratosphere. Therefore, and also due to the fact that all of our global CH4 inversions
covered only four months from February to May 2010, we used only May 2010 to test the
sensitivity of the regional emissions to biases in BCs.

All regional emission inversions were performed using the SC 4D-Var data assimilation
method and differed only in the imposed BCs. The inversions were initiated on April 21
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but forced by observations only in May 2010. SC 4D-Var simultaneously optimized for
mean emissions in May and mean emissions during the last 10-day period in April. We
included this 10-day period for the inversion to lose memory of the initial conditions and
to reduce potential biases due to regridding the coarse-resolution CH4 initial conditions
to a finer grid over complex terrain.

5.2.1 GOSAT inversions

In the first set of experiments, we used GOSAT observations as a constraint on regional
surface emissions. Figure 5.2 shows the results of the inversions for the total optimized
North American, US, and Canadian CH4 emissions in May 2010. It shows that differ-
ences in total North American emissions compared to their a priori values, as well as
between different inversions, are small (within 10-15%). Inversion with SC_4x5 BCs
produced larger emissions in all three regions compared to the other BCs. Inversions with
WC_2x25, SC_2x25 and WC_4x5 BCs produced similar emission estimates (within
about 7% over the USA and total North America and within about 12% over Canada).
Larger differences in emissions over Canada may point to model biases in the strato-
sphere associated with the boundary conditions sampled from the global SC-optimized
GEOS-Chem CH4 fields at 4◦ × 5◦ resolution. These biases are particularly large at high
latitudes, where Canadian CH4 sources are located.

Changes in optimized emissions from a priori estimates in May 2010
GOSAT: WC_2x25 BCs
GOSAT: SC_2x25 BCs

GOSAT: WC_4x5 BCs
GOSAT: SC_4x5 BCs
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Figure 5.2: Percentage differences between total optimized and a priori surface emissions for
North America, the USA and Canada. Emissions were optimized using GOSAT CH4 observations
and strong constraint 4D-Var in the nested GEOS-Chem model driven by four different boundary
conditions sampled from WC_2x25, WC_4x5, SC_2x25 and SC_4x5 global inversions.

Figure 5.3 shows changes in total optimized emissions subdivided by sector compared
to their a priori values. In order to obtain this result, the distribution of the a priori
emissions by sector in each model surface grid box was assumed correct and was multiplied
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by the optimized emission SFs to generate the sector-specific emissions. The sector-specific
differences are much larger than those shown in Fig. 5.2. The figure again suggests that
inversion with SC_4x5 BCs produced emissions larger than the other inversions by up
to 25%, particularly from coal mining, oil and gas extraction and burning, rice production
and waste treatment over both Canada and the US. The inversion with WC_2x25 BCs
produced results most similar to the one with WC_2x25 BCs over the USA and to the
one with SC_2x25 BCs over Canada. However, differences are still within about 10%.

Changes in optimized emissions from a priori estimates in May 2010
GOSAT: WC_2x25 BCs
GOSAT: SC_2x25 BCs

GOSAT: WC_4x5 BCs
GOSAT: SC_4x5 BCs
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Figure 5.3: Same as Fig. 5.2 but with total US and Canadian emissions subdivided into different
sectors (from biofuel burning, biomass burning, oil/gas and coal extraction and combustion,
livestock, rice agriculture, waste treatment and wetlands).

The optimized emissions were further subdivided into smaller regions defined by the
borders of US states and Canadian provinces and plotted in Fig. 5.4. The figure shows
that differences in local emissions are within 20-25% excluding few outliers. As the
resolution of the global model increases, SC and WC BCs, as well as corresponding
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regional emission estimates converge due to reduction of model biases. Differences in the
optimized emissions between SC_2x25 and WC_2x25 BCs at regional and local scale,
as well as from difference emission sectors, are within about 10%.

Differences in optimized US state and Canadian provincial missions
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Figure 5.4: Percentage differences between optimized CH4 surface emissions subdivided locally
by borders of US states (blue circles) and Canadian provinces (red circles) from inversions
driven by BCs sampled from: left - SC_2x25 and WC_2x25 global inversions, middle -
WC_4x5 and WC_2x25 global inversions, right - SC_4x5 and WC_4x5 global inversions.
The radius of each circle plotted is proportional to the magnitude of the corresponding local a
priori emissions.

5.2.2 OSSEs with a geostationary-like satellite

The sensitivity of regional surface emissions to BC biases depends on the ability of
the data assimilation algorithm to fit discrepancies in the CH4 state at the expense
of surface emissions. The greater the information content of an observing system, the
higher would be the sensitivity of surface emissions to BC biases. GOSAT observations
are still relatively sparse in space and time and provide limited constraints on surface
emissions. Therefore, in an identical inversion scenario, surface emissions constrained by
GOSAT XCH4 retrievals may be weakly sensitive to BC biases compared to, for example,
hypothetical geostationary observations over North America, which may be available in
the future from the GeoCarb satellite (Polonsky et al., 2014).

We carried out a set of OSSEs for a geostationary-like (GEO-like) and GOSAT-like
satellite in order to evaluate the sensitivity of regional emissions to BC biases under
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different observational coverage. The GOSAT-like satellite performed XCH4 observations
at the time and location of GOSAT observations. The hypothetical geostationary-like
satellite was assumed to perform GOSAT-like XCH4 observations and sample CH4 fields
over North American land region once per hour with a FOV of 4x4 km2. The number
of satellite observations which fell in each 0.5◦ × 0.67◦ model grid box was defined by
the FOV but was reduced proportionally to the fraction of the grid box covered with
clouds. The latter was taken from archived GEOS-5 meteorological fields. Additionally,
all geostationary measurements for which the local SZA was larger than 70◦ were filtered
out.

In the OSSEs, we defined the “true” CH4 state as the one generated using WC_2x25
BCs (“true” BCs) and the a priori surface emissions (“true” emissions). The “true”
CH4 state was sampled at the times and locations of the geostationary or GOSAT
measurements and smoothed with GOSAT-like averaging kernels in order to create XCH4
pseudo-observations. We assumed 12 ppb uncertainty on the pseudo-observations, which
is similar to the uncertainty of GOSAT observations, but did not add random noise
as we were looking for the systematic component of sensitivity to BCs. In order to
investigate the sensitivity, we perturbed the BCs, performed SC 4D-Var surface emission
inversion analyses using the archived pseudo-observations and recorded the response of
the inverted surface emissions to the perturbation. The “true” BCs were perturbed by
successively replacing them with SC_2x25, WC_4x5 and SC_4x5 BCs. The rest of
the inversion setup was kept identical to that in the previous section. In the ideal case
with no sensitivity to BC biases, the inverted surface emissions would remain unchanged.

Figures 5.5 and 5.6 show the results of the OSSEs. They suggests that the sensitivity
of emissions constrained by geostationary observations to BC biases can be significantly
larger than that constrained by low-orbit GOSAT observations. In the latter case,
regional anthropogenic and natural emissions change only by up to 7% in response to the
introduced BC biases, while in the former case changes are within about 37%. Canadian
anthropogenic emissions appeared to be particularly sensitive. This can be explained by
sparse GOSAT observational coverage at high latitudes, which prevents the satellite from
sampling a significant fraction of biases advected from the BCs. Results also show that
the CH4 state (and hence, boundary conditions) constrained by the satellite with sparse
observational coverage should be used carefully in regional inverse modelling analyses
where surface emissions are constrained by a different satellite, for example, with denser
observation coverage or better information content.
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GOSAT OSSE: Changes in optimized emissions from the 'truth' in May 2010
BC bias: WC_2x25 −> WC_4x5
BC bias: WC_2x25 −> SC_2x25

BC bias: WC_2x25 −> SC_4x5
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Figure 5.5: Percentage differences between the total emissions constrained by GOSAT XCH4
pseudo-observations and the “true” surface emissions. Emissions were inverted in a set of OSSEs
with biased boundary conditions only, where the “true” BCs were sampled from WC_2x25
global inversion, while biased BCs were sampled from either WC_4x5, SC_4x5, or SC_2x25
global inversions. The legend indicates the type of the imposed BC bias (for example, “WC_2x25
− > WC_4x5” implies that BC bias was introduced by replacing the “true” (WC_2x25) BCs
with WC_4x5 BCs).

GEO OSSE: Changes in optimized emissions from the 'truth' in May 2010
BC bias: WC_2x25 −> WC_4x5
BC bias: WC_2x25 −> SC_2x25

BC bias: WC_2x25 −> SC_4x5
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Figure 5.6: Same as Fig. 5.5 but for emissions constrained by geostationary XCH4 pseudo-
observations.

5.3 Discussion

Several conclusions can be drawn based on the results presented in this chapter. It was
noticed that BC biases usually have smooth temporal and spatial structures and result
in relatively uniform scaling of regional emissions so that the sensitivity of emissions at
provincial and state scales is not significantly different from that at country scales. The
results of the real GOSAT assimilations showed that even at local scales, differences in
monthly emission estimates are generally within 20-25%, which is still a large number
given that the BCs were constrained using the same model and measurements. Moderate
convergence in the emission estimates was observed when the BCs were sampled from the
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SC or WC optimized global 2◦ × 2.5◦ resolution CH4 fields (SC_2x25 and WC_2x25
BCs). In this case, differences in the optimized regional- and local-scale emissions, as well
as in emissions from difference sectors, were within about 10%. Therefore, errors remaining
in the global optimized 2◦ × 2.5◦ GEOS-Chem model constrained by GOSAT XCH4

retrievals may not significantly affect regional North American CH4 emission estimates in
May 2010, and these fields may potentially be used for sampling regional CH4 boundary
and initial conditions.

Despite moderate discrepancies in the emission estimates, the regional surface emission
inversions with different boundary conditions suggested that Canadian a priori oil and
gas emissions in May 2010 should be strongly reduced by about 40-60%. We were not
aware of any study using the same a priori emissions inventory that pointed to the similar
overestimation of Canadian CH4 oil and gas emissions. Robustness of this result has to
be further assessed by constraining Canadian emissions using in situ surface and aircraft
observations and over the whole seasonal cycle.

As the spatial and temporal coverage of the observing system increases, so does the
ability of this system to constrain regional surface emissions. However, as the OSSE
results show, the sensitivity of the inverted monthly emissions to BC biases increases as
well. In this chapter we tested the sensitivity of North American a priori emissions to BC
biases that were defined as uncorrected biases in the CH4 fields due to GEOS-Chem model
errors, relative to the WC_2x25 assimilation using GOSAT XCH4 retrievals. Biases
in the country-scale natural and anthropogenic emissions in May 2010 constrained by
regional GOSAT pseudo-observations due to the introduced BC biases were within 7%.
The maximum bias in emissions reached 37% when coverage of the pseudo-observations
was changed to approximate that of the hypothetical geostationary satellite. This result
also indicates that BCs optimized using one observing system with rather sparse coverage
may still be affected by model errors not sampled properly by this system and, when
used regionally with the different observing system, may introduce biases in the regional
emission estimates.

It is important to note that the present analysis applies to a specific month, May
2010. Due to varying meteorological conditions, model errors, and regional CH4 emissions,
sensitivity to BC biases may be different in other months and should be investigated
in future studies. Generally, it would also depend on the spatial (ranging from local to
continental) and temporal (ranging from daily to annual) scales analysed. For example,
the sensitivity of total annual regional emissions to BC biases may be relatively weak
compared to the sensitivity of weekly local emissions.
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Chapter 6

Conclusions

The scientific community has been seeking to attribute changes in atmospheric CH4

concentrations to either variations in the chemical sink of CH4 or in its emissions. Under-
standing the processes controlling CH4 abundance is important for implementing efficient
emission reduction policies and for accurate future climate projections. The CH4 sink
is usually evaluated using indirect estimates of the atmospheric OH budget based on
measurements of methyl chloroform, while emissions are usually estimated using a “top-
down” approach where the CH4 state is constrained by atmospheric CH4 measurements
with additional constraints such as CH4 isotopic composition. This thesis addresses a
more narrow question: given measurements of global CH4 distribution, assuming the
known CH4 sink, how well can surface emissions be localized to their geographic origin.
Several factors play important roles for addressing this question. First, these include the
observational coverage and quality of the CH4 measurements. Second, particularly when
the observational constraint is rather weak, a priori assumptions about CH4 emissions are
important, as the “top-down” approach deals with an under-constrained inverse problem
for which a unique solution does not exist. However, the focus of this thesis is on the last
set of factors, the quality of the CH4 simulation, or model errors.

Ideally, the best available model is chosen for the CH4 simulation that most closely
represents reality. In the case of CH4 with simple linear chemistry, the quality of
simulation can be improved by increasing the resolution of the transport model, reducing
numerical errors and errors in physical parametrizations. However, the model resolution
is constrained by available computational resources. In the 4D-Var data assimilation,
computational expenses increase by tens to hundreds of times compared to forward model
simulation (depending on a number of iterations until convergence of the algorithm), which
limits usability of global high-resolution models for 4D-Var chemical data assimilation.
Generally, for a particular transport model, there is a grid spacing limit when resolution-
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induced errors become small enough that they do not affect significantly the inferred CH4

emission estimates (for example, changes in emissions are within 5-10%), and further
increase of resolution does not bring significant gain in performance. Evaluation of
resolution-induced error as well as other model errors caused, for example, by different
physical parametrizations, is the major theme of this thesis.

In order to reduce simulation time and mitigate model errors, a high-resolution models
can still be use for data assimilation purposes in a regional domain with imposed boundary
conditions sampled from the global coarse-resolution simulation. However, boundary
conditions are also affected by errors in the global simulation. Optimization of CH4 BCs
over North America for regional surface emission inversion purposes was the original
problem that prompted the rest of the work in the thesis.

6.1 Summary of results

6.1.1 Weak constraint 4D-Var

The initial research objective was to generate an optimal CH4 state, which can be used
for sampling regional BCs, and to diagnose errors in the global CH4 simulation at model
resolutions of 4◦ × 5◦ and 2◦ × 2.5◦. Traditional strong constraint 4D-Var does not
account for model errors. Therefore, the weak constraint method, recently implemented
in GEOS-Chem by Martin Keller within the existing 4D-Var code, was used for these
purposes and to address the first thesis objective (see Section 1.4). The design of the
model error covariance matrix Q is key to the method performance. We adapted a rather
simple structure for Q with uniform model error uncertainty and no correlation between
errors, which implies that no specific assumptions about the structure and magnitude
of the model errors were made. This design was validated in a set of OSSEs, where the
WC method, using real GOSAT XCH4 data, was shown to be able to remove artificially
imposed model errors and optimize their structure. Although not having the most optimal
configuration, the WC method significantly improved the modelled CH4 fields relative
to independent observations in comparison to the SC method, and identified transport
errors in the model.

The WC assimilation identified and corrected for the positive bias in the stratospheric
CH4 fields at 4◦ × 5◦. Even at 2◦ × 2.5◦, the method was able to detect and mitigate the
stratospheric bias relative to ACE-FTS and HIPPO-3 measurements. In the GEOS-Chem
troposphere, the WC assimilation suggested that vertical transport at mid-latitudes,
particularly over eastern China and North America, is too weak. Similar vertical transport
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errors were identified at both model resolutions, although they were weaker at 2◦ ×
2.5◦. These errors may potentially be reduced by further increasing the model resolution,
however, they may also be related to biases in meteorological fields, for example, in the
strength of convective motion associated with mid-latitude cyclones. In the tropics, the
WC assimilation pointed to the possibility of resolution-independent errors in the CH4

outflow from the African continent to the Atlantic Ocean, that could also be related to
model errors in convection.

Generally, this work showed that the 4◦ × 5◦ resolution model contains errors that
are too large for the model to be used for CH4 surface emissions optimization. The 2◦

× 2.5◦ model contains similar, but smaller errors and additional work is required to
determine the impact of these errors on the inferred CH4 source estimates. The weak
constraint method was proven to be a useful tool for diagnosing model transport errors
and for mitigating biases in the global CH4 fields. The WC optimized CH4 fields can be
used for providing improved boundary and initial conditions for regional analyses at high
horizontal resolution. This work also showed that satellite XCH4 retrievals, used mainly
for surface emissions optimization, contain enough information to at least partly mitigate
model errors.

6.1.2 Resolution-induced model errors

Based on the results of the WC assimilation we further investigated resolution-induced
biases in the GEOS-Chem CH4 fields in order to better understand their origin and
impact on the inverted surface emissions as well as to assess whether model transport at
coarse resolution can be improved. This work addressed the second thesis objective from
Section 1.4. The focus was on the 4◦ × 5◦ and 2◦ × 2.5◦ model simulations as these were
the only two available global GEOS-Chem resolutions.

Comparison of the model to GOSAT, HIPPO-3, ACE-FTS and TCCON measurements
revealed the presence of significant CH4 biases at 4◦ × 5◦, which were greatly reduced at
2◦ × 2.5◦. Large resolution-dependent biases were found in the stratosphere, particularly
at high latitudes, in the vicinity of the polar vortex, and in the troposphere over East
Asia. Model validation also suggested that smaller CH4 biases may still be present in the
stratosphere at 2◦ × 2.5◦ resolution. The resolution-induced biases resulted in significant
differences between CH4 emissions at small spatial scales estimated using the two model
resolutions, while differences were generally within 30% for emissions aggregated in the
large TransCom region emissions. Such relatively moderate sensitivity of the emissions to
the resolution-induced biases may be the result of sparse sampling of GOSAT retrievals,
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particularly at high latitudes.
The origin of resolution-induced errors was investigated in the experiments using 222Rn

and 7Be tracers. Results of the experiments showed that a majority of the biases are
caused by increased numerical diffusion at the coarse resolution, which acts to smear tracer
concentration gradients and weaken transport barriers in regions such as the tropopause
layer, the tropical pipe, and the polar vortex in the stratosphere. This leads to enhanced
stratosphere-troposphere exchange and enhanced mixing in the stratosphere. The tracer
experiments also pointed to a weakening of the vertical transport at coarser resolution,
mainly, in mid- to high latitudes. This was partly related to the specific implementation
of the advection scheme in GEOS-Chem and was caused by the loss of the air mass
fluxes at the grid box interfaces after remapping horizontal winds to coarse resolution.
In particular, this resulted in the large positive CH4 bias over China. The rest of the
difference in the vertical transport was explained by the loss of the tracer eddy mass
flux due to averaging of sub-grid model variability at coarse resolution. The loss of the
eddy mass flux due to coarsening the resolution from 2◦ × 2.5◦ to 4◦ × 5◦ had a smaller
impact on long-lived CH4 than on the short-lived 222Rn tracer (up to 30% reduction in the
upper troposphere). Despite discrepancies in transport, the total CH4 budget remained
insensitive to doubling of the resolution from 4◦ × 5◦ to 2◦ × 2.5◦.

In this work, we showed that the lost air mass flux can be recovered by changing
the configuration of the advection scheme. In the older code, the air mass fluxes were
calculated on-line from the coarse resolution wind fields. This was changed, so that the
advection could be driven by archived fluxes remapped from the native model resolution.

Generally, the results showed that the resolution-induced errors alone in GEOS-Chem
at 4◦ × 5◦ have a large impact on surface emissions. The 4◦ × 5◦ CH4 simulation may,
potentially, be improved but at additional cost. For example, numerical diffusion at
coarse resolution and its sensitivity to the model resolution can be reduced by using
a less diffusive advection scheme, such as the SOM, but at the expense of simulation
time and storage space. The advection scheme in GEOS-Chem should be updated as
described above at no additional cost, except for the space to store air mass fluxes at the
original GEOS-5 resolution. The eddy mass flux may, potentially, be parametrized as a
correction to the advective tracer mass flux or as an additional diffusive tracer mass flux
using machine learning techniques such as neural networks with atmospheric stability
(buoyancy frequency) as one of input parameters. These recommendations apply not
only to the 4◦ × 5◦ model but to the model at any higher resolution if similar errors still
persist. Even if 2◦ × 2.5◦ resolution does not satisfy quality requirements for inversion of
surface emissions (such that an impact of model errors on inferred surface emissions is
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limited to 5-10%), running the global 4D-Var assimilation at higher resolution, such as 1◦

× 1◦, is too expensive for global chemical data assimilation. Therefore, transport has to
be improved at least at the 2◦ × 2.5◦ resolution.

6.1.3 Optimizations of boundary conditions

The other option is to perform regional assimilation at high (0.5◦ × 0.67◦) resolution
with optimized regional CH4 boundary conditions. Optimization of CH4 BCs over North
America motivated work in this thesis in the first place and is the third objective of the
thesis (see Section 1.4). Several experiments were performed to evaluate the sensitivity of
monthly mean North American CH4 emissions to BC biases and to determine BCs that
most closely imitate reality.

In practice the real biases in BCs are unknown, therefore, a guess has to be made
in order to approximate them. Different CH4 BCs were sampled from the global CH4

fields optimized at 4◦ × 5◦ or 2◦ × 2.5◦ using the WC or SC 4D-Var approach. The WC
inversion at 2◦ × 2.5◦ provided slightly better regional BCs, which was confirmed by
comparing the regional CH4 simulation to a set of independent observations, although the
time period for validation was limited. Differences between the WC_2x25 BCs and the
other three BCs were assumed to approximate biases that could have remained after the
global CH4 state or flux assimilation, although the real biases may be even larger due to
unaccounted model errors after the global WC_2x25 assimilation. Four different North
American CH4 emission estimates in May 2010 were obtained based on the regional SC
4D-Var flux assimilation with the four different CH4 boundary conditions.

All four assimilations strongly reduced (by about 40-60%) Canadian a priori oil and
gas emissions in May 2010. However, robustness of this result has to be further addressed
by constraining Canadian emissions over the whole seasonal cycle and using in situ surface
and aircraft observations. The results also showed that even at provincial/state scales,
differences in the monthly emission estimates were generally within 20-25%. However,
moderate convergence in these estimates was observed when the BCs were sampled from
the global 2◦ × 2.5◦ CH4 fields optimized using either the SC or WC methods. In this
case, differences in the optimized monthly emissions at various spatial scales, as well as in
emissions from difference sectors, were within about 10%. This could imply that further
increase in the resolution of the global model may not be required, and the WC_2x25
CH4 fields may be satisfactory for sampling regional CH4 boundary and initial conditions.

Due to rather sparse coverage, the information content of the GOSAT observing
system over North America is significantly smaller than that of the future geostationary
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GeoCarb satellite. As the spatial and temporal coverage of the observing system increases,
so does the ability of this system to constrain regional surface emissions. However, the
sensitivity of the inverted monthly emissions to BC biases increases as well. Therefore, a
set of OSSEs was conducted to evaluate the sensitivity of the North American a priori
emissions to the previously generated BC biases using pseudo-data from a hypothetical
GOSAT satellite and a future geostationary satellite. In the former case, changes in
the country-scale natural and anthropogenic emissions in May 2010 in response to the
imposed BC biases were within 7%, while in the latter case they were as large as 37%
of the “true” emissions. Generally, the OSSE results indicate that regional emissions
constrained by future satellites with better observation coverage may be more sensitive
to biases in the boundary conditions. However, this also depends on the ability of these
satellites to mitigate model errors in the global CH4 simulation. Additionally, different
observing systems may sample and/or mitigate model errors differently and should not
be used separately in the assimilation process (for example, one type of measurements
for the global state optimization and sampling of BCs and another type for the regional
surface emissions optimization).

6.2 Suggestions for future work

The work conducted in the thesis provided only an initial assessment of model errors,
ways to correct them, and their impact on inverted CH4 surface emissions. Therefore, it
can be further expanded in a number of directions. Errors in the GEOS-Chem model can
be further investigated using the WC 4D-Var method. The identified errors affected the
model only in February-May 2010, therefore, further analysis is required to understand
their impact in different seasons and years. In the tropics, particularly over Equatorial
Africa, the WC state corrections were not sensitive to the model resolution. Therefore,
the question about their origin remains open. XCH4 glint measurements over oceans
could help constrain the vertical structure of the local model errors and determine their
sources. The WC assimilation of shorter-lived species, such as CO, could also help better
diagnose model errors, especially when transport and emission errors mask each other
in CH4 fields. The advantage of CH4 is its longer memory of model transport, however
shorter-lived gases are more strongly affected by and, hence, may be more sensitive to the
same model errors.

More optimal performance of the WC 4D-Var can be achieved by supplying the
method with additional information about model errors, such as their temporal and
spatial correlation, and magnitude, using the model error covariance matrix Q. Further
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analysis focused on a design of the Q matrix is also required for the method to be able
to separate the signal of surface emissions from other model errors in order to improve
surface emission estimates. For example, Trémolet (2007) proposed a design based on
the statistics of model tendencies. The matrix Q had a rather primitive structure in
our analysis, although sufficient for the objectives of this work. Based on this initial
assessment of model errors, the structure of Q can be further improved.

Although doubling of the GEOS-Chem resolution from 4◦ × 5◦ to 2◦ × 2.5◦ significantly
reduced biases in the CH4 fields, significant errors may still be present in the 2◦ ×
2.5◦ GEOS-Chem simulation compared to the original high-resolution on-line GEOS-
5 simulation. Therefore, their impact on the model transport, including advection,
convection and PBL mixing, has to be further explored in order to determine an optimal
GEOS-Chem setup for inversions of CH4 surface emissions, with a compromise between
simulation time and the negative impact of model errors. In the future, a full-chemistry
simulation of CH4 may become available, in which OH is an active species, and the CH4

chemical loss may also be affected by the model resolution and will need to addressed as
well.

When further increase of the model resolution does not favour the use of the 4D-
Var method due to the increase of computational time, application of different data
assimilation techniques, such as the ensemble Kalman Filter (EnKF), should be explored.
In the EnKF, an ensemble of model state evaluations can be run in parallel, while 4D-Var
in an iterative algorithm where the next iteration depends on the outcome of the previous
one. Otherwise, model transport has to be improved at the coarse resolution (for example,
as suggested in Section 6.1.2 in regards to advective transport or by Yu et al. (2017) in
regards to convective transport).

The analysis conducted to address the sensitivity of the regional emissions to BC
biases covered only one specific month, May 2010. The sensitivity to BC biases may differ
seasonally and should be investigated in future studies. Generally, it would also depend
on the spatial (ranging from local to continental) and temporal (ranging from daily to
annual) scales analysed. For example, the sensitivity of total annual regional emissions to
BC biases may be relatively weak compared to the sensitivity of weekly local emissions.
Due to the fact that a significant fraction of biases in the global CH4 fields and the CH4

BCs is located in the stratosphere, the sensitivity of regional emissions to BC biases may
be reduced if future satellite retrievals could be made less sensitive to the stratosphere
and more sensitive to the troposphere.
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6.3 Key findings

The main scientific results can be summarized as follows. The analysis conducted in the
thesis showed that space-based observations of atmospheric composition can be used to
improve a physical model, which has always been a goal of chemical data assimilation.
Although GOSAT XCH4 observations have previously been used only to constrain surface
emission, they contain useful information about atmospheric transport and the distribution
of CH4 in the atmosphere to provide insight into discrepancies in atmospheric transport
in the GEOS-Chem model. The results also showed that model errors in GEOS-Chem,
including resolution-dependent errors, have significant impact on estimation of CH4 surface
emissions such that the 4◦ × 5◦ model resolution appears to be inapplicable for these
purposes and even for sampling CH4 boundary conditions.
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Appendix A

XCH4 variability

The influence of North American BCs on modelled XCH4 observations over the USA is
manifested through the interaction of mid-latitude eddies, which intermittently bring
air from the north and the south. We examined data in May-June 2010 to assess the
variability of XCH4 observations at the Lamont TCCON station.

We used the Stochastic Time-Inverted Lagrangian Transport model (STILT) to model
XCH4 at the location of the Lamont TCCON station using the so-called “receptor-oriented”
modelling framework. STILT is based on the same mean advection scheme as the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Hess,
1998), but has a different turbulence scheme described in Lin et al. (2003). The model
was driven by archived reanalysis fields from the National Centers for Environmental
Prediction (NCEP) Eta Data Assimilation System (EDAS-40 km, ftp://www.arl.noaa.
gov/pub/archives/edas40/), which have 40 km horizontal resolution and are archived at
3-hourly timesteps. STILT follows an ensemble of particles released at the measurement
(receptor) location backward in time and computes the upstream influence function
ICH4(xr, tr|x, t), which links sources/sinks of CH4, S(x, t), to concentration CCH4(xr, tr)
at the receptor point (xr, tr) (Lin et al., 2003)

CCH4(xr, tr) =

ˆ tr

t0

dt

ˆ
V

ICH4(xr, tr|x, t)S(x, t)dx +

ˆ
V

ICH4(xr, tr|x, t0)CCH4(x, t0)dx.

(A.1)
The first term on the r.h.s. corresponds to the contribution to CCH4(xr, tr) from sources
and sinks of the tracer in domain V , while the second term corresponds to the contribution
from the tracer advection from initial or boundary conditions. Due to the fact that STILT
operates in the troposphere only, the tropopause is defined as one of the boundaries. The
surface influence function is also referred to as the surface “footprint” and has units of
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ppb per unit emission flux. The final influence function is obtained as an average over an
ensemble of particle.

In the standard STILT setup, we run an ensemble of 100 particle trajectories 10 days
backward in time. We also added a simple chemical module to the model, which accounts
for CH4 destruction along each particle trajectory by reaction with OH and modifies the
influence functions accordingly. XCH4 concentrations were obtained by modelling the
CH4 profile at Lamont station and smoothing it with Lamont TCCON averaging kernels
according to Eq. (2.24). STILT was used to model CH4 concentrations in the troposphere
on a 1 km vertical grid identical to that for the TCCON a priori profiles. The influence
functions for CH4 concentrations at each vertical level were transformed accordingly
into the XCH4 influence functions. The CH4 boundary and initial conditions and CH4

concentrations in the stratosphere were sampled from GEOS-Chem model CH4 fields
constrained by GOSAT UoL Proxy XCH4 retrievals using SC 4D-Var data assimilation at
4◦ × 5◦ resolution. OH fields in the chemical module and a priori CH4 surface emissions
were taken from the nested North American version of GEOS-Chem.

Figure A.1 shows the mean surface contribution from a priori emissions to Lamont
XCH4 defined as the integral

Csurf
XCH4

(xr, tr) =

ˆ tr

t0

dt

ˆ
V1◦×1◦

IXCH4(xr, tr|x, t)S(x, t)dx (A.2)

over each 1◦ × 1◦ surface grid cell column and averaged over a number of Lamont
measurement times during May-June 2010. For comparison, we also show the same
surface contribution map for XCH4 observations made by the University of Toronto
Atmospheric Observatory (TAO) FTIR spectrometer (Wiacek et al., 2007). At Lamont,
the surface signal of emissions is mainly from the south and even includes a contribution
from Florida wetland emissions. On the other hand, the TAO surface signal is strongly
localized within about 200 km of the site.

We modelled the XCH4 timeseries at Lamont from 10 May 2010 to 28 June 2010 using
STILT, and compared it to the timeseries modelled by the nested GEOS-Chem model at
0.5◦ × 0.67◦ and global GEOS-Chem at 4◦ × 5◦ resolution. Both STILT and the nested
GEOS-Chem simulations used identical boundary and initial conditions and a priori CH4

surface emissions. Differences between the simulations are due to the transport modelling
approach (Lagrangian versus Eulerian) and the fact that stratospheric CH4 concentrations
at Lamont in STILT were prescribed, while those in nested GEOS-Chem were advected
from the BCs. However, due to rapid transport, the stratospheric CH4 fields in the
regional high-resolution model would, mainly, be defined by imposed stratospheric CH4
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Figure A.1: Mean surface contribution to Lamont and TAO XCH4 observations from each 1◦

× 1◦ surface grid cell over the period from May 10, 2010 to June 28, 2010. See the text above
for further details.

BCs. The results of the simulations are given in Fig. A.2.
Figure A.2a shows the measured and modelled Lamont timeseries. For this particular

time period, all three modelled timeseries are highly correlated with TCCONmeasurements
and exhibit a positive bias that increases as TCCON XCH4 decreases. Variations in the
modelled timeseries are about 20 ppb on a monthly time scale and are lower by 1-2 ppb
than in the measurements. Figure A.2b shows the total magnitude of the surface emissions
signal modelled by STILT and nested GEOS-Chem. The result was not influenced by the
treatment of the stratosphere as the surface signal did not reach the tropopause. The total
surface signal in GEOS-Chem was obtained as the difference between the CH4 simulations
with and without surface emissions. The mean magnitude of the surface emissions signal
is about 7-8 ppb. Both models showed similar patterns, but with some discrepancies in
magnitude over time. Surface emissions only partly explained the XCH4 variations in
Fig. A.2a. Decreasing surface emissions could only partly reduce the positive mismatch
between the modelled and measured XCH4 timeseries. Therefore, a significant part of
the variability and the mismatch is due to background air advected to the site from the
boundary conditions (or due to the prescribed stratospheric CH4 in the case of STILT
timeseries).

We found that the tropopause pressure shown in Fig. A.2c was highly correlated
with the modelled and measured XCH4 and, therefore, was a better indicator of XCH4

variability over Lamont during the given time period. The tropopause at mid-latitudes is
determined dynamically by baroclinic eddies (Haynes et al., 2001). When interacting with
the north-south XCH4 gradient, eddies bring air to Lamont with XCH4-poor air from the
south and XCH4-rich air from the north. Figure A.2d shows the fraction of all STILT
tropospheric particle trajectories arriving at Lamont that originated to the south of 25◦N
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10 days before. This is an even better indicator of changes in XCH4, which captured most
of the features in the modelled and measured timeseries: as the fraction of trajectories
from the south increased, the Lamont XCH4 decreased.
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Figure A.2: (a): TCCON XCH4 timeseries at Lamont from May 10, 2010 to June 28, 2010
with the ones modelled by STILT, high-resolution GEOS-Chem nested over North America, and
global GEOS-Chem at 4◦ × 5◦ resolution (the legend gives mean difference and correlation (R)
of each modelled timeseries with the measurements). (b): signal of surface emissions in XCH4
at Lamont modelled by STILT and nested GEOS-Chem (the legend gives the mean value of
the signal over the entire timeseries and the correlation between both signals). (c): tropopause
pressure over Lamont (the legend gives the correlation of the corresponding timeseries in (a) with
the tropopause pressure). (d): fraction of all tropospheric STILT particle trajectories arriving at
Lamont which originated to the south of 25◦N 10 days before (the legend gives the correlation of
the corresponding timeseries in the upper left figure with the fraction of trajectories from the
south).

Figure A.3 shows the spatial probability density function of particle trajectory starting
points for two cases: for STILT XCH4 greater than 1785 ppb (above the upper dashed
line in Fig. A.2a) and less that 1775 ppb (below the lower dashed line in the same figure).
In the first case, most of trajectories arrived from the western boundary between 30◦N
and 50◦N. In the second case, most of trajectories still originated at the western boundary
but to the south of 30◦N, however a significant fraction of particles also arrived from the
southern and southeastern boundaries.

Although the time period of May-June 2010 is not representative of variability in the
entire Lamont TCCON timeseries, the analysis still indicates that a significant fraction of
XCH4 variability may be due to background CH4 advected from outside of the regional
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Figure A.3: Spatial probability distribution of modelled Lamont particle trajectory startpoints:
(a) - for all STILT XCH4 greater than 1785 ppb, (b) - for all STILT XCH4 less than 1775 ppb.

domain. Small biases in CH4 boundary conditions may have a significant impact on inverse
estimates of local surface emissions, depending on their magnitude. The results also
suggest that in our inversions it would not be possible to accurately constrain local surface
emissions using the Lamont observations due to potentially large biases in background
XCH4 relative to the surface signal. We believe that, at least part of this bias is due to
CH4 BCs in the stratosphere which were sampled from SC 4D-Var CH4 surface emissions
inversions at 4◦ × 5◦ resolution.
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