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Reliable projections of climate change will require terrestrial biosphere models (TBMs)

that produce robust projections of changes in the exchange of CO2 between the atmo-

sphere and terrestrial biosphere. In this thesis, atmospheric CO2 observations are used

to evaluate TBMs.

First, the sensitivity of several observing systems to surface fluxes of CO2 is charac-

terized. This analysis identifies the spatiotemporal scales over which atmospheric CO2

observations provide significant constraints on net ecosystem exchange (NEE) fluxes.

Second, constraints from atmospheric CO2 and solar-induced fluorescence (SIF) ob-

servations are combined to evaluate the seasonality of NEE, gross primary productivity

(GPP) and ecosystem respiration (Re) fluxes over the northern mid-latitudes for a set

of TBMs. It is shown that model-based seasonal cycles of Re exhibit systematic differ-

ences from optimized Re constrained by atmospheric CO2 and SIF measurements, with

the models overestimating Re during June-July and underestimating Re during the fall.

Further analysis suggests that the differences could be due to seasonal variations in the

carbon use efficiency and to seasonal variations in the leaf litter and fine root carbon

pool.

Finally, the ability of TBMs to simulate interannual variability (IAV) in NEE is

evaluated. IAV in NEE produced by a set of TBMs and CO2 flux inversions is compared

to proxies of IAV in the carbon cycle, including temperature anomalies, SIF anomalies,

and the Palmer drought index. It is shown that CO2 flux inversions that assimilate
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observations from the Greenhouse Gases Observing Satellite (GOSAT) out-perform most

TBMs in recovering NEE anomalies driven by climate anomalies, suggesting that GOSAT

CO2 flux inversions can be used to evaluate NEE anomalies produced by TBMs on large

scales.

This thesis also describes the installation of an open-path Fourier transform infrared

spectroscopy (OP-FTIR) system in downtown Toronto. This system provides continuous

observations of CO2, CO, CH4 and N2O, which, in combination with other observing

stations, will provide valuable top-down constraints on GHG emissions from Toronto.

An initial evaluation of this instrument is performed and comparisons of the observed

gases with meteorological observations and CO2, CO, and CH4 measurements at a nearby

site are presented.
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Chapter 1

Introduction

Anthropogenic climate change is primarily driven by the emission of greenhouse gases

(GHGs) to the atmosphere through anthropogenic activities (IPCC, 2013). Climate

change is impacting the Earth system in a multitude of ways with significant nega-

tive impacts for human societies (IPCC, 2014). This has motivated recent international

agreements to try to limit the growth of atmospheric GHGs by adopting GHG emis-

sion reduction targets. However, the rate of emission reductions required to limit future

warming to some given threshold are not well quantified. This is partially because of

poorly understood feedbacks within the Earth system that could impact the atmospheric

concentrations of GHGs. These feedbacks are of particular concern for CO2. Over the

industrial era, uptake of anthropogenic CO2 by terrestrial ecosystems and the oceans has

reduced the atmospheric growth rate such that only ∼44% of anthropogenic CO2 remains

in the atmosphere. Thus, carbon cycle feedbacks that impact the airborne fraction of

anthropogenic CO2 could have significant implications for the anthropogenic emission

pathways needed to limit warming of the climate system. Consequently, improving our

ability to predict the atmospheric CO2 growth for different emission scenarios is of high

importance. The focus of this thesis is to evaluate terrestrial biosphere models (TBMs)

that will be critical for predicting the airborne fraction of CO2 into the future, and to de-

velop GHG emission monitoring techniques for urban environments to monitor whether

emission reduction targets are being met.

This chapter reviews the current understanding of Earth’s carbon cycle (Sec. 1.1)

and how atmospheric CO2 observations have informed our current understanding of the

carbon cycle (Sec. 1.2). This is followed by an overview of the research presented in this

thesis (Sec. 1.3).

1
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1.1 The carbon cycle

The carbon cycle describes the movement of carbon between various reservoirs in the

Earth system. On the timescales of interest (< 1000 years), the carbon cycle can be

approximated as a closed system with atmospheric, biospheric, and oceanic carbon reser-

voirs. However, since the Industrial Revolution, anthropogenic activities have perturbed

this system with the transfer of carbon from the geologic to atmospheric reservoir through

the burning of fossil fuels and cement production. In this section, the carbon cycle of

Earth is described, with emphasis on recent perturbations to the carbon cycle as a result

of anthropogenic activities. Throughout this thesis, a co-ordinate system is used where

fluxes to the atmosphere are positive and fluxes out of the atmosphere are negative.

1.1.1 The terrestrial biosphere

The terrestrial biosphere refers to all terrestrial living and dead organic matter and con-

tains 450–650 PgC in vegetation, 1500-2400 PgC in soils, and ∼1700 PgC in permafrost

(Ciais et al., 2013). The terrestrial biosphere exchanges carbon with both the atmo-

spheric and oceanic reservoirs. Exchange between the terrestrial biosphere and atmo-

sphere is primarily due to gross primary productivity (GPP) and ecosystem respiration

(Re). Biomass burning and carbon emissions to the atmosphere in the form of CO, CH4,

and volatile organic compounds (VOCs) play a smaller role. Carbon can move from the

terrestrial biosphere to the oceanic reservoir through the leaching of carbon from soils

into rivers that flow into the ocean.

Gross primary productivity

GPP represents the gross uptake of CO2 through photosynthesis, wherein CO2 is reduced

to make organic matter using solar energy:

6CO2 + 6H2O
light−−→ C6H12O6 + 6O2. (1.1)

The sequestered carbon (given as glucose in Equation 1.1) can then be used to synthesize

more complicated organic molecules or be respired. On an annual basis, GPP draws

more than 100 PgC from the atmosphere (Ciais et al., 2013).

The spatiotemporal distribution of GPP is sensitive to the availability of H2O and

light to drive photosynthesis (Equation 1.1). Annual total GPP is highest in the tropics,

where sunlight and moisture are available year round (Anav et al., 2015). In the sub-

tropics, monsoonal regions have high productivity, but many other regions have low GPP
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due to water unavailability (e.g., the Sahara, Australia). Temperate regions have very

strong seasonality in GPP, with large fluxes from May through September and small

fluxes in the winter. This seasonality is partially due to variations in light availability

but is also due to temperature variations (Berry and Bjorkman, 1980). GPP is limited by

temperature at low and high extremes. At low temperatures, photosynthesis is limited

due to the slower rate of chemical reactions (Chapin et al., 2002). At high temperatures,

photosynthesis declines due to increased photorespiration and, under extreme conditions,

enzyme inactivation and destruction of photosynthetic pigments (Chapin et al., 2002).

The optimum temperature for GPP is quite variable between plant species, as they

have evolved different temperature sensitivities to suit their habitat. GPP can also be

impacted by nutrient availability. In particular, nitrogen and phosphorus availability

are important variables. Nitrogen is a component of RuBisCo, an enzyme involved in

carbon fixation, and phosphorus is a component of adenosine triphosphate (ATP) used

in intracellular energy transfer.

Ecosystem respiration

Re represents the gross release of CO2 by an ecosystem. Re occurs using carbon that

was sequestered in GPP, and thus the spatial distribution of Re fluxes closely mirrors

that of GPP. Re can be subdivided into autotrophic respiration (Ra) and heterotrophic

respiration (RH). Ra is respiration by autotrophs in the maintenance and synthesis of

living tissue in the leaves, stem and roots (Waring and Running, 2010). Maintenance

respiration has an approximately exponential dependence on temperature, whereas syn-

thesis respiration is proportional to the carbon incorporated in new tissue. The fraction

of GPP that is not used in Ra can be characterized by the carbon use efficiency (CUE),

defined as

CUE =
GPP +Ra

GPP
. (1.2)

Note that GPP values are negative and Ra values are positive. In many TBMs, the CUE

is assumed to be a constant, typically 0.5 or 0.6. However, observational studies find a

wider range of values for the CUE. In a synthesis of 26 studies, DeLucia et al. (2007)

showed that CUE is variable between different forest types, ranging over 0.23–0.83. They

showed that CUE decreased with increasing forest age, increased with the ratio of leaf

mass-to-total mass, and was sensitive to the forest type. Furthermore, many studies have

shown that CUE varies throughout the year. In particular, the “Kok effect”, wherein

light inhibits mitochondrial respiration in leaves, can result in seasonal variation in CUE

(Heskel et al., 2013; Wehr et al., 2016).
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RH is respiration by heterotrophic organisms during the decomposition of nonliving

organic matter. The majority of RH occurs in soils and is primarily performed by soil an-

imals and microbes. The rate of RH is dependent on the amount and quality of substrate

available. The labile (leaf litter and fine root) carbon pool is the most easily available

carbon pool and provides the substrate for the majority of RH . Only a small fraction of

RH is derived from decomposition of older, more recalcitrant carbon compounds, which

generally have long turnover times of more than 100 years (Trumbore, 2000; Ryan and

Law, 2005). Sources of leaf litter and fine root carbon to the labile pool can have signifi-

cant seasonal variability. Randerson et al. (1996) showed that seasonal variations in this

carbon pool can have a large impact on estimates of model RH . In addition to substrate

dependence, RH is dependent on soil temperature and moisture.

Net ecosystem exchange

NEE is the residual between GPP and Re:

NEE = GPP +Re, (1.3)

where fluxes to the atmosphere are positive, such that GPP ≤ 0 and Re ≥ 0. NEE

is a useful concept because it describes the net flux of CO2 between the biosphere and

atmosphere due to living organisms. Furthermore, NEE dominates the exchange of CO2

between the terrestrial biosphere and atmosphere on seasonal timescales.

Other fluxes

Although most of the carbon (more than 100 PgC yr−1) sequestered through GPP is re-

leased back to the atmosphere through Re, there are other mechanisms by which carbon

can leave an ecosystem. Biomass burning releases ∼2.16 PgC yr−1 to the atmosphere

every year (van der Werf et al., 2017). Although the annual net biomass burning flux

is much smaller than GPP and Re, the interannual variability (IAV) in biomass burn-

ing is substantial. van der Werf et al. (2017) estimate a standard deviation in IAV of

biomass burning of 0.32 PgC yr−1. For comparison, Peylin et al. (2013) report a standard

deviation in IAV of the total land flux (exluding fossil fuels) of 1.06 PgC yr−1.

In addition to biomass burning, carbon can be emitted from the terrestrial biosphere

to the atmosphere in the form of CH4, CO, and VOCs. These compounds are then

oxidized to CO2 in the atmosphere. Randerson et al. (2002) estimate that this amounts

to ∼1.5 PgC yr−1.
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Carbon can also be removed from the terrestrial biosphere through lateral carbon

fluxes (Randerson et al., 2002; Ciais et al., 2008). These include leaching of dissolved

organic carbon and dissolved inorganic carbon from soils into rivers (1.7–2.7 PgC yr−1,

Ciais et al., 2013). Once in rivers, 0.2–0.6 PgC yr−1 is buried in aquatic sediments, 0.8–

1.2 PgC yr−1 returns to the atmosphere as CO2, and ∼0.9 PgC yr−1 is delivered to the

ocean. Agricultural carbon harvested in croplands also undergoes lateral displacement

to feedlots and urban areas (∼1.3 PgC yr−1, Ciais et al., 2007). Randerson et al. (2002)

quantify non-CO2 losses from terrestrial ecosystems to be 2.8–4.9 PgC yr−1.

Terrestrial carbon balance

The terrestrial carbon balance describes the net flux of carbon in and out of terrestrial

ecosystems. It is important to note that this is different from the net annual flux of CO2

between the atmosphere and land, typically referred to as the “residual land sink”. The

residual land sink (Fresidual) is defined as:

Fresidual = ∆atm − (Fff + Fluc + Focn) (1.4)

where ∆atm is the atmospheric CO2 growth rate, Fff is fossil fuel emissions, Fluc is land use

change emissions, and Focn is net ocean CO2 flux. Therefore, the residual land sink will

implicitly include all mechanisms by which carbon moves from the terrestrial biosphere

to CO2 in the atmosphere:

Fresidual = NEE + FBB + Fnon−CO2, (1.5)

where FBB is biomass burning CO2 emissions, and Fnon−CO2 is carbon emissions as CO,

CH4 and VOCs, which are oxidized to CO2 in the atmosphere. Ciais et al. (2013) give

the residual land sink as −1.5 ± 1.1 PgC yr−1 for 1980–1989 and −2.6 ± 1.2 PgC yr−1

for 1990–2009. To calculate the terrestrial carbon balance from the residual land sink,

exchange between the terrestrial biosphere and other reservoirs must be accounted for.

After accounting for losses from the terrestrial biosphere to the ocean (∼0.9 PgC yr−1,

Ciais et al., 2013), the residual land sink suggests that the amount of terrestrial biomass

increased by 0.6± 1.1 PgC yr−1 for 1980–1989 and 1.7± 1.2 PgC yr−1 for 1990-2009. A

schematic of carbon fluxes for the global carbon cycle is shown in Fig. 1.1 (reprinted from

Ciais et al. (2014)).
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Figure 1.1: Simplified schematic of the global carbon cycle. Numbers represent reservoir
mass (in PgC) and annual carbon exchange fluxes (in PgC yr−1). Black numbers and
arrows indicate reservoir mass and exchange fluxes estimated for the time prior to the
Industrial Era, about 1750. Red arrows and numbers indicate annual ‘anthropogenic’
fluxes averaged over the 2000–2009 time period. These fluxes are a perturbation of the
carbon cycle during Industrial Era post 1750. Reprinted from Figure 6.1 of Chapter 6
(Ciais et al., 2014) of the Working Group I Contribution to the Fifth Assessment Report
(AR5) of the International Panel on Climate Change (IPCC).



Chapter 1. Introduction 7

1.1.2 Ocean

The ocean contains vast quantities of carbon. Roughly 38,000 PgC is stored as dissolved

inorganic carbon, 700 PgC as dissolved organic carbon, and 3 PgC as marine biota

(Ciais et al., 2013). The net flux of carbon between the atmosphere and ocean is driven

by the partial pressure difference. Therefore, there are large one-way fluxes between the

atmosphere and ocean of ∼80 PgC yr−1, while the net uptake of carbon by the ocean is

much smaller (2.3±0.7 PgC yr−1 for 2000–2009, Ciais et al., 2013).

Spatially, the partial pressure of ocean CO2 is higher in upwelling regions, such as the

eastern boundary of basins and in equatorial zones (McKinley et al., 2017), resulting in

an out-gassing of CO2 to the atmosphere. The equatorial Pacific is reported as a source

of 0.44 ± 0.41 PgC yr−1. In constrast, there is significant uptake in western boundary

currents (mainly due to the subduction of anthropogenic carbon-laden waters during deep

vertical convection in winter) and at high latitudes (McKinley et al., 2017). In particular,

strong uptake is reported for the North Atlantic (0.3–0.59 PgC yr−1 for 18–76◦ N), North

Pacific (0.47±0.13 PgC yr−1 for 18–60◦ N), and Southern Ocean (0.34±0.20 PgC yr−1

south of 44◦ S) (McKinley et al., 2017).

IAV in ocean uptake is estimated to be 0.27–0.35 PgC yr−1 (Le Quéré et al., 2018). It is

largest in the equatorial Pacific and is strongly influenced by El Niño–Southern Oscilation

(ENSO) variability (Landschuetzer et al., 2016; Chatterjee et al., 2017), characterized by

a standard deviation of 0.15–0.20 PgC yr−1 (McKinley et al., 2017). In extratropical

regions, variability in uptake is largest on decadal scales. Decadal-scale variability in

ocean uptake likely drives decadal variations in the combined uptake of CO2 by the

ocean and terrestrial biosphere (Landschuetzer et al., 2016).

1.1.3 Atmosphere

Atmospheric carbon is primarily in the form of CO2, with an atmospheric burden of

∼829 PgC of CO2. Although the timescale of exchange with the surface for individual

CO2 molecules is on the order of a few years, net fluxes of CO2 are mostly balanced on

these timescales (Ciais et al., 2013). Net fluxes of CO2 generally occur on much longer

timescales of decades to millennia (Ciais et al., 2013). This long atmospheric lifetime

implies that CO2 is well-mixed in the atmosphere. Therefore, observations of the atmo-

spheric CO2 concentration at an individual location, distant from large local sources or

sinks, can provide a constraint on the global mean concentration. The Mauna Loa Obser-

vatory, located at an altitude of 3397 m, has provided such observations since 1958. Figure

1.2 shows a timeseries of atmospheric CO2 observations at this site. These observations
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Figure 1.2: Atmospheric CO2 concentration at Mauna Loa Observatory as a function of
time (Scripps Institute of Oceanography, https://scripps.ucsd.edu).

show a secular year-on-year increase in atmospheric CO2, which is primarily attributed

to anthropogenic emissions of CO2 to the atmosphere. The growth of atmospheric CO2

accounts for about 44% of anthropogenic CO2 emissions (mean for 1960–2010, Ciais

et al., 2013), with the remainder sequestered into the ocean and terrestrial biosphere.

Figure 1.2 demonstrates that there are also variations in atmospheric CO2 of ≤10 ppm

on timescales of months to years. These variations are driven by the exchange of carbon

between the atmosphere, biosphere and ocean. The largest source of variability is due to

the seasonal cycle of the northern extratropical terrestrial biosphere (Sec. 1.1.1), whereby

uptake by the biosphere during the growing season (May–September) reduces the atmo-

spheric CO2 concentration, while CO2 is released to the atmosphere outside the growing

season when GPP is low but Re is still substantial. On interannual timescales, atmo-

spheric CO2 variability is primarily driven by the response of the ocean and terrestrial

ecosystems to internal climate variability.

1.2 Top-down flux estimation

Due to the fact that anthropogenic emissions of CO2 are reasonably well quantified

relative to the natural fluxes, measurements of atmospheric CO2 can be used to infer

natural sources and sinks at Earth’s surface. Furthermore, on seasonal to interannual
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timescales, variations in atmospheric CO2 are dominated by natural fluxes, particularly

from the terrestrial biosphere. Therefore, measurements of atmospheric CO2 can be

used to constrain carbon fluxes between the terrestrial biosphere and atmosphere, and

thus better constrain the magnitude and timing of CO2 fluxes originating from processes

within the terrestrial biosphere.

1.2.1 History of flux estimation

Early investigations

In contrast to the present day, much of the early interest in observing CO2 was motivated

by its use as an atmospheric tracer. The influential Swedish meteorologist, Carlf-Gustav

Rossby had been a strong advocate of CO2 measurements, with the intention of using

these observations to track air mases (Keeling, 1998). Rossby started a Swedish program

for CO2 observations in 1955, which was a major factor in triggering interest in mea-

suring CO2 in the USA a few years later. However, the measurements obtained from

the Swedish program were so imprecise (150–450 ppm) as to be useless and the pro-

gram was abandoned (Keeling, 1998). The first study to reliably monitor atmospheric

CO2 was Keeling (1960), who deployed continuous atmospheric CO2 monitoring stations

in Antarctica, Hawaii, and California in combination with ship and aircraft based flask

sampling. Keeling (1960) found that monthly variability in atmospheric CO2 could be ex-

plained by the seasonal cycle of uptake and release of CO2 by terrestrial land ecosystems

and secular year-on-year growth due to anthropogenic emissions. These observations also

demonstrated that atmospheric CO2 showed little small-scale variability at locations dis-

tant from local sources or sinks, implying that atmospheric CO2 variability is primarily

due to large-scale fluxes coupled with atmospheric transport.

Not long after these first continuous CO2 monitoring stations were established, at-

tempts were made to quantify sources and sinks of CO2. Bolin and Keeling (1963) ana-

lyzed the meridional seasonal cycle of CO2 using data from the sites in Keeling (1960),

and a new continuous measurement station at Point Barrow, Alaska. They applied an

inversion method to constrain CO2 fluxes and atmospheric transport. A forward model

was constructed, giving the time rate of change of CO2 (q) as a function of surface fluxes

(Q(µ, t)) and a vertically-averaged one-dimensional diffusion model transporting CO2

meridionally:
∂q

∂t
=
K

a2

∂

∂µ

[
(1− µ2)

∂q

∂µ

]
+Q(µ, t), (1.6)

where K is a latitude-independent exchange coefficient, µ = sin(α), α being latitude, and
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a is the radius of the Earth. Anthropogenic emissions were prescribed while both K and

the natural sources and sinks of CO2 were optimized; the latter was approximated with a

truncated series of Legendre polynomials. Bolin and Keeling (1963) found a large source

of CO2 in the tropics (∼11.0 PgC yr−1) and a sink split evenly between the northern

and southern hemispheres poleward of 30◦ (∼5.5 PgC yr−1), but conceded that these

estimates were unreliable. They argued that greater observational coverage of CO2 was

required for robust estimates and concluded that CO2 is an excellent tracer for the study

of atmospheric mixing processes. Junge and Czeplak (1968), using a similar forward

model, showed that simulated CO2 concentrations were not very sensitive to variations

of K or prescribed biospheric fluxes with latitude and concluded that the inverse problem

was intractable. However, Enting and Mansbridge (1989) showed that large errors are

introduced by the simple vertically-averaged one-dimensional diffusion model, with the

largest source of error due to equating observed surface data to vertical averages in the

model. Enting and Mansbridge (1989) showed that these errors are much reduced in a

2-D latitude-altitude model.

As well as performing the first CO2 flux inversion, Bolin and Keeling (1963) showed

that the rate of increase in atmospheric CO2 was insufficient to account for all fossil fuel

emissions. Previous studies, based on 14C observations in wood, had already suggested

that a significant fraction of fossil fuel emissions were likely absorbed by the ocean (Rev-

elle and Suess, 1957; Bolin and Eriksson, 1959). Thus, at the time, it was generally

believed that the reduced growth rate of atmospheric CO2 was due to uptake by the

ocean. However, it was also proposed that the terrestrial biosphere was sequestering

carbon through the CO2 fertilization effect (Bolin and Bischof, 1970).

The first 2-D model simulation of atmospheric CO2 was performed by Machta (1972),

using prescribed surface fluxes. Modeled CO2 concentrations showed large differences

from observed values. These differences were attributed to incorrect biospheric fluxes,

and the author concluded that more realistic biospheric fluxes needed to be developed in

order to produce more realistic simulations. Machta (1972) also noted that there seemed

to be IAV present in the CO2 growth rate. By the mid-1970s, IAV was clearly present

in atmospheric CO2 datasets (Keeling et al., 1976a,b), and this IAV was soon found to

be closely associated with El Niño-Southern Oscillation (ENSO) variability (Bacastow,

1976; Bacastow et al., 1980).

In 1979, the so-called “Charney Report” was released (Charney et al., 1979). This

was a report created by an ad hoc study group to assess the impact of increasing CO2

on climate, and concluded that increasing CO2 was likely to have substantial climate

impacts. This report signifies the time around which the scientific community was re-
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alizing that anthropogenic CO2 emissions were resulting in significant global warming.

Thus by this time, interest in monitoring atmospheric CO2 was primarily motivated by

the impact of rising CO2 on Earth’s climate.

Numerical modeling and inverse methods

In 1980, Pearman and Hyson (1980) used a 2-D model (latitude–altitude) to perform

a quasi-inversion of atmospheric CO2 data. A necessary assumption for this approach

was that CO2 observed at remote observing sites was representative of the zonal mean

background. This assumption clearly broke down on many occasions, such as the phase

shift between observations over the North Atlantic and at Barrow, Alaska (Pearman and

Hyson, 1980). To perform their inversion, they first ran a forward model with prior

biospheric fluxes. The fluxes were then iteratively adjusted based on a trial-and-error

approach. From this approach, Pearman and Hyson (1980) obtained a rough estimate of

the magnitude of uptake by the terrestrial biosphere in the northern extratropics during

the growing season. This model was then further developed by Pearman et al. (1983) to

estimate ocean uptake.

Around the same time, the first 3-D simulations of atmospheric CO2 were published.

The first 3-D CO2 tracer transport study was performed by Fung et al. (1983) using

the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) at

8◦ × 10◦ horizontal resolution with nine vertical layers. They showed that zonal gradi-

ents exist in CO2 and that the zonal mixing timescale is longer than the timescale for

biospheric exchange. They suggested that IAV at monitoring stations could result from

variability in atmospheric circulation, although later studies showed that it was primarily

IAV in CO2 sources and sinks that resulted in IAV in observed CO2 (Law and Simmonds,

1996). Throughout the 1980s there were a number of studies that used tracer transport

models to simulate atmospheric CO2 fields based on prescribed surface fluxes (Fung,

1986; Fung et al., 1987; Keeling et al., 1989a; Taylor, 1989). These studies examined

the spatiotemporal structures in atmospheric CO2 and compared simulated atmospheric

CO2 with observations to evaluate estimated fluxes of the terrestrial biosphere.

In 1989, Enting and Mansbridge (1989) and Tans et al. (1989) used numerical inverse

methods to assimilate surface CO2 data and optimize surface fluxes using 2-D atmospheric

tracer transport models. Both studies found that a large sink of CO2 was required in the

northern extratropics to reasonably reproduce the pole-to-pole CO2 gradient. However,

Tans et al. (1989) also argued that zonal variability in observed CO2 precluded robust

conclusions with a 2-D model. As an illustration of this technique, we will describe the

method used by Tans et al. (1989). They first performed curve fitting on boundary layer
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CO2 data from background observing sites to obtain the meridional CO2 distribution as

a function of latitude. The fitted CO2 was then used to prescribe the atmospheric CO2

concentration in the lowest atmospheric layer. The model was then integrated forward

in time and required surface fluxes were calculated.

The earliest CO2 flux inversions performed using a 3-D transport model were by

Keeling et al. (1989b) and Tans et al. (1990) using “synthesis” inversion approaches. In

these studies, atmospheric CO2 fields are simulated for a variety of sources (i.e., fossil fuel

emission, NEE) individually. The linear combination of sources was estimated so that

the calculated CO2 fields matched the observed concentrations. Therefore, the overall

strength of the sources could be varied but their spatiotemporal structure prescribed.

Several years later, Enting et al. (1995) improved on this approach by applying a Bayesian

technique to take into account prior uncertainties when weighting source contributions.

Both Keeling et al. (1989b) and Tans et al. (1990) again found that a large sink in

the northern extra-tropics was required to match the observed meridional CO2 gradient,

consistent with previous 2-D inversions. Tans et al. (1990) further argued that this sink

must be due to the terrestrial biosphere, because the partial pressure difference in CO2

between the surface ocean and atmosphere would have to be much larger than had been

observed to provide an oceanic sink of this magnitude. They concluded that the global

oceans sequestered less than 1 PgC yr−1, while there must be a terrestrial sink of 2.0–

3.4 PgC yr−1. In a review of CO2 uptake by the ocean, Siegenthaler and Sarmiento (1993)

demonstrated that Tans et al. (1990) likely underestimated ocean uptake (Siegenthaler

and Sarmiento (1993) suggested 2.0 ± 0.6 PgC yr−1 and AR5 reported 2.0 ± 0.7 for

1980–1989 (Ciais et al., 2013)), but agreed that the atmospheric growth rate and uptake

by the oceans are insufficient to account for CO2 released by anthropogenic emissions,

suggesting a terrestrial sink is in fact present. In the intervening years, further evidence

has supported the idea that the CO2 sink is split between the terrestrial biosphere and

oceans, and this idea has generally gained favor over the earlier view that the oceans

were almost entirely responsible for the uptake (Ciais et al., 2013).

Model errors

By the 1990s, the importance of employing 3-D transport models for interpreting observed

atmospheric CO2 was clear. Furthermore, increasing computational power had made such

models more feasible than ever before. At the same time, it was recognized that there

were considerable differences in inversion-based global CO2 budgets arising from model

transport (Law et al., 1996). To investigate differences in model transport, the CO2

Transport Comparison Project (TransCom) was initiated in 1993. The results of a 12-
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model inter-comparison were presented in Law et al. (1996). They found that models

had substantial differences in the efficiency of the inter-hemispheric exchange, resulting

in differences between models in the annual mean meridional gradient at the surface by a

factor of two. This is a major problem for inferring the meridional distribution of annual

net CO2 sources and sinks. If the inter-hemispheric mixing is too vigorous, then the sink

would be underestimated in the northern hemisphere and overestimated in the southern

hemisphere (because the fossil fuel source is predominantly in the northern extra-tropics).

Conversely, the opposite bias would be inferred if the mixing is too weak.

Modeled planetary boundary layer (PBL) dynamics were also found to have a signifi-

cant impact on inferred fluxes by Denning et al. (1995). This is because insolation drives

both mixing within the PBL and photosynthesis by vegetation, such that PBL height and

NEE by the biosphere are highly correlated. Therefore, the PBL will be deeper during

the day when net uptake of CO2 by the biosphere is occurring. Conversely, the PBL

will be shallow at night when there is net release of CO2 by the biosphere. Under both

circumstances, observed boundary layer CO2 mole-fractions will be enhanced relative to

a stationary mean PBL height. For this reason, this phenomena is commonly referred to

as the “rectifier effect”. If variations in PBL height are not accurately modeled, system-

atic errors can be introduced. As an example, consider a model with a constant daily

mean PBL height. If this model were to assimilate observations at a surface sampling site

to optimize NEE, uptake would be underestimated during the day while release would

be overestimated at night (Denning et al., 1999b). Furthermore, summer uptake would

also be underestimated relative to winter release in extratropical regions (Denning et al.,

1995).

In the second TransCom study, Denning et al. (1999a) performed SF6 simulations

with 11 tracer transport models. They found that most models were reasonably suc-

cessful at simulating observed meridional gradients of SF6 in the remote boundary layer,

but found less agreement at continental sites. They also found that there were large

differences in vertical transport between models. Differences in meridional gradients in

SF6 could not be solely attributed to meridional transport or inter-hemispheric mixing;

instead a combination of meridional and vertical transport caused the differences. They

suggest that differences among models were best explained by differences in sub-grid-scale

parameterized vertical transport. The impact of vertical transport on flux inversions of

surface data was further demonstrated by Stephens et al. (2007) and Yang et al. (2007).

Stephens et al. (2007) used measurements of the vertical atmospheric CO2 distributions

at midday to evaluate flux inversion posterior CO2 fields. They showed that, for many

flux inversions, the vertical gradient in atmospheric CO2 was too small during the sum-
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mer, suggesting that these models had vertical mixing which was too strong and thus

overestimated uptake by the biosphere when assimilating surface observations. In con-

trast, during the winter, the multi-model mean vertical CO2 profile was consistent with

observed concentrations. The models that best reproduced the observed CO2 vertical

profiles estimated weaker uptake by northern extratropical land (−1.5±0.6 PgC yr−1) in

comparison to the multi-model mean (−2.4± 1.1 PgC yr−1), which was compensated for

by a smaller source in tropical land (+0.1 ± 0.8 PgC yr−1) than the multi-model mean

(+1.8± 1.7 PgC yr−1).

Despite the significant difficulties related to model transport, the number of synthesis

flux inversion studies increased dramatically through the 1990s and into the 2000s (Enting

et al., 1995; Fan et al., 1998; Kaminski et al., 1999; Bousquet et al., 1999; Taguchi,

2000; Bousquet et al., 2000; Gurney et al., 2002; Peylin et al., 2002). Many of these

studies attempted to constrain CO2 fluxes on sub-continental-scale regions. However, the

results were highly inconsistent in the net fluxes on regional scales. There are multiple

reasons for this. Model transport errors play a role, but the inversion set-up and sparsity

of observations also have large impacts on regional fluxes. Significant errors can be

introduced through the aggregation of fluxes (Kaminski et al., 2001). In most inversions

of the time, fluxes were optimized for a small number of large regions which helped

regularize the inverse problem and save on limited computational resources. The problem

with this method is that imposed structures within a spatial domain cannot be optimized.

Kaminski et al. (2001) showed that the aggregation errors can be of the same order as

the inferred flux. Similarly, Peylin et al. (2002) showed that aggregation errors can

be introduced based on the temporal aggregation of optimized fluxes. Errors can also

be introduced by the uneven spatiotemporal distribution of observations. It has been

found that regional flux estimates are sensitive to the specific observing sites included

in the analysis (Rödenbeck et al., 2003; Gurney et al., 2008; Bruhwiler et al., 2011).

For example, Bruhwiler et al. (2011) found that the inclusion of newer European sites

results in a large re-balancing of uptake from Europe to boreal Eurasia in comparison to

an inversion with existing older sites. Unfortunately, model transport errors are still a

major problem for flux inversions, and constraints on regional net fluxes remain sensitive

to the inversion set-up.

Changes in the seasonal cycle amplitude

Around the same time as these developments in inverse modeling were occurring, a

number of studies showed that observed CO2 hinted at an increase in the amplitude of

the seasonal cycle in the northern extratropics (Bacastow et al., 1985). Keeling et al.
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(1996) showed that the amplitude of the seasonal CO2 cycle had increased by 20% in

Hawaii and 40% in the Arctic over three decades of measurements. They also found that

the spring drawdown of CO2 had advanced by about a week, suggesting a lengthening of

the northern extratropical growing season. More recently, Graven et al. (2013) showed

that the trend in the amplitude of the seasonal cycle of CO2 has continued, increasing

by ∼50% between 45–90 ◦N.

The underlying mechanisms driving these changes in the seasonal cycle are not fully

understood. Soon after the trend was discovered, it was suggested that it was partially

explained by the CO2 fertilization effect and/or increased winter Re due to warming

(Houghton, 1987; Kohlmaier et al., 1989). Myneni et al. (1997) showed that there is

a positive trend in the normalized difference vegetation index (NDVI) over 1981–1991,

consistent with a lengthening of the growing season between 45–70 ◦N and with increasing

GPP. Similarly, increasing fall and early winter Re has also been observed in northern

ecosystems (Commane et al., 2017). Some studies link the trend primarily to boreal and

Arctic ecosystems (Randerson et al., 1997; Graven et al., 2013), while others suggest that

intensification of agriculture in cropland between 25◦N and 60◦N is the primary driver

(Zeng et al., 2014).

Remote sensing of CO2

During the 2000s, remote sensing instruments and techniques were developed and em-

ployed to measure CO2 with sufficient precision and accuracy to provide useful informa-

tion for carbon cycle science. These observations are made by fitting spectral absorption

lines to retrieve abundances of atmospheric gases along an atmospheric path from a source

to detector. Using the sun as a source and CO2 absorption lines in the near infrared, this

technique can be used to retrieve the column abundance of CO2 with relatively uniform

sensitivity throughout the troposphere. If O2 is simultaneously retrieved, then the ratio

of the column abundance of CO2 to O2 (scaled by the mean O2 concentration) gives the

column-averaged dry-air mole fraction of CO2 (XCO2).

In anticipation of space-based spectrometers that would measure XCO2 , the Total Car-

bon Column Observing Network (TCCON), a global network of ground-based Fourier

transform spectrometers, was founded in 2004 (Wunch et al., 2011). This network was

designed to be a validation network for space-based observing systems as well as for direct

use in carbon cycle science, providing CO2 observations with high precision (< 0.25% in

CO2). TCCON measurements are tied to the World Meteorological Organization (WMO)

scale for in-situ measurements of CO2 by performing comparisons with WMO-scale in-

strumentation aboard aircraft that measure atmospheric CO2 profiles. Bias-corrected
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TCCON measurements are of high accuracy, with biases of less than < 0.8 ppm (Wunch

et al., 2010). Starting in the early 2000s, a number of space-based instruments were

launched that could make atmospheric CO2 measurements. However, it was not until

the launch of the Greenhouse Gases Observing Satellite (GOSAT, 2009–present), that

reliable space-based XCO2 observations were made. Measurements of XCO2 from GOSAT

are performed in a similar manner to TCCON, and thus GOSAT observations can be

validated using TCCON data in a direct manner. The main difference between these ob-

serving systems is that GOSAT observes solar radiation that is reflected off the Earth’s

surface, rather than looking directly at the sun.

Constraints on surface fluxes provided by space-based observations of XCO2 are sub-

stantially different from those provided by measurements within the boundary layer,

which were widely used in earlier flux inversion studies. XCO2 measurements reflect

a greater influence of the large-scale, free tropospheric transport (Keppel-Aleks et al.,

2011). In general, variability in XCO2 is most strongly influenced by synoptic scale

eddy-driven disturbances of the meridional CO2 gradient (Keppel-Aleks et al., 2011).

Therefore, an advantage of XCO2 observations relative to surface observations is that

they are somewhat less sensitive to model errors in PBL dynamics. A second advantage

is that XCO2 observations generally have smaller representativeness errors (caused by

differences in temporal and spatial resolutions between the observations and the model).

For surface observations, representativeness errors are typically much larger (∼1 ppm,

Rödenbeck et al., 2003) than instrumental errors (∼0.2 ppm) and can be systematic.

The main drawback of XCO2 measurements is that they are difficult to validate. In situ

observations can easily be calibrated with a standard gas, however, more challenging

and expensive methods are required for XCO2 validation. Furthermore, the observational

coverage from satellites is so extensive that it is impractical to validate space-based XCO2

observations directly. The method employed to evaluate space-based XCO2 is through

comparisons with TCCON, which is in turn validated with aircraft campaigns and Air-

Core, a tube which collects ambient air samples while descending through the atmosphere

from a high altitude (Karion et al., 2010). Unfortunately, small biases in retrieved XCO2

can result in large biases in retrieved fluxes, which has made robust estimates of an-

nual net fluxes on small scales challenging. Miller et al. (2018) calculate that the global

mean absolute value of the atmospheric XCO2 signal from biospheric fluxes is 0.5 ppm in

February and 1.3 ppm in July, whereas satellite observations have systematic errors with

a mean absolute value of 0.6 ppm in both February and July.

Space-based instruments have dramatically increased the number of measurements

that can be assimilated in flux inversion studies. This increased data density has moti-
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vated the development of more sophisticated flux inversion methods beyond the widely

applied synthesis inversions. During the 2000s, both Kalman filter methods (Bruhwiler

et al., 2005; Peters et al., 2005; Michalak, 2008; Feng et al., 2009) and variational as-

similation methods (Chevallier et al., 2005; Baker et al., 2006b; Henze et al., 2007) were

developed. These methods were then applied to GOSAT observations (Basu et al., 2013,

2014; Saeki et al., 2013; Maksyutov et al., 2013; Chevallier et al., 2014; Deng et al.,

2014, 2016; Houweling et al., 2015). Many early inversions found substantial differences

in annual net fluxes between inversions based on surface observations and those based

on GOSAT observations (Chevallier et al., 2014; Houweling et al., 2015). Although dif-

ferences are likely due to a variety of factors, it has become quite clear that there are

regional-scale biases in the satellite observations that can result in net annual fluxes

that are unphysical (Chevallier et al., 2014). Over time, the retrieval algorithms are

being improved, so there is hope that many of the retrieval errors in the observations

can be mitigated. Recent comparisons with aircraft observations suggest that GOSAT

retrieval biases and model transport errors contribute roughly equally to errors in flux

inversions (Frankenberg et al., 2016). Similar retrieval biases have been found with ob-

servations from the Orbiting Carbon Observatory-2 (OCO-2) (Wunch et al., 2017), which

was launched in 2014. However, OCO-2 has much higher data density on small spatial

scales than GOSAT. This high spatial density of OCO-2 measurements allows for more

precise quantification of retrieval biases and may give insights into the causes of these

biases.

Despite these challenges, space-based XCO2 measurements have been successfully ap-

plied to address questions that are less sensitive to retrieval biases. An area of particular

success is tropical carbon dynamics. Since the 1970s, it has been known that IAV in the

atmospheric growth rate is primarily modulated by the impact of ENSO variability on

the tropical carbon cycle. However, the poor spatial coverage of surface observing sites

has meant that this variability is poorly observed. With the greater spatial coverage

provided by GOSAT and OCO-2, variability in tropical CO2 fluxes on regional scales has

been investigated (Deng et al., 2016; Liu et al., 2017; Chatterjee et al., 2017; Bowman

et al., 2017). Major advances have also occurred in the detection of large localized sources

using XCO2 from OCO-2 (Nassar et al., 2017; Schwandner et al., 2017).

Biosphere model optimization

An emerging area of research has been to optimize parameterizations within TBMs using

flux constraints from atmospheric CO2 observations. Wang et al. (2001) and Kaminski

et al. (2002) were among the first to apply an inverse modeling approach to optimize
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TBM parameters using CO2 observations. Kaminski et al. (2002) coupled the Simple

Diagnostic Biospheric Model (SDBM) to the TM2 CTM and tried to optimize the light

use efficiency (LUE) and the Q10 parameter, which is the factor by which respiration is

enhanced for a 10 ◦C increase in temperature, for the 12 different biomes specified in the

TBM. One of the main results of that study was that an increase in the LUE of the high-

latitude deciduous forests and tundra biomes was required in the model to account for the

observed seasonal cycle in the CO2 data. The Kaminski et al. (2002) study was extended

by Rayner et al. (2005), who replaced the SDBM model with the more complex Biosphere

Energy Transfer Hydrology (BETHY) model, which incorporates a more process-based

description of the terrestrial biosphere. This assimilation system has become known as

the Carbon Cycle Data Assimilation System (CCDAS) and has been applied in a number

of studies (Kaminski et al., 2010, 2012; Koffi et al., 2012, 2013; Ziehn et al., 2011, 2012).

Kaminski et al. (2013) further developed CCDAS to assimilate soil moisture, fraction

of absorbed photosynthetically active radiation and XCO2 measurements within a single

assimilation system. Independent of CCDAS, a number of other studies have attempted

to optimize TBM parameters by assimilating atmospheric CO2 measurements (Schuh

et al., 2013; Chen et al., 2017).

1.2.2 Review of urban GHG studies

Urban emissions account for 37–49% of direct global GHG emissions, and a larger fraction

for indirect emissions (Seto et al., 2014). This is despite the fact that urban areas only

occupy 0.2–2.7% of ice-free land (Seto et al., 2014). Thus, mitigating GHG emissions

from urban areas will play an important role in mitigating climate change. Bottom-

up accounting of emissions will be required to monitor emission reductions, however,

independent verification of these estimates will also be required. Measurements of GHG

enhancements in urban areas provide an independent observational constraint to estimate

emissions.

Over the past decade, a number of projects (Table 1.1) have been initiated to mon-

itor GHG emissions in urban areas with the goal of providing top-down emission con-

straints. Monitoring urban GHG emissions using atmospheric observations is still at the

experimental stage, with different approaches being applied for different projects. The

differences in approaches are partially due to available resources and the specific problem

addressed, but also because no approach is clearly superior to any other. A number of

different measuring platforms have been used, including surface-based in-situ and flask

measurements (Newman et al., 2013; McKain et al., 2015; Hopkins et al., 2016; Shuster-
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Table 1.1: Examples of large city emission monitoring projects.
Project Name

City
Website References

INFLUX
Indianapolis, U.S.A.

http://influx.psu.edu Davis et al. (2017)

BEACO2N
California Bay Area, U.S.A.

http://beacon.berkeley.edu/ Shusterman et al. (2016)

Salt Lake City, U.S.A.
http://lair.utah.edu/urban.html

Pataki et al. (2006)
Mitchell et al. (2018a)

Bares et al. (2018)

Los Angeles, U.S.A.
http://megacities.jpl.nasa.gov

Newman et al. (2016)
Verhulst et al. (2017)

CO2-MegaParis
Paris, France

http://co2-megaparis.lsce.ipsl.fr
Bréon et al. (2015)
Staufer et al. (2016)

Xueref-Remy et al. (2018)

man et al., 2016; Miles et al., 2017; Verhulst et al., 2017; Bares et al., 2018; Xueref-Remy

et al., 2018), remote sensing of solar absorption spectra (Wunch et al., 2009, 2016; Fu

et al., 2014; Wong et al., 2015, 2016; Chen et al., 2016; Viatte et al., 2017; Hedelius et al.,

2017, 2018), and aircraft-based in-situ observations (Wennberg et al., 2012; Cambaliza

et al., 2015). Observations within the PBL are of particular relevance to the OP-FTIR

system, and are the main focus of this section.

In-situ or flask observations within the PBL are the most widely applied observing

technique and are used in all of the projects listed in Table 1.1. The Indianapolis Flux

Experiment (INFLUX) employs 12 continuously sampling GHG sensors on towers rang-

ing between 40 and 100 m above ground level (AGL), with two of the towers located

outside of the city (Indianapolis) as background sites. The Berkeley Atmospheric CO2

Observation Network (BEACO2N) project employs a large number (∼28) of moderate

quality observing sites in the California Bay Area. The instrument sites were chosen in

an ad-hoc approach based on site availability, with the majority of sites being deployed

at schools and near the ground (< 10 m AGL) (Shusterman et al., 2016). The observing

network in Salt Lake City has five continuous observing sites within the urban area and

one background site, all of which are located near the surface (≤ 20 m AGL). These

sites provide the longest timeseries of any urban GHG observing network (with multiple

sites), allowing the investigation of decadal trends (Mitchell et al., 2018b). In Los Ange-

les, there are 16 instrument sites at locations chosen based on the analysis of Kort et al.

(2013). The instruments are deployed at different heights for different sites: six sites have

instruments at ≥ 50 m AGL, while six have instruments at ≤ 20 m AGL (Verhulst et al.,
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2017). The network includes four background sites: two marine sites, one continental

and one continental/mid-troposphere site. In Paris, instruments are deployed at six sites,

with different sampling heights for different sites (4–317 m AGL) (Xueref-Remy et al.,

2018).

Characterizing enhancements

A number of studies have investigated the atmospheric imprint of the urban emissions

observed at urban sites relative to background sites. From this type of analysis, insights

into the spatiotemporal structure of the urban GHG enhancements can be garnered. For

Los Angeles, Verhulst et al. (2017) examined the enhancements of CO2 and CH4 at urban

sites relative to marine background sites. They found that the marine background can be

characterized to within ∼1 ppm for CO2 and ∼10 ppb for CH4, and that mid-afternoon

enhancements near downtown Los Angeles reach ∼15 ppm for CO2 and ∼80 ppb for

CH4. They concluded that analytical and background uncertainties are small relative

to the urban enhancements, suggesting that local enhancements can be well observed.

For INFLUX, Miles et al. (2017) examined the afternoon enhancements at urban tower

sites relative to background sites during the dormant season and found significant urban

enhancements of CO2, CO and CH4 relative to a background tower site. Similarly, in

Paris, Xueref-Remy et al. (2018) found that sites nearer to the urban center have larger

enhancements relative to the background sites, and low wind speeds result in larger en-

hancements for urban sites. These studies showed that boundary layer enhancements are

generally significant and can be well characterized relative to background sites. However,

there can still be significant differences between urban sites that are not directly related

to emissions.

The sampling height of urban sites can have a significant impact on observed urban

enhancements. Miles et al. (2017) examined the vertical gradient in GHGs for the subset

of INFLUX towers that have multiple sampling heights. They found that differences in

the sampling height affect the urban enhancements by up to 50% during the afternoon,

and found that vertical gradients are largest at the downtown site. Similarly, Xueref-

Remy et al. (2018) found significant differences in the diurnal cycle observed at the

same station at 50 m and 180 m AGL in Paris. They attributed differences to strong

stratification within the PBL at night, such that measurements higher in the PBL are

less sensitive to nighttime emissions. They found that vigorous mixing results in a much

reduced altitude gradient during the day (0.3 ppm). Haszpra et al. (2015) investigated

the daytime vertical structure of CO2 within the boundary layer using tall tower and

aircraft measurements. They generated an expression to approximate the relative dry-
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air mole fraction enhancement of CO2 (C) within the boundary layer as a function of

observing height (z):

C = 5.3
cws
w∗

(
z

zi

)− 1
5

− 0.7
cw1

w∗

(
1− z

zi

)−1

+ constant, (1.7)

where cws is the vertical CO2 flux at the surface, cw1 is the vertical CO2 flux at the top

of the mixed layer, w∗ is the convective velocity scale, and zi is the PBL height. The first

term on the right-hand side represents the change in concentration due to sources/sinks

at the surface, while the second term represents entrainment at the top of the boundary

layer. Note that this equation cannot be applied very close to the surface or the top

of the boundary layer as C approaches infinity (Haszpra et al., 2015). Equation (1.7)

predicts that the urban GHG enhancement will increases rapidly for observing heights (z)

approaching the surface, which is an important consideration for most urban observing

networks.

Flux estimation

The main objective of monitoring urban GHG enhancements is to estimate GHG emis-

sions. The simplest approach to estimate emissions is probably the mass-balance ap-

proach. In this approach, an airmass is observed before and after passing over a source.

The change in GHG abundance is then inferred to be due to surface fluxes (Mays et al.,

2009; Peischl et al., 2015; Super et al., 2017). This approach is most easily applied to air-

craft measurements, where there is information on the vertical profile (Mays et al., 2009;

Peischl et al., 2015), but has also been applied to ground-based in-situ measurements by

Super et al. (2017) to estimate CO2 and CO emissions from Rotterdam, the Netherlands.

Super et al. (2017) deployed two surface in-situ sites, one upwind and one downwind of

the city of Rotterdam, the Netherlands. Assuming the emissions were well-mixed within

the PBL and neglecting entrainment, Super et al. (2017) estimated afternoon emissions

consistent with city emission estimates for other cities. However, this type of analysis

requires a number of assumptions, and significant biases could easily be present.

More sophisticated Bayesian inversion approaches have also been applied. Most urban

flux estimation studies have employed a meso-scale inversion model. This technique has

the potential to best utilize the information contained in GHG measurements, and has

been applied previously to constrain urban CH4 (Viatte et al., 2017) and CO2 (Lauvaux

et al., 2013, 2016) fluxes. However, as with global-scale flux inversions, errors in model

transport can have a large impact on inferred fluxes (Deng et al., 2017). Furthermore,
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dense observational coverage is required to fully constrain the many different sources of

GHGs within an urban environment.

1.2.3 State of the science

In his reflections on his career, Charles “Dave” Keeling recalled that Roger Revelle, the

director of the Scripps Institution of Oceanography in the 1950s, “insisted that [a CO2

sampling] aircraft project take priority over starting up measurements at Mauna Loa,

because he believed that the main objective of [Keeling’s] program should be to gain a

‘snapshot’ of CO2 around the world. He still held to the prevailing belief that the CO2

concentration in air was spatially variable and that therefore sampling must be widespread

to establish a reliable global average. Measurements should be repeated in, say, 20 years

to see whether the global concentration had noticeably changed” (Keeling, 1998). This

quote illustrates how little was understood about the carbon cycle when this ground-

breaking CO2 observing project was being implemented. Significant progress in carbon

cycle science has been made in the intervening 60 years. We now know that CO2 is a well-

mixed atmospheric species. Variability in seasonal to inter-annual timescales is driven

by the terrestrial biosphere, while long-term growth in atmospheric CO2 is driven by

anthropogenic emissions. Furthermore, this growth is known to only account for roughly

44% of anthropogenic CO2 emissions, with the remainder being sequestered by oceans

and the terrestrial biosphere.

Yet many questions remain unanswered. There is now a lot of evidence supporting

a terrestrial land sink large enough to imply that the amount of biomass is increasing,

particularly in the northern extratropics. But it is unclear if this uptake is concentrated

in certain ecosystems and climates. Furthermore, it is unclear why the increased uptake

is occurring, and TBMs have large disagreements on the relative importance of different

processes driving the uptake (Huntzinger et al., 2017). Questions also remain regarding

the increase in the magnitude of the CO2 seasonal cycle. For example, the relative

contribution of boreal and Arctic ecosystems versus croplands to these changes is not

well constrained.

Estimates of annual net fluxes on regional scales continues to be a major focus of

inverse modelling studies. However, given that transport errors, biases in observations,

and other factors continue to prevent reliable constraints on regional net fluxes, it may be

time to reassess the questions that can be most effectively addressed with top-down flux

estimations. In my opinion, the central question to answer is “How will the terrestrial

carbon sink evolve in time?” To address this question, most top-down studies have
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attempted to constrain the current spatial distribution of the terrestrial carbon sink. I

suggest that using atmospheric CO2 constraints to evaluate the performance of TBMs

will yield more productive results.

Evaluating TBMs offers some advantages over estimating annual net fluxes. One

advantage is that larger signals in the observations can be used. For example, model es-

timates of northern extratropical summer biospheric drawdown can be evaluated against

observations. The signal of summer drawdown in observed CO2 is large (∼0.5 Pg week−1)

and thus constraints on this flux can be estimated with more confidence than smaller an-

nual net fluxes (∼0.02 Pg week−1, assuming 1 Pg yr−1 sink). These constraints can also

be combined with independent constraints on GPP from SIF observations to evaluate

both simulated GPP and Re. A second advantage of evaluating TBMs is that they can

be used to simulate changes in the terrestrial carbon sink into the future. The current

spatial structure of the terrestrial carbon sink is likely transient. Increasing atmospheric

CO2, climate change, and nutrient availability are likely to impact the terrestrial carbon

sink. Therefore, TBMs are required to understand the evolution of the land sink under

climate change.

1.3 Thesis overview

This thesis has two aims: (1) to investigate the utility of atmospheric CO2 observations in

evaluating CO2 fluxes in TBMs, and (2) to introduce a system to monitor anthropogenic

GHGs from Toronto, Ontario.

The first objective involves three studies. The first study quantifies the sensitivity of

different observing systems to surface fluxes of CO2. The second study evaluates the mean

seasonal cycle of GPP and Re simulated by a set of TBMs. The final study quantifies

how well flux inversions can constrain IAV within the carbon cycle, and whether these

constraints can be used to evaluate TBMs.

For the second objective, the set-up of an open-path Fourier transform infrared spec-

troscopy (OP-FTIR) system in Toronto, Ontario is presented. Data collected from this

system are compared with meteorological observations and a nearby GHG monitoring

station run by Environment and Climate Change Canada (ECCC).

1.3.1 Key results

Four key results are obtained in this thesis:

1. Different CO2 observing systems have large differences in their spatiotemporal sen-
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sitivity to surface fluxes. These differences have significant impacts on net annual

CO2 fluxes estimated from these observing systems, and these impacts must be

considered when comparing flux inversions (Chapter 3).

2. Model-based seasonal cycles of Re show systematic differences from optimized Re

constrained by atmospheric CO2 and Solar Induced Fluorescence (SIF) measure-

ments, with the models overestimating Re during June–July and underestimating

Re during the fall. Further analysis suggests that biases may partially arise from

neglecting seasonal variability in the CUE (Chapter 4).

3. GOSAT flux inversions capture monthly NEE anomalies on continental-scales in the

tropics and June-July-August anomalies on sub-continental-scales in the northern

extra-tropics. Furthermore, GOSAT flux inversions capture anomalies in NEE

better than most TBMs. Thus, constraints from flux inversions can be used to

evaluate the response of TBMs to climate anomalies (Chapter 5).

4. An OP-FTIR system for CO2, CO, CH4 and N2O monitoring has been installed on

the University of Toronto’s St. George Campus. The system has been recording

spectra near continuously since November 2017 and will provide a valuable observa-

tional dataset which, in combination with other observing stations, can be used to

provide a top-down constraint on GHG emissions from Toronto, ON (Chapter 6).

The significance of this research

It is well understood that TBMs are required to predict changes in the airborne fraction of

CO2, yet how to best evaluate and improve these models remains a topic of debate. The

key results of this thesis demonstrate that top-down constraints on NEE are sufficient

to evaluate TBMs, particularly when constraints from CO2 observations are combined

with SIF constraints on GPP. The results show that TBMs have significant deficiencies

in simulating both the seasonal cycle of Re and flux anomalies in NEE, motivating fu-

ture investigations into how the model deficiencies can be corrected. Furthermore, the

results highlight fundamental ecological processes that are currently missing for TBMs,

particularly seasonal variability in the carbon use efficiency.

This thesis develops techniques that can be effectively used to identify deficiencies in

TBMs in future studies. Using constraints from atmospheric CO2 and SIF observations,

it may be possible to evaluate modeled GPP and Re on regional scales and this area of

research should be further investigated. Furthermore, GOSAT flux inversions are found

to provide a reasonable constraint on NEE anomalies over a range of scales. Future
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studies can build on these results and use flux inversion NEE anomalies to evaluate

model anomaly responses.

The OP-FTIR system installed in downtown Toronto is one of the first FTIR long-

path systems for monitoring city emissions in the world. This system will provide an

important component of a large GHG observation network being established in Toronto,

and will be useful for monitoring emission reduction targets.

1.3.2 Outline

The remaining chapters of this thesis are as follows:

Chapter 2 provides an overview of the theory, models, and data-sets used in this thesis.

Chapter 3 examines the sensitivity of observations to surface CO2 fluxes for the in-

situ surface network, TCCON, GOSAT, and OCO-2. First, the spatial coverage of

the observing systems is discussed in detail. Then the sensitivity of these observing

systems to surface fluxes is calculated with the GEOS-Chem adjoint model. Finally,

the implications for flux inversions are investigated with a series of observing system

simulation experiments (OSSEs).

Chapter 4 evaluates the seasonal cycle of GPP, Re and NEE produced by four TBMs

and FLUXCOM over northern mid-latitude ecosystems. First, model GPP and

NEE are evaluated using SIF and atmospheric CO2 observations, respectively. Then

an optimized seasonal cycle of Re is calculated based on GPP and NEE constraints.

Finally, optimized Re is used to evaluate model Re seasonal cycles.

Chapter 5 investigates how well GOSAT flux inversions can isolate NEE anomalies in

comparison to TBMs. First, the agreement between GOSAT flux inversions and

flux proxies, variables closely associated with NEE IAV, is quantified. Second,

the spatial scales over which the GOSAT inversion constrains flux anomalies is

examined. Finally, the sensitivity of the results to the inversion set-up is quantified.

Chapter 6 describes the installation of the OP-FTIR system, as-well as the measure-

ments and data analysis.

Chapter 7 provides the conclusions of this thesis and suggestions for future work.
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1.3.3 Contributions

The studies presented in this thesis were all performed by the author, but also benefited

from the contributions of many co-authors. The contributions for each study are given

here.

Chapter 3 was carried out by the author, Dylan Jones, Kim Strong, Zhao-Cheng Zeng,

Feng Deng, and Junjie Liu. The study was designed by the author, Dylan Jones

and Kim Strong, while the analysis was performed by the author. All co-authors

provided feedback on the analysis. The adjustments to the GEOS-Chem adjoint

model for these experiments were based on previous experiments by Junjie Liu and

were based on her code. Changes from this code were performed by the author and

Zhao-Cheng Zeng. The observation operator was adjusted from code developed by

Feng Deng.

Chapter 4 was carried out by the author, Debra Wunch, Dylan Jones, Kim Strong,

Feng Deng, Ian Baker, Philipp Köhler, Christian Frankenberg, Joanna Joiner, Vivek

Arora, Bakr Badawy, Anna Harper, Thorsten Warneke, Christof Petri, Rigel Kivi,

and Coleen Roehl. The study was designed by the author, Debra Wunch, Dylan

Jones and Kim Strong, while the analysis was performed by the author. All co-

authors provided feedback on the analysis. TBM fluxes were provided by Ian

Baker, Vivek Arora, Bakr Badawy, and Anna Harper. GOME-2 SIF datasets were

produced by Philipp Köhler and Joanna Joiner. Christian Frankenberg provided

feedback on the application of these SIF datasets. TCCON data were provided by

Thorsten Warneke, Christof Petri, Rigel Kivi, and Coleen Roehl.

Chapter 5 was carried out by the author, Dylan Jones, Kim Strong, Saroja Polavarapu,

Anna Harper, David Baker, and Shamil Maksyutov. The study was designed by

the author, Dylan Jones and Kim Strong, while the analysis was performed by

the author. All co-authors provided feedback on the analysis. Joint UK Land

Environment Simulator (JULES) fluxes were provided by Anna Harper.

Chapter 6 was carried out by the author, Kim Strong, Orfeo Colebatch, Debra Wunch,

Dylan Jones, Pierre Fogal, Richard Mittermeier, David Griffith, and Doug Worthy.

The OP-FTIR instrumentation was obtained on a long-term loan from ECCC.

The initial planning for the use of the OP-FTIR system was performed by the

author, Kim Strong and Orfeo Colebatch. The author and Orfeo Colebatch installed

the system, aligned the components and have been running the system to record
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spectra. Retrievals of recorded spectra have been performed by the author, as has

all subsequent analysis. All co-authors have provided feedback on these steps.



Chapter 2

Theory, models and datasets

2.1 Chemical transport model

A chemical transport model (CTM) is a numerical model which simulates atmospheric

chemistry. These models take meteorological fields as input and simulate chemicals as

passive tracers in the atmosphere by solving the continuity equations for mass conserva-

tion. For simulations of CO2, chemical reactions are generally neglected, as they have a

relatively small impact on atmospheric CO2 but are computationally expensive. Some

studies include the atmospheric chemical production of CO2 by oxidation of CO, CH4

and VOCs by prescribing an atmospheric source (Nassar et al., 2010). For the studies in

this thesis, no atmospheric chemical reactions are simulated nor is an atmospheric source

of CO2 prescribed.

2.1.1 GEOS-Chem model

The GEOS-Chem model (www.geos-chem.org) is a global 3-D chemical transport model

driven by assimilated meteorology, which can run in several different configurations.

For this work GEOS-Chem “Classic” is used, which is described below. It is driven

by assimilated meteorology from the Goddard Earth Observing System of the National

Aeronautics and Space Administration (NASA) Global Modeling and Assimilation Office

(GMAO). Both GEOS-5.2.0 and GEOS-FP (GEOS-5.7.2) reanalysis fields are used in this

analysis. The GEOS-5.2.0 fields are generated on a 0.5◦ × 0.66◦ rectilinear grid, while

GEOS-FP reanalysis fields are generated with cubed-sphere c360 horizontal resolution

(approximately 0.25◦ ×0.3125◦ on a rectilinear grid) and a 7.5 min time step for advection

and convection. For GEOS-Chem Classic, these fields are regridded to a rectilinear grid

with 47 vertical levels and either 4◦× 5◦ or 2◦× 2.5◦ horizontal resolution (depending on

28
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the specific model run). The fields are also temporally averaged to three-hour averages

for 3-D fields and one-hour averages for 2-D fields. GEOS-Chem employs a 30 min time

step for 4◦× 5◦ and 15 min time step for 2◦× 2.5◦.

To perform tracer transport, GEOS-Chem solves the equation of mass conservation

for a scalar tracer, given by
∂ρq

∂t
+∇ · ρqv = F, (2.1)

where q is the dry mixing ratio of a tracer, ρ is the air density, v is the velocity vector,

and F is the net source/sink. In GEOS-Chem, this is implemented using the numerical

scheme developed by Lin and Rood (1996). A “pressure fixer” is also applied, whereby

the horizontal velocity field is adjusted such that the vertically integrated divergence of

mass matches the pressure tendency. This step is required because the temporal and

spatial re-gridding of wind and pressure fields introduces a “mass-wind inconsistency”,

where mass is not conserved (Jöckel et al., 2001).

Convection in GEOS-Chem is based on three-hourly net updraft and detrainment

convective mass fluxes from the GEOS-5 simulation as described in Wu et al. (2007).

PBL mixing in GEOS-Chem is instantaneous between the surface and boundary layer

height. The PBL height is diagnosed from the archived GEOS-5 fields based on the bulk

Richardson number with surface friction (Holtslag and Boville, 1993; Wu et al., 2007).

Transport differences from the native model

The lower spatiotemporal resolution of GEOS-Chem relative to GEOS-5/GEOS-FP is

known to produce transport biases. Yu et al. (2018) showed that temporal averaging

of archived meteorology results in a reduction of vertical transport (partially due to the

loss of resolved convection) of up to 20% for GEOS-Chem at 0.25◦ × 0.3125◦ relative to

the GEOS-FP simulation. They also showed that significant errors are introduced from

the remapping from cubed-sphere to rectilinear grid, and that reducing the resolution

to 2◦ × 2.5◦ results in further weakening of vertical transport. They found that 222Rn

concentrations (half life of ∼4 days) are overestimated by up to 40% in the surface air

and underestimated by 40% in the upper troposphere for 2◦ × 2.5◦ relative to GEOS-FP

c360 simulations.

Stanevich (2018a) showed that transport is further degraded between the 2◦× 2.5◦ and

4◦ × 5◦ versions of GEOS-Chem. Based on comparisons between simulated and observed

CH4 fields, they found that differences were due to excessive mixing from enhanced

numerical diffusion at 4◦ × 5◦, which reduced the concentration gradients, particularly

in the upper troposphere and lower stratosphere. However, the loss of resolved vertical
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fluxes also resulted in reduced vertical mixing, particularly in mid-latitudes and northern

latitudes.

No corrections have been made for these known biases in this thesis. Therefore,

any systematic errors in these fields will impact the results. However, some sensitivity

analysis has been performed by comparing flux inversion results with inversions using

different transport models (Chapter 4) and by performing inversions at both 2◦ × 2.5◦

and 4◦ × 5◦ resolution (Chapter 5). The results of this thesis are found to be robust

despite transport errors.

Prescribed CO2 fluxes

The GEOS-Chem CO2 simulation was first developed by Suntharalingam et al. (2004).

This version of the CO2 simulation contained no chemistry but included prescribed CO2

fluxes from biomass burning, biofuel burning, fossil fuel burning and cement manufacture,

ocean exchange and NEE. Nassar et al. (2010) expanded the GEOS-Chem CO2 simu-

lation emission inventories to include prescribed CO2 surface emissions from shipping,

3-D spatially-distributed emissions from aviation, and 3-D chemical production of CO2.

However, in this thesis, no atmospheric chemical production of CO2 is prescribed. For all

simulations performed in this dissertation, the following CO2 fluxes are used. Monthly

ocean fluxes are from Takahashi et al. (2009), anthropogenic emissions are from Andres

et al. (2016), and biomass burning emissions are from the Global Fire Emission Database

GFEDv3 (van der Werf et al., 2006). Prescribed NEE fluxes are different for different

experiments and are introduced in each chapter.

2.2 Bayesian data assimilation

Bayesian inversion methods are used in both remote sounding and flux inversion appli-

cations. This section provides an overview of the Bayesian data assimilation formulation

and its application in remote sounding (Sec. 2.2.1) and 4D-Var flux inversions (Sec. 2.2.2).

The description presented here follows from Rodgers (2000), Henze et al. (2007) and Con-

nor et al. (2008).

In an inverse problem, the objective is to obtain improved knowledge of a state (x)

given a set of observations (y) which are related by a forward model,

y = H(x) + ε, (2.2)

where ε represents measurement and forward model errors. Inverse problems are typically
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ill-posed, such that the solution is underdetermined by the observational constraints. In

this case, regularization of the problem is required to produce a unique solution and

prevent overfitting of the data. Bayesian inference provides a mechanism to regularize

inverse problems using prior knowledge of the system. By Bayes’ theorem, the probability

of x given y, P (x|y), is given by:

P (x|y) =
P (y|x)P (x)

P (y)
. (2.3)

In this thesis, the probability density functions P (y|x) and P (x) are assumed to be

Gaussian, and are expressed as a function of prior knowledge of the state (xb):

P (x) ∝ exp

(
−1

2
(x− xb)TBx

−1(x− xb)

)
, (2.4)

P (y|x) ∝ exp

(
−1

2
(y −H(x))TR−1(y −H(x))

)
, (2.5)

where Bx and R are the prior state and measurement error covariances matrices. With

these expressions, Eq. 2.3 can be re-written as

P (x|y) ∝ exp

(
−1

2
(x− xb)TBx

−1(x− xb)− 1

2
(y −H(x))TR−1(y −H(x))

)
. (2.6)

From Eq. 2.6, the Bayesian cost function can be defined as:

J(x) =
1

2
(x− xb)TBx

−1(x− xb) +
1

2
(y −H(x))TR−1(y −H(x)). (2.7)

For this thesis, we calculate the maximum a posteriori (MAP) state (xa), which is the

most probably state given a set of observations and prior constraints. The MAP state

is obtained by maximizing P (x|y) and is calculated by minimizing the Bayesian cost

function (Eq. 2.7). There are several ways to approach this minimization problem. In

optimal estimation (OE), an analytic solution is obtained (Sec. 2.2.1). In 4D-Var, this is

performed numerically using an adjoint model (Sec. 2.2.2).
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2.2.1 Remote sounding approach

In remote sounding applications, the state vector typically consists of the atmospheric

profiles of the desired gas (u) and interfering species that are also retrieved (e),

x =

(
u

e

)
. (2.8)

Typically, the retrieval of the xa is performed using a variant of the OE method. In OE,

the posterior probability distribution is assumed to take the form,

P (x|y) ∝ exp

(
−1

2
(x− xa)TP−1(x− xa)

)
, (2.9)

where P is the posterior error covariance, and the forward model is assumed to be linear,

y = H(x) + ε = Hx + ε, (2.10)

where

H =
∂H(x)

∂x
. (2.11)

In this case, an analytic solution can be obtained for xa by minimizing the cost function

(Eq. 2.7),

xa = xb + A(x− xb), (2.12)

where

A = BxH
T (HBxH

T + R)−1H. (2.13)

A is the averaging kernel matrix and gives the weighting of the observations and prior

information in calculating the posterior state. In many remote sensing applications,

the total column dry-air mole-fraction of the desired gas (Xa
gas) is also calculated. To

perform this calculation, a pressure weighting function (h) is required, which performs

the mapping from an atmospheric profile to Xgas:

Xa
gas = hTxa. (2.14)

Now, to obtain Xa
gas from the subset of the state vector containing the gas of interest (u),

the column averaging kernel (agas) can be defined as:

(agas)j =
∂Xgas

∂uj

1

hj
= (hTA)j

1

hj
, (2.15)
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where j goes from 1 to the number of atmospheric levels. Then, Xgas is given by:

Xa
gas = Xb

gas + hTaTgas(u− ub), (2.16)

where Xb
gas is the a priori column dry-air mole fraction used in the remote sounding

retrieval (see Connor et al. (2008) for more details).

2.2.2 4-D variational data assimilation

In 4D-Var applications, x typically represents the 3-D atmospheric state of a gas of in-

terest. Now, consider a forward transport model (M) which transports the state forward

in time from t to t+ 1:

xt+1 = M(xt,p), (2.17)

where p signifies model parameters such as a surface flux. From this definition, Eq. 2.7

can be extended to be a function of a model parameter and include observations at

multiple times,

J(x0,p) =
1

2
(p− pb)TB−1

p (p− pb) +
N∑
t=t0

1

2
(yt −H(xt))

TR−1(yt −H(xt)), (2.18)

where Bp is the prior error covariance for parameter p. Equation 2.18 gives the 4D-Var

cost function for p. The MAP for p can now be obtained by minimizing J(x0,p). To

minimize a given cost function over an extended time domain with 4D-Var, the sensitivity

of the cost function to the parameter being optimized must be known. The GEOS-Chem

adjoint model provides a mechanism to calculate the gradient of a cost function with

respect to a set of model parameters (∇pJ) as described in Henze et al. (2007). This

model calculates the local Jacobian of the forward model with respect to the model state

or a model parameter around a given time step, t, given by:

Mt
x =

∂M(xt,p)

∂xt
=
∂xt+1

∂xt
. (2.19)

Using the chain rule, the adjoint of the Jacobian can be used to calculate sensitivities

over multiple time steps from time step t to time step N :

∂xN

∂xt
=
(
Mt

x

)T (
Mt+1

x

)T · · · (MN−1
x

)T ( ∂xN

∂xN−1

)
. (2.20)
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For 4D-Var, the adjoint model is used to calculate the gradient of Eq. 2.18 with respect

to the parameter being optimized. As an example, consider a cost function that is only

evaluated at the final time step. The gradient of this cost function will be given by:

∇pJ = λ0
p + B−1

p (p− pb), (2.21)

where λ0
p is the sensitivity of J(xN ,p) to model variable p and is calculated by iteratively

solving:

λt−1
p =

(
∂xt−1

∂p

)T
∂J(xN ,p)

∂xt−1
+ λtp. (2.22)

The adjoint model minimizes Eq. 2.18 iteratively using the Limited memory Broyden-

Fletcher-Goldfarb-Shanno algorithm for Bound-constrained optimization (L-BFGS-B,

Byrd et al., 1995). For the studies in this thesis, the GEOS-Chem adjoint model is

employed to optimize CO2 surface fluxes, namely NEE and oceanic fluxes. This is per-

formed by optimizing monthly scaling factors of prior flux estimates. In this set-up, Bp

is given as a percentage of the prior flux estimate rather than an absolute value. Fur-

thermore, both Bp and R are assumed to be diagonal for all of the inversions performed

in this thesis.

Practical assimilation of observations in 4D-Var

Equation 2.18 has a term giving the difference between measured and modeled observa-

tions, referred to as the innovation,

yt −H(xt). (2.23)

For remote sounding observations, this term would be the difference between observed

spectra and modeled spectra based on the modeled atmospheric state. However, in

the practical 4D-Var implementation, this term is calculated by taking the differences

between a previously retrieved total column dry-air mole fraction of the desired gas, Xa
obs,

and total column dry-air mole fraction calculated based on the model state, Xa
model.

This is done in several steps. First, the modeled gas profile (x) is interpolated from

the model pressure levels to the pressure levels used by the forward model of the remote

sounding retrieval. The interpolated modeled gas profile is referred to as xH . Then Xa
model

is retrieved:

Xa
model = Xb

obs + hTaTgas(xH − xbH), (2.24)

where Xb
obs is the a priori column dry-air mole-fraction used in the remote sounding
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retrieval, h is the pressure weighting function, agas is the column averaging kernel, and

xbH is the remote sounding prior profile. Finally, the innovation is calculated:

yt −H(xt) = Xa
obs − Xa

model. (2.25)

2.3 CO2 datasets

2.3.1 Surface measurements

Surface measurements can be performed either using an in-situ gas analyzer or by taking

a flask sample, which is then returned to a lab and analyzed. A number of different

groups from around the world collect surface CO2 observations. In this thesis, surface

measurements are taken from the Obspack PROTOTYPE package (Masarie et al., 2014;

Project, 2013). This package incorporates data from many observing sites around the

world. The PROTOTYPE product includes actual data as well as derived data (aver-

ages) specifically prepared for the CarbonTracker CO2 data assimilation system (Peters

et al., 2007). The product includes 190 data sets with contributions from 20 laborato-

ries. Surface observations used in this thesis are taken from the PROTOTYPE product

(https://www.esrl.noaa.gov/gmd/ccgg/obspack/).

There are additional surface measurements which are not included in the ObsPack

dataset (nor in this thesis), but could be used to fill in some spatial gaps in the coverage

of surface measurements. A notable example is the Japan-Russia Siberian Tall Tower

Inland Observation Network of nine tower sites in Siberia (Sasakawa et al., 2010, 2013).

There are also several surface sites in the Amazon which are not included in the ObsPack

dataset (Molina et al., 2015).

2.3.2 Remote sounding measurements

Remote sounding methods retrieve CO2 mole fractions from observations of absorption

spectra. An illustration of this technique can be found in Chapter 6, where atmospheric

mole fractions are retrieved from recorded infrared spectra.

TCCON

The TCCON is a network of ground-based Fourier transform spectrometers that record

solar absorption spectra in the near-infrared, from which XCO2 columns are retrieved

(Wunch et al., 2011). The TCCON has adopted the Bruker Infrared Fourier Spectrom-

eter (IFS) 125HR as its preferred instrument, as this is the most robust and stable
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high-resolution FTS commercially available. TCCON sites make repeated measurements

of solar spectra (every few minutes) under clear-sky conditions. The spectra are recorded

with 45 cm maximum OPD (∼0.02 cm−1 spectral resolution). CO2 abundances are re-

trieved using a non-linear least squares approach from absorption lines in the near infrared

(6180.00–6260.00 cm−1 and 6297–6382 cm−1 for CO2 and 7765.00–8005.00 cm−1 for O2).

The column-averaged dry-air mole fractions of CO2 (XCO2) are retrieved by taking the

ratio of the column abundance of CO2 to O2 (scaled by the mean O2 concentration),

resulting in high precision (< 0.25% in CO2) XCO2 measurements. TCCON measure-

ments are tied to the World Meteorological Organization (WMO) scale by performing

comparisons with WMO-scale instrumentation aboard aircraft that measure atmospheric

CO2 profiles. Bias-corrected TCCON measurements are of high accuracy, with biases of

less than < 0.8 ppm (Wunch et al., 2010).

For this thesis, TCCON data were obtained from the TCCON Data Archive, hosted by

the Carbon Dioxide Information Analysis Center (CDIAC). However, the TCCON Data

Archive has moved and is now hosted by CaltechDATA [http https://tccondata.org].

Table 2.1 lists the sites used in this thesis.

GOSAT

GOSAT was launched in February 2009 in a sun-synchronous orbit, with a repeat cycle

of 3 days that produces 44 separate ground track repeats (Yoshida et al., 2013). The

Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrom-

eter (TANSO-FTS) aboard GOSAT is a double-pendulum-type interferometer with two

cube-corner reflectors. The instrument has an OPD of ±2.5 cm, resulting in ∼0.2 cm−1

spectral resolution (Kuze et al., 2009). The instrument measures reflected solar radiation,

from which XCO2 is estimated. The footprint of the GOSAT measurements has a diame-

ter of about 10 km. The instrument has a pointing mechanism capable of rotating ±35◦

across-track and ±20◦ along-track, and observations can be obtained in nadir viewing

mode, glint mode, and target mode. Since August 2010, in nadir mode, TANSO-FTS

has been measuring with a three-point cross-track pattern with 263 km cross-track sepa-

ration, resulting in a swath of 526 km. Measurements have an along-track separation of

283 km (Crisp et al., 2012). Over the ocean where surface reflectance is small, the point-

ing mechanism views a widely spread sun-glint area, where specular reflection occurs and

reflectance is high. As the along-track viewing angle range is <20◦, glint observation is

limited to low and middle latitudes.

In this thesis, NASA Atmospheric CO2 Observations from Space (ACOS) GOSAT

retrievals are used. Depending on the study, either version 3.4 or 3.5 is used; further pro-
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Table 2.1: TCCON sites used in this study.
Site Name Lat Lon Reference

Eureka, Canada 80.05◦N 86.42◦W Strong et al. (2017)
Sodankyla, Finland 67.37◦N 26.63◦E Kivi et al. (2014)
Bialystok, Poland 53.23◦N 23.03◦E Deutscher et al. (2014)
Bremen, Germany 53.10◦N 8.85◦E Notholt et al. (2014)

Karlsruhe, Germany 49.10◦N 8.44◦E Hase et al. (2014)
Paris, France 48.49◦N 2.36◦E Te et al. (2014)

Orleans, France 47.97◦N 2.11◦E Warneke et al. (2014)
Garmisch, Germany 47.48◦N 11.06◦E Sussmann and Rettinger (2014)

Park Falls, USA 45.95◦N 90.27◦W Wennberg et al. (2014b)
Rikubetsu, Japan 43.46◦N 143.77◦E Morino et al. (2014b)

Lamont, USA 36.60◦N 97.49◦W Wennberg et al. (2016)
Tsukuba, Japan 36.05◦N 140.12◦E Morino et al. (2014a)

Dryden, USA 34.96◦N 117.88◦W Iraci et al. (2016)
Caltech, USA 34.14◦N 118.13◦W Wennberg et al. (2014a)
Saga, Japan 33.24◦N 130.29◦E Kawakami et al. (2014)

Izana, Tenerife, Spain 28.3◦N 16.5◦W Blumenstock et al. (2014)
Manaus, Brazil 3.21◦S 60.60◦W Dubey et al. (2014)

Ascension Island 7.92◦S 14.33◦W Feist et al. (2014)
Darwin, Australia 12.42◦S 130.90◦E Griffith et al. (2014a)

Reunion Island 20.90◦S 55.49◦E De Mazière et al. (2014)
Wollongong, Australia 34.41◦S 150.88◦E Griffith et al. (2014b)
Lauder, New Zealand 45.04◦S 169.68◦E Sherlock et al. (2014)
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cessing of the data is described within each chapter. The ACOS algorithm uses three spec-

tral bands, the O2 A band (12,950–13,910 cm−1), the weak CO2 band (6166–6286 cm−1),

and the strong CO2 band (4810–4897 cm−1) (O’Dell et al., 2012). The column abun-

dances of CO2 and O2 are retrieved using an OE approach. Column-averaged dry-air

mole fractions of CO2 are then obtained based on the ratio of retrieved CO2 to O2 abun-

dances. Additional information on the ACOS retrieval algorithm is available in O’Dell

et al. (2012) and Crisp et al. (2012). NASA ACOS GOSAT lite files are be obtained from

the CO2 Virtual Science Data Environment (https://co2.jpl.nasa.gov/#mission=ACOS)

OCO-2

The OCO-2 spacecraft, launched in July 2014, carries and points a single instrument.

The OCO-2 instrument incorporates three co-boresighted, long-slit imaging grating spec-

trometers optimized for the O2 A band at 12,950–13,910 cm−1 and the CO2 bands at

6166–6286 cm−1 and 4810–4897 cm−1. OCO-2 has a swath of 10 km and collects eight

adjacent spatially-resolved samples, giving a footprint of about 3 km2. Measurements

are recorded every 0.333 seconds, resulting in roughly 24 soundings per second. The

spacecraft is in a sun-synchronous orbit with an equator crossing time near local noon

(13:36, Crisp, 2015) and has a repeat cycle of 16 days, resulting in 233 separate ground

track repeats. For routine science operations, the instrument’s bore sight is pointed to

the local nadir or at the glint spot and measures reflected solar radiation. Although,

OCO-2 origionally alternated between glint and nadir modes on a 16-day repeat cycle,

this was found to be inefficient. In early July 2015, this observation strategy was mod-

ified to alternate between glint and nadir observations on alternate orbits. OCO-2 also

has a target model which allows the spacecraft to target selected surface calibration and

validation sites to collect thousands of soundings as the spacecraft flies overhead.

Throughout this thesis, version 7 of the ACOS OCO-2 lite files are used. These data

were downloaded from the CO2 Virtual Science Data Environment

(https://co2.jpl.nasa.gov/#mission=OCO-2). In addition to the quality flag, which fil-

ters data based on comparisons with truth proxies (i.e., TCCON, the Southern Hemi-

sphere approximation, and small area analysis), ACOS OCO-2 measurements are pro-

vided with a Warn Level (WL) filter. WLs are designed to minimize the variance of XCO2

in regions of small atmospheric variability (Mandrake et al., 2013), and are ordered in

decreasing data quality from 0 being the best to 19 being the worst. The spatiotemporal

distribution of OCO-2 observations for different WL cutoffs are discussed in Chapter 3.



Chapter 3

Sensitivity of CO2 surface flux

constraints to observational coverage

This chapter is adapted from:

Byrne, B., Jones, D. B. A., Strong, K., Zeng, Z.-C., Deng, F., and Liu, J. (2017).

Sensitivity of CO2 surface flux constraints to observational coverage. J. Geophys. Res.-

Atmos, 112(12):6672–6694. https://doi.org/10.1002/2016JD026164

3.1 Introduction

Measurements of atmospheric CO2 from a variety of observing systems (e.g., surface

sites, TCCON, GOSAT and OCO-2) are commonly assimilated into inversion systems

to optimize NEE fluxes. However, these observation systems strongly under-constrain

surface fluxes on regional scales. This implies that the optimization of NEE will be

sensitive to the spatiotemporal distribution of observations, and to the sensitivity of

these observations to surface fluxes.

Previous flux inversion studies using surface in-situ observations have noted high

sensitivity of flux inversion results to the distribution of observations. Several studies have

found that including or excluding certain surface sites can result in systematic differences

in regional flux estimates (Rödenbeck et al., 2003; Gurney et al., 2008; Bruhwiler et al.,

2011). For example, Bruhwiler et al. (2011) found that the inclusion of newer European

sites results in a large re-balancing of uptake from Europe to boreal Eurasia in comparison

to an inversion with existing older sites. Rödenbeck et al. (2003) found that using different

sets of surface stations in their 20-year flux inversion results in regional flux differences

that show up predominately as shifts in the long-term mean flux, while the timing and

amplitude of interannual flux anomalies remain comparatively consistent. Reuter et al.

39
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(2014) argued that the heterogeneous distribution of surface observations over Europe,

with sites concentrated in Western Europe where there is likely a weaker sink than Eastern

Europe, results in a systematic underestimate of the net continental sink in comparison

to that inferred from observations from GOSAT, although Feng et al. (2016) show that

realistic biases in GOSAT data could also explain the disagreement.

Flux inversions using satellite data have also been shown to be susceptible to the

spatio-temporal distribution of observations. Because satellites measure column CO2

using reflected sunlight, the spatial distribution of observations by satellites shifts sea-

sonally with the declination of the sun. Since fluxes also vary seasonally, this leads to

systematic errors in annual fluxes. This was demonstrated by Liu et al. (2014) using

an Observing System Simulation Experiment (OSSE). In their simulation, they defined

a set of ”true” fluxes and selected a priori fluxes with the same global annual net flux

(-5.3 PgC), but with a different spatial and temporal distribution. Liu et al. (2014) re-

trieved a net flux that is 0.7 PgC lower than the true and a priori value by sampling

simulated atmospheric CO2 with the distribution of GOSAT observations. This bias was

due to the preferential sampling of the summer hemisphere and due to the fact that

GOSAT always makes measurements at the same local time (12:45-13:15). The time of

day of measurements resulted in a bias because the a priori diurnal cycle was weaker

than the true diurnal cycle (Liu et al., 2014). Liu et al. (2014) show that this bias can

be introduced despite the fact that XCO2 sampled at 13:00 p.m. (local time) has similar

magnitude to daily average XCO2 (Miller et al., 2007).

Liu et al. (2014) also examined the impact of GOSAT sampling on fluxes estimated

for the regions used in the TransCom Project (Gurney et al., 2002). They found that

even though the bias in the a posteriori monthly flux is reduced for every region during

every month, the annual mean flux is degraded for some regions. This phenomena can

be illustrated by considering a true flux that has a larger seasonal cycle than the a priori

flux, such as the North American boreal region in Liu et al. (2014). During the summer

months, the sensitivity of observations to fluxes is high, so that the a posteriori flux is

pulled down to the true flux. In contrast, there is little sensitivity in the winter, so that

the a posteriori fluxes are only slightly increased. In this case, the flux estimate will

improve for each month but the annual mean flux will be biased low in comparison to

the a priori estimate.

These studies demonstrate the importance of understanding the spatial and temporal

sensitivity of observations to surface fluxes. Biases can be introduced in estimates of the

mean fluxes when data are assimilated over only part of the diurnal or seasonal cycle.

Thus, to interpret flux inversion results, we need to be conscious of the spatial and tem-
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poral extent to which we should expect the observations to provide reliable constraints on

surface fluxes. It is difficult to determine the patterns of sensitivity to surface fluxes with

inversion results because the flux inversions are sensitive to the treatment of observation

error covariances, a priori fluxes and flux error covariances, as well as the atmospheric

transport model employed.

In this chapter, we assess the sensitivity of observing systems to CO2 fluxes. We

focus on observations from the in situ surface network, TCCON, GOSAT, and OCO-

2. We use two metrics to relate the sensitivity of observations to surface fluxes for

each observing system. The utility of these metrics is that they provide an indication

of where we should expect observing systems to be able to constrain surface fluxes.

The advantage of using a sensitivity metric over flux inversion experiments is that the

sensitivity metric is independent of the choice of a priori fluxes and uncertainties, which

strongly impact flux inversions. To better understand how the spatial and temporal

distribution of observations will impact flux inversions, we also perform a set of simplified

OSSEs to relate the sensitivity metrics to a posteriori fluxes.

This chapter is organized as follows. In Sec. 3.2, we describe the pseudo-measurements

used for each observing system. We also discuss differences in the spatio-temporal dis-

tribution of observations and the impact of data screening for OCO-2 and GOSAT. In

Sec. 3.3, we define sensitivity metrics to quantify the sensitivity of the various observing

systems to surface fluxes. We then apply these metrics to the set of observations dis-

cussed in Sec. 3.2. In Sec. 3.4, we perform a simple OSSE experiment to examine how

well the sensitivity metrics relate to inversion results for surface in-situ, GOSAT, and

OCO-2 data. In Sec. 3.5, we discuss our results.

3.2 Measurements

We do not use observed CO2 abundances, but instead generate pseudo-observations from

the GEOS-Chem model. However, we do use actual measurement times, locations and

averaging kernels (for the remote sensing measurements) to generate our set of artificial

observations. Measurement times are aggregated into the 2◦ × 2.5◦ GEOS-Chem spatial

grid with 1-hour time steps. This is done by determining if there is one or more measure-

ments in a given grid cell for a given time step, and if there is, one pseudo-observation is

generated in the given grid cell by sampling the forward model.
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3.2.1 Pseudo-data

Surface measurements

To generate the artificial surface measurements, we obtain surface measurement times and

locations from the Obspack PROTOTYPE package (Masarie et al., 2014; Project, 2013).

We generate only surface flask, in-situ, and tower pseudo-data for our calculations. In

generating the pseudo-data, we only use Obspack measurements with obs flag=1, which

indicates that the measurement has large spatial scale representation (rather than locally

influenced). Surface in situ observations are not dependent on the solar zenith angle, as

the remotely sensed data are, so they could theoretically have the same observation

coverage throughout the year. To avoid the influence of data gaps due to technical and

logistical issues, we assume this to be the case and use the same set of measurements

for every season, based on the measurements in September-October-November (SON)

of 2011. This results in 9,895 measurements per season for all seasons. The model is

sampled at the location and times of these measurements to generate the pseudo-dataset.

TCCON

In this chapter, 21 sites are used, which are shown in Figure 3.1 and listed in Table 2.1.

The Dryden and Caltech sites are in the same GEOS-chem grid box and thus we have

combined their measurements. All of the sites that were considered in this work are still

operational, except for the site at Manaus, which has been relocated.

Ideally, we would like to examine the sensitivity of an ideal TCCON network that

performed to its capacity. In reality, weather and instrument issues often result in signifi-

cant data gaps. Therefore, to maximize observational coverage for each station, we select

measurements from the year that had the most measurements for each season at each

station. This results in 6,315 measurements for SON, 4,650 measurements for December-

January-February (DJF), 7,581 measurements for March-April-May (MAM), and 7,892

measurements for June-July-August (JJA).

GOSAT

We downloaded version v3.4 of the NASA ACOS GOSAT lite files from the CO2 Virtual

Science Data Environment (https://co2.jpl.nasa.gov/#mission=ACOS). We selected all

measurements from the TANSO-FTS shortwave infrared channel, including ocean glint,

high gain (H-Gain) nadir and medium gain (M-Gain) nadir, which pass the quality flag

requirement. We used measurements from September 2011 to August 2012. This results
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Figure 3.1: Number of measurements per day for each observing system. Each subplot
shows the number density of measurements for a given observing system and season.
Each row, from top to bottom, is for a different observing system: surface, TCCON,
GOSAT, and OCO-2 measurements. Each column, from left to right, is for a different
meteorological season: SON, DJF, MAM, JJA.
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in 14,253 measurements for SON, 13,316 measurements for DJF, 11,005 measurements

for MAM, and 12,813 measurements for JJA. As with the surface measurements, we

sampled the model at the GOSAT measurement locations and times to generate the

pseudo-data. For glint observations, we sampled the model at the glint spot. However,

for GOSAT (and TCCON and OCO-2) we must also account for the vertical sensitivity

of the measurements, as described in Section 3.1.

OCO-2

We used all ACOS OCO-2 measurements that pass the quality criteria and have a WL

less than or equal to 10. We choose this WL range because this is the range used by

the OCO-2 team in selecting the data used in computing the OCO-2 bias corrections

(note that the bias corrections were then applied to all the data, including to data with

warn levels greater than 10). We generate pseudo-observations from September 2014 to

August 2015, which results in 20,095 measurements for SON, 22,758 measurements for

DJF, 21,257 measurements for MAM, and 23,488 measurements for JJA. It should be

noted that this is more restrictive data selection than for GOSAT, for which there is no

WL screening available in version v3.4. Note, warn levels are provided with the v3.5

release of the GOSAT ACOS product.

3.2.2 Discussion of observational coverage

Figure 3.1 shows the number of measurements per day for each observing system. Sur-

face sites are located over much of the globe. However, sites are much more densely

concentrated in the Northern Hemisphere, particularly in North America and Europe.

Furthermore, the sites in these regions generally sample much more frequently. Many of

the more remote sites make less than one measurement a week, whereas the majority of

North American sites make measurements at least daily.

TCCON sites are concentrated in North America, Europe, and East Asia. High

latitude sites show clear seasonal differences in sampling, with many measurements in

the summer and fewer in the winter. Because we are generating pseudo-data for the year

with the most measurements for each site, the older sites tend to have more measurements

in comparison to newer sites as they are more likely to have a year where the instrument

was functioning well.

GOSAT measurements cover a much larger fraction of Earth than the surface and

TCCON measurements. However, there is strong seasonality in their spatial coverage,

particularly in the northern extratropics where there are many more measurements in the
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Northern Hemisphere summer. Cloudiness in the tropics results in few measurements over

tropical South America, tropical Africa, and southeast Asia. Regions in the tropics also

show large seasonal differences in the number of measurements due to seasonal differences

in cloud cover, driven by the meridional migration of the intertropical convergence zone

(ITCZ). In addition to cloudiness, measurements are screened for high aerosol conditions,

which reduced the number of observations over certain regions, particularly over the

southern Sahara and India.

Figure 3.2 shows the spatio-temporal distribution of GOSAT measurements for differ-

ent observing modes. The viewing mode is set to nadir over land and glint over the ocean.

GOSAT nadir measurements are split into H-Gain, which occurs over most of the globe,

and M-Gain, which are over bright surfaces. M-Gain measurements are most prominent

over deserts, particularly North Africa during the Northern Hemisphere fall and winter.

GOSAT glint measurements are only over water and are constrained to within 20◦ of the

declination of the sun, thus there is a relatively narrow band of measurements over the

oceans which migrates with the seasons. Due to difficulty in correcting for biases, ocean

glint and M-gain nadir measurements were often excluded from flux inversions. However,

it can be seen that these measurements provide a large fraction of the total measurements.

Recently, Deng et al. (2016) have found that improved retrieval algorithms (ACOS v3.4)

have corrected glint biases to manageable levels. Comparing flux estimates obtained

with and without ocean glint measurements, Deng et al. (2016) found that the glint

measurements were helpful for quantifying regional tropical and sub-tropical fluxes.

OCO-2 measurements share many of the same spatial and temporal features as

GOSAT measurements. Extratropical measurements vary seasonally and cloudiness ad-

versely impacts measurements in the tropics. OCO-2 nadir measurements generally have

similar spatial coverage to GOSAT nadir observations, but are fewer in number when

aggregated at 2◦ x 2.5◦ scales (because OCO-2 land observations are performed in both

nadir and glint modes and because the swath width is thin (see Section 2.2.2)). OCO-2’s

glint mode can make measurements over a much larger latitude range than GOSAT and

can make measurements over land (Figure 3.2d). Therefore, glint measurements provide

a much larger percentage of total measurements for OCO-2 in comparison to GOSAT.

The temporal partitioning between nadir and glint mode has changed several times since

OCO-2 was launched. Initially, the viewing mode alternated between glint and nadir

measurements on consecutive 16-day ground-track repeat cycles, so that the entire sunlit

hemisphere is sampled in both modes at 32-day intervals. However, beginning on 2 July

2015, the viewing mode has alternated every orbit between one orbit of nadir followed

by an orbit in glint, except for orbits that are mostly over the ocean which are always
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Figure 3.2: GOSAT and OCO-2 measurements for each viewing mode. The time series
for each viewing mode are shown for (a) GOSAT and (c) OCO-2. The spatial distribution
of measurement number density for each viewing mode and season are also shown for (b)
GOSAT and (d) OCO-2.
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sampled in glint mode. There are several notable gaps in measurements, two shorter gaps

between January 7th-9th and 18th-24th, and a longer gap between April 20th and May

7th. It should also be noted that a significant number of measurements were removed

due to interference by cosmic rays over the South Atlantic Anomaly, which is particularly

important over the Amazon. A new version of the OCO-2 ACOS algorithm will signifi-

cantly increase the number of measurements in this region by accounting for cosmic rays

in the data screening (C. O’Dell, personal communication, 2016).

OCO-2 warn level cut-off

Low WL soundings generally occur over bright desert regions with low cloudiness on land

and over the tropical ocean where there is favorable glint-viewing geometry with lower

airmass and high signal. WLs generally increase in regions with persistent cloudiness

or near the poorly lit poles. Above WL 12, ACOS retrieval errors well in excess of the

retrieval a posteriori errors should be expected, and it is recommended by the OCO-

2 team that data should not be used above WL 15, which occur in scenes not well

modeled by the retrieval code (i.e., complex reflectance, high aerosols, etc.). Note that

a good quality flag requires that the WL is ≤15 for OCO-2 v7 data. WLs are calculated

separately for each measurement mode, as different retrieval parameters are used to

develop WL filters for measurements over land and measurements over ocean.

Here we look at the number of OCO-2 measurements which pass the quality flag

requirement that fall into several WL ranges for each meteorological season. Since a

data user can filter the data based on the warn levels, we examine here the spatial and

temporal distribution of different warn level cut-offs to show how the choice of warn level

influences the sensitivity of the data to surface fluxes. As shown in Figure 3.3, we find

that ocean glint measurements generally have low WLs, whereas land measurements are

much more evenly spread over WLs. Measurements over desert regions (North Africa,

Middle East, Kalahari Desert, and Australia) generally have WLs less than or equal to

8, whereas measurements throughout the tropics and sub-tropics generally have WLs

less than or equal to 10. High-latitude measurements occur almost exclusively with WLs

greater than 10, and thus are not included in our sensitivity calculations. These high WL

measurements are particularly prevalent over boreal regions in JJA. It should be noted

that data with WL greater than 10 may still be useful in flux inversions.
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Figure 3.3: Number density of OCO-2 measurements for various WL ranges over four
seasons. WLs decrease from the top to bottom.
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Figure 3.4: Number of GOSAT (red) and OCO-2 (blue) measurements per year after
aggregation as a function of model grid size (degrees).

Grid size

It should be noted that the number and distribution of GOSAT and OCO-2 measure-

ments used in the analysis are influenced by the resolution of the model to which they

are aggregated. The larger the model grid cell, the more measurements that will occur

in the same grid cell and will be aggregated to a single measurement. GOSAT mea-

surements are separated by 263 km cross-track and 283 km along-track, which is on the

order of 2◦× 2.5◦, whereas OCO-2 has much smaller separation between measurements,

with roughly 400 soundings per degree latitude with a narrow swath (Crisp et al., 2012).

Figure 3.4 shows the resulting number of GOSAT and OCO-2 measurements after aggre-

gating the raw data to several different grid sizes. At smaller grid sizes, the number of

gridded OCO-2 measurements is greater than those from GOSAT, which will inflate the

OCO-2 sensitivities relative to the GOSAT sensitivities. The number of gridded measure-

ments decreases with increased grid size much more rapidly for OCO-2 than for GOSAT

because of the greater density of the OCO-2 measurements. It should be noted that, in

flux inversions, measurement uncertainties are reduced with aggregation. However, be-

cause measurement uncertainties contain both systematic and random components, the

reduction in measurement uncertainty can be quite small. The reduction in error with

aggregation can be calculated using the expression error2 = a2 +b2/n, where a represents

systematic errors that do not decrease with averaging, b represents random errors that

decrease with averaging, and n represents the number of satellite observations that are

averaged (Kulawik et al., 2016). Kulawik et al. (2016) give a = 0.8 ppm and b = 1.6 ppm

as mean Northern Hemisphere geometric (co-located) values for GOSAT. Over the range
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of grid sizes shown in Figure 3.4, errors for OCO-2 remain relatively constant because

n > 50 even at 0.4◦ × 0.5◦ resolution, thus, the error on aggregated OCO-2 observations

is approximately equal to a. For GOSAT, n ranges from about 2 (at 0.4◦ × 0.5◦) to 4

(at 4◦ × 5◦) so the random error component decreases significantly with increasing grid

cell size.

3.3 Sensitivity experiments

We define two metrics, referred to as the “sensitivity” and “contribution” metrics, to

quantify how the spatial and temporal distribution of the measurements can impact the

sensitivity of the measurements to surface fluxes. We apply these metrics to the observing

systems described above to examine how their sensitivity varies spatially and temporally.

3.3.1 Sensitivity metrics

The sensitivity of an air parcel’s CO2 concentration to surface fluxes is a function of the

history of that air parcel’s contact with the surface. We calculated this using the GEOS-

Chem adjoint model (Henze et al., 2007), which calculates the derivative of the modeled

CO2 concentration with respect to a set of model parameters, f (such as the CO2 surface

fluxes). We define a response function J as a set of measurements with units of parts per

million by volume (ppm) and use the adjoint model to calculate the gradient ∇fJ . For

surface measurements, J is defined as the sum of the CO2 concentrations in the grid cells

in which all of the measurements are located over a given season. For TCCON, GOSAT,

and OCO–2, the response function is defined as the sum of all of the XCO2 measurements

scaled by the averaging kernels over the season:

J =
N∑
n=1

 L2∑
k=L1

Ck · Ak(∑L2
k=L1 Mk

)
 · 106 (3.1)

where Ck is the molar abundance of CO2 at level k, Mk is the molar abundance of air, Ak is

the column averaging kernel, and L1 and L2 are the lowest and highest atmospheric layers

on which the retrieval occurs. N is the number of measurements, thus the summation

over n indicates that the response function covers all measurements from the first day

to the last day of the given period (which is a meteorological season in this experiment).

Gas abundances (Ck and Mk) are obtained by sampling a forward model simulation at

the locations and times of the observations.
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The sensitivity of measurements to surface fluxes is obtained by calculating the gra-

dient of J with respect to surface CO2 fluxes, fi,j,t, at longitude i, latitude j, and time t

(following the notation of Liu et al. (2015)). Thus, the adjoint sensitivity of measurements

to the surface fluxes is given by

γi,j,t =
∂J

∂fi,j,t
. (3.2)

A cumulative sensitivity to surface fluxes, β, can be attained by integration from the

measurement time t0 to an earlier time t−T :

βi,j =

t=t−T∑
t=t0

γi,j,t. (3.3)

We call β the “sensitivity” metric. It gives an indication of how strongly the measure-

ments are influenced by surface fluxes over the integration period. Therefore, for the

same flux, a high sensitivity will imply that the flux can be better constrained by the

measurements than a lower sensitivity. A detailed description of the adjoint calculation

can be found in Appendix A of Deng et al. (2016).

A cumulative change in observed CO2 concentration due to surface fluxes can be

calculated if the surface fluxes are known:

ψi,j =

t=t−T∑
t=t0

γi,j,t · fi,j,t. (3.4)

We call ψ the “contribution” metric. It gives the sensitivity scaled by the surface fluxes

so that the contribution from each grid box to the observed signal (as aggregated in J)

can be estimated. This is useful because if the sensitivity is high but the flux is low then

the contribution to measurements can be similar to the contribution if the sensitivity is

low but the flux is high.

3.3.2 Experiment set-up

We use the GEOS-Chem adjoint model (Henze et al., 2007) for all of the simulations.

We employ the same configuration of the model as described in Nassar et al. (2011). We

use 3-hourly Carnegie Ames Stanford Approach (CASA) annually balanced biospheric

fluxes (Olsen and Randerson, 2004).

We calculate β and ψ for each observing system for each meteorological season. The

response function (J) is generated using Ck and Mk abundances from the forward model

simulation at the measurement times for a given observing systems. Measurements are
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included every day of the season and adjoint sensitivities (γi,j,t) are summed from the last

day (t0) to the first day (t−T ) of the season. We calculate the metrics seasonally for the

following two reasons. First, seasonal variations in the solar zenith angle and cloud cover

cause the distribution of spaceborne measurements to vary with the seasons (Figure 3.1).

Second, the dominant patterns of surface CO2 exchange vary over the seasons. Thus,

differences in the seasonal sensitivity of measurements to fluxes can lead to annual biases

as found by Liu et al. (2014).

Because of the large scales on which our analysis is conducted, using the hourly

surface in situ measurements could give unrealistically high β and ψ values since it is

unlikely that these data will be independent. This would provide significantly greater

weight to the surface in situ data compared to the GOSAT or OCO-2 data. For this

reason, we aggregate surface measurements to 6-hour time steps. This is similar to the

approach used for the spatial aggregation of satellite observations, which in effect de-

weights the sensitivity provided by these observations (see Sec. 3.2.2). This only reduces

the number of measurements significantly at the three sites in East Asia and at the one

site in Scandinavia.

3.3.3 Results

Observing system comparison

Figures 3.5 and 3.6 show the spatial distributions of the sensitivity (β) and contribution

(ψ) for each season. There are significant variations in β and ψ between seasons for

all observing networks. Surface measurements are concentrated in North America,

Western Europe and east Asia, resulting in β and ψ having the largest magnitude in

these regions. The prevailing westerlies result in a relatively high sensitivity zonally to

surface fluxes over the northern mid-latitudes. However, outside of this region β and

ψ drop off rapidly, and the surface measurements have little sensitivity in the tropics

and southern hemisphere. In contrast to all other observing systems, β values for the

surface measurements are highest over North America and Western Europe in DJF and

lowest in JJA, which is caused by seasonal differences in transport (see Section 3.3.3). All

observing systems have the largest global magnitude of ψ value in JJA, which is driven

by the strong biospheric uptake of CO2 during the Northern Hemisphere growing season.

TCCON measurements are concentrated in North America, Europe, and Japan. How-

ever, TCCON sites make column measurements rather than boundary layer measure-

ments, thus the spatial distribution of β and ψ for the TCCON measurements reflect

a greater influence of the large-scale, free tropospheric transport (Keppel-Aleks et al.,
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Figure 3.5: Spatial distribution of the sensitivity metric (β) for observing system (rows)
and each season (columns).
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Figure 3.6: Spatial distribution of (top) seasonal surface fluxes and (bottom) the contri-
bution metric (ψ) for each observing system (rows) and each season (columns).
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2011) than for the surface measurements. The sensitivity is highest in JJA when there

are the most daylight hours in the Northern Hemisphere and thus the most measure-

ments. Significantly, we find that a single site in Manaus provides very high β and ψ

locally. This is notable because there are few satellite observations over this region (pri-

marily due to cloud cover). Thus, TCCON sites in tropical regions could complement

satellite observations in constraining regional fluxes in the tropics. Alternatively, tower

in situ instruments could be deployed.

GOSAT measurements have high β values in the tropics and sub-tropics throughout

the year, with lower values at higher latitudes that vary seasonally. The GOSAT β and

ψ are more smoothly varying spatially than those from the ground-based measurements;

however, β has significant seasonal variability. This will result in large seasonal differences

in the ability of GOSAT data to constrain regional fluxes, particularly in the extratropics

(Liu et al., 2014). It is notable that GOSAT (and OCO-2) have high β and ψ over the

Amazon and tropical Africa, where there are limited measurements. The sensitivity

to these regions comes largely from downwind ocean glint measurements. Figure 3.7

shows β for various sub-sets of measurements for GOSAT. H-Gain nadir and ocean glint

measurements have much higher β than M-Gain. In the northern extratropics, H-Gain

measurements dominate β throughout the year. M-Gain nadir has the highest β in SON

and DJF, particularly over North Africa. In the tropics, ocean glint is most sensitive to

the oceans throughout the year. Ocean glint also has the highest β over tropical land

in SON and DJF; however, in MAM and JJA H-gain nadir land data has the highest

β values. Ocean glint measurements show dramatic temporal variations in β over the

southern extratropics due to the changing spatial distribution of observations, with high

β in SON and DJF and low β in MAM and JJA. It should be noted that glint and nadir

observations generally have different random and systematic errors and may need to be

weighted differently in inversion experiments.

OCO-2 measurements have similar spatial and seasonal distributions of β and ψ as

GOSAT but with larger mean values because of the larger number of measurements (Fig

3.7). OCO-2 also shows a much larger increase in sensitivity in JJA relative to the other

seasons in comparison to GOSAT. The reason for this is unclear, it may partially be due

to the fact that OCO-2’s sampling strategy was changed on July 2, 2015, increasing the

number of measurements. Ocean glint measurements dominate β throughout the year,

especially over the Tropics and Southern Hemisphere (Figure 3.7). Land nadir and land

glint sensitivities have similar spatio-temporal distributions, with land nadir sensitivities

being slightly larger. Land measurements provide the highest relative sensitivities in

comparison to ocean glint to fluxes in North America and Eurasia.
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Figure 3.7: Sensitivity metric for OCO-2 and GOSAT viewing modes. Sensitivity of (a)
all GOSAT viewing modes, and of (b) M-Gain nadir, H-Gain nadir, and glint measure-
ments separately. Sensitivity of (c) all OCO-2 measurements, and of (d) land nadir, land
glint, and ocean glint separately.
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Figure 3.8: Spatial distribution of the relative contribution to the sensitivity metric from
OCO-2 observations in various WL ranges for each season (columns).

Figure 3.8 shows the relative importance of various OCO-2 WL ranges to the cumu-

lative β distribution for each season. WLs less than or equal to two provide the largest

fractional contribution to β of all the WL ranges examined here, particularly for the

tropics and Southern Hemisphere. WLs above 8 are important for β in the northern ex-

tratropics. There are pronounced seasonal differences in the fraction of β due to different

WL ranges. For SON and DJF, WLs less than or equal to 10 provide the majority of β

over the entire planet. In contrast, for MAM and JJA WLs above 10 are important for

β in the northern extratropics, particularly in the Arctic.

Transport

Seasonal differences in the spatial structure of β are due to the combined impact of differ-

ences in observational coverage and seasonal transport. Here we examine how seasonal

differences in transport impact β for each observing system. To isolate the impact of

transport on β, we calculate β for each season using the SON observational coverage,
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such that every season has identical measurements. Therefore, differences in β between

the seasons are solely due to transport. Figure 3.9 shows the differences in sensitiv-

ity between each season and SON, calculated using the seasonally varying observational

coverage and the fixed SON observational coverage.

For the surface measurements, we are already using the SON observational coverage

for each season, thus all of the differences in β between seasons are due to transport.

Seasonal differences in transport patterns have a much larger impact on β for surface

measurements than for other observing systems. This is likely due to the fact that

surface measurements are sensitive to vertical transport within the planetary boundary

layer. β is highest near measurement sites during DJF, particularly over North America

and Europe, and lowest near measurement sites in JJA. This is because there is strong

surface heating in the Northern Hemisphere in the summer, which results in a deeper

planetary boundary layer and more rapid vertical mixing of air parcels and, consequently,

less sensitivity near the surface measurement sites. In contrast, in SON and DJF when

there is less heating, and thus weaker vertical mixing, air parcels remain near the sites

for longer periods, resulting in greater sensitivities to the fluxes.

For TCCON, GOSAT and OCO-2, differences in β due to changing observational

coverage are significantly larger than differences due to transport, as expected. How-

ever, there are still some significant differences in β due to differences in transport.

For TCCON, differences in β are most evident near TCCON sites, i.e., near Manaus

for JJA-SON. For GOSAT and OCO-2, differences in β due to transport have similar

spatio-temporal structure. These differences appear to be influenced by large scale at-

mospheric transport patterns and have large regional structures. For example, in DJF,

there is enhanced sensitivity just south of the equator, in southern Africa and over the

Indonesian region, whereas in JJA the sensitivity is greater in the northern tropics. The

peak in sensitivity over southern Africa in DJF could be explained by strong ascent of

air parcels near the surface due to the ITCZ, which are then transported to regions with

enhanced observational coverage. Over South Asia, there is increased sensitivity in JJA

and decreased sensitivity in DJF. This is consistent with the Asian monsoon in JJA,

which drives ascent over South Asia and enhances the export of air parcels from the

surface to nearby regions with more dense observational coverage. Seasonal differences

in transport have a similar impact on ψ (not shown) as β. The absolute magnitude of ψ

is enhanced (or diminished) with the same spatial patterns as β.

It should be noted that in flux inversion studies, the transport model has an impact

on the spatial and temporal structure of a posteriori fluxes (Baker et al., 2006a). In

particular, biases in the transport model can adversely influence the flux estimates. In
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Figure 3.9: Seasonal differences (relative to SON) in sensitivity due to observational cov-
erage and transport. For the surface data (top row), the observational coverage for SON
is fixed over the seasonal cycle, so the seasonal differences are due only to transport. For
TCCON, GOSAT, and OCO-2 data, the top panels show differences due to the changing
observational coverage and to transport, whereas the bottom panels show differences due
to transport (with fixed SON observational coverage).
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our analysis we do not attempt to characterize the biases, therefore it is unclear how pos-

sible transport biases in GEOS-Chem might impact the sensitivity results. Nevertheless,

given that the model is driven by assimilated meteorology, we expect that the large-scale

sensitivity patterns found are likely to be robust.

3.4 Flux inversion OSSEs

To contextualize how β and ψ relate to flux inversions, we perform an idealized set of

OSSEs with the same spatio-temporal distribution of measurements as before. The key

benefit of conducting the OSSE is that we can define a set of ”true” fluxes and use GEOS-

Chem to generate pseudo-data based on these true fluxes. This will enable us to examine

how differences in the spatio-temporal distribution of the pseudo-data impact our ability

to recover the true fluxes, and in particular, how they can result in systematic differences

in flux estimates between different observing systems. This experiment is highly idealized

and is only intended to give insights into how β and ψ relate to a posteriori fluxes.

We do not intend to extrapolate any quantitative conclusions about regional or annual

biases; in a more realistic inversion these would be based on the relative weighting of

measurements and the spatially and temporally heterogeneous mismatch between true

and a priori fluxes.

3.4.1 Experiment set-up

As before, we use the same forward model configuration as Nassar et al. (2011). To obtain

biased a priori fluxes for the OSSE, which are different from those used to generate

the pseudo-data, we scale the CASA land fluxes by 0.6 so that the a priori and true

seasonal cycles have the same phase, spatial distribution and balanced annual net flux,

and leave ocean fluxes unchanged. The biospheric CO2 fluxes are balanced in the standard

configuration of GEOS-Chem and we leave that unchanged in our OSSE. We use the

same error statistics as Deng et al. (2014), applying 16% error to fossil fuels, 38% error

to biomass burning, 22% error to ocean fluxes, and 44% error to terrestrial ecosystems.

To simplify the interpretation of the retrieved fluxes, we assume a uniform measurement

error of 0.7 ppm for surface, TCCON and OCO-2 data, and assume diagonal covariance

matrices. In a more realistic inversion, different uncertainties would be applied to the

different observing systems. Because many more OCO-2 observations are aggregated

to 2◦× 2.5◦ grid cells than GOSAT observations, we should expect random errors for

OCO-2 to be much smaller than for GOSAT (since the random error scales with 1/
√
n).
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Thus, for GOSAT we assume larger measurement errors of 1.4 ppm, consistent with error

estimates from Kulawik et al. (2016). To optimize surface fluxes, we minimize the 4D-

Var data assimilation cost function as described in Deng et al. (2014) to retrieve scaling

factors for the a priori fluxes in each grid cell.

To be consistent with the sensitivity calculations, we assimilate all observations over

a given meteorological season to optimize flux scaling factors over the same period. A

limitation of this short assimilation window is that there will be about three months

of observations to constrain the fluxes in the earliest part of the season but less than

one month of observations toward the end of the season. A short assimilation window

will also reduce the impact of distant flux regions, as the window can be shorter than

the transport timescales to these regions. This will act to enhance biases introduced by

inhomogeneous spatial observational coverage, as optimized source fluxes will not benefit

from observations later in the the seasonal cycle. Using a longer assimilation window,

following Deng et al. (2014), for example, will mitigate some of these biases. Thus, using

a three-month assimilation window, as is done here, will give us the maximum impact

that the seasonally-varying coverage could have on the flux estimates.

3.4.2 Inversion OSSE results

The OSSE experiments show a large degree of consistency with β and ψ results shown

earlier. As shown in Figure 3.10, we find that surface measurements give consistently

strong constraints on northern extratropical fluxes throughout the year. OCO-2 best pro-

vides consistently strong constraints on fluxes in the tropics and Southern Hemisphere

throughout the year, but seasonally dependent constraints on the northern extratropics.

It should be emphasized that the magnitude of the flux correction is dependent on the

prior and observation error covariances which are not given realistic values in this experi-

ment, thus, it is not possible to make conclusions about the magnitude of flux correction

for the real world. Differences between the a posteriori and a priori fluxes (Figure 3.10c)

generally have the same spatial characteristics as ψ for each observing system (see Figure

3.6). A notable difference between ψ and a posteriori fluxes for OCO-2 and GOSAT is

that the a posteriori fluxes in the northern extratropics are as well constrained as the

tropical fluxes even though ψ is generally larger in the tropics and Southern Hemisphere.

This may be due to the fact that terrestrial surface fluxes in the northern extratropics

are generally spatially coherent over any given season, whereas fluxes in the tropics and

Southern Hemisphere are more heterogeneous, with some regions taking up carbon and

other regions emitting carbon. Another possibility is that the signal is larger in the
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Figure 3.10: Results of idealized OSSEs. (a) Spatial distribution of the true surface fluxes
(in kg CO2 m−2 s−1) for each season. (b) The ratio of a posteriori to true fluxes for each
observing system and season. (c) Difference between a posteriori and a priori surface
fluxes for each observing system (in kg CO2 m−2 s−1).
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northern extra tropics because there ratio of land to water is higher.

Figure 3.11 shows the regional differences in the flux estimates, relative to the true

fluxes, inferred for each observing system. To help interpret the results, the differences

have been aggregated to the 11 TransCom land regions (Gurney et al., 2002). In this

OSSE, surface measurements provide strong constraints on North American and Eu-

ropean fluxes throughout the year. TCCON, GOSAT and OCO-2 provide temporally

variable constraints in North America and Europe which result in significant biases in

annual net fluxes. As suggested by the sensitivity experiments, much stronger estimates

are available in JJA than the other seasons. OCO-2 is superior to GOSAT at retriev-

ing fluxes in these regions due to both observational coverage and smaller measurement

uncertainties. In the northern extratropics, GOSAT is unable to retrieve northern ex-

tratropical fluxes as well as OCO-2 due to the larger measurement uncertainties. This is

most apparent in the northern extratropics in winter when small absolute fluxes confound

GOSAT’s ability to differentiate between the true and a priori fluxes. In the northern

extratropical summer, when absolute fluxes are large, GOSAT performs nearly as well as

OCO-2 in retrieving the true fluxes.

The net annual flux estimates are shown in Figure 3.11m. Both the a priori and true

terrestrial biosphere fluxes are balanced annually, thus, nonzero net annual fluxes in the

a posteriori are primarily due to uneven spatio-temporal sensitivity to the surface fluxes.

The large net annual fluxes obtained here indicate that it is critical that the magnitude of

the a priori seasonal cycle is realistic if annual net fluxes are to be inferred. OCO-2 and

GOSAT retrieve negative net fluxes due to increased sampling of the summer hemisphere

relative to the winter hemisphere. Regionally, all of the extratropical regions contribute

a net negative flux for GOSAT and OCO-2.

3.4.3 Inversion OSSE discussion

The results of this study show that current observing systems have significant spatial and

temporal variability in their sensitivities to surface fluxes, and that these variabilities are

likely to lead to systematic biases in flux inversion studies. However, there are several

major difficulties in relating the results of these OSSEs to flux inversions assimilating

real observations. First, the magnitude of the flux correction between the a priori and

a posteriori fluxes is dependent on the weighting of the observations by uncertainties. In

this experiment, surface, TCCON, and OCO-2 observations were weighted by the same

uncertainties; however, in reality different uncertainties would be applied to the different

observing systems. Surface observations are particularly difficult to assimilate into trans-
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Figure 3.11: (left section of panels) Differences (in Pg/yr) between the true and a priori
fluxes (black), true and surface a posteriori fluxes (gray), true and TCCON a posteriori
fluxes (green), true and GOSAT a posteriori fluxes (red), and true and OCO-2 a posteriori
fluxes (blue) for each season, and (right section of panels) the annual mean of the absolute
seasonal differences shown in the left section for (a) all land, (b) Europe, (c) Australia,
(d) tropical Asia, (e) temperate east Asia, (f) boreal east Asia, (g) north Africa, (h)
south Africa, (i) temperate South America, (j) tropical South America, (k) temperate
North America, and (l) boreal North America. Shown in (m) is the estimated annual net
flux for each TransCom land region.
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port models due to representativeness errors associated with linking the concentration

observed at a point to the mean concentration of a grid cell. Quantifying these errors is

quite difficult and must be done on a site-by-site basis. Generally, these errors are larger

for mid-continental sites than remote marine sites (Gerbig et al., 2003). Errors applied

to space-based observations are generally more spatially uniform.

Second, isolating biases due to the observational coverage in a posteriori fluxes is ob-

scured by other major sources of systematic error in flux inversions, the most important

of which are biases in the measurements and in the transport model. These additional

factors obscure the origin of biases, which in most cases cannot be easily distinguished

from one another. Furthermore, biases due to observational coverage will not be solely

dependent on the sensitivity of the measurements, but are dependent on the innovation

vector (difference between measurements and simulated measurements). Thus, a pos-

teriori biases will depend on the choice of a priori fluxes, and the spatial and temporal

differences between the a priori and true fluxes. For example, if we had chosen to increase

the seasonal cycle in Section 3.4, rather than decrease it, all of the biases due to obser-

vational coverage would have had the opposite sign. Furthermore, the relative weighting

of the measurements and a priori fluxes, through the error covariances, strongly affects

the a posteriori fluxes. Thus any biases will be sensitive to the structure of the error

covariances.

As shown by the OSSEs, inferred regional flux estimates do not agree closely when

assimilating measurements from different observing systems due to spatial and temporal

differences in sensitivities. As noted above, the short three-month assimilation window

used in our inversion analyses enhances the biases in the seasonal flux estimates. But

the results do demonstrate the potential impact of the varying observational coverage

on the flux estimates. To some extent, flux inversions using GOSAT and OCO-2 should

agree more closely, as biases should be similar given their similar spatio-temporal obser-

vational coverage, if the same a priori is used. This was seen in the regional net fluxes in

Section 3.4. However, the differences between flux inversions using satellite and surface

measurements should be much larger and more difficult to interpret because of the large

differences in spatio-temporal observational coverage.

It should be easier to understand the differences in the a posteriori fluxes by looking

at short periods (monthly to seasonal timescales) when sensitivities and fluxes have a sig-

nificant amount of temporal and spatial coherence. In their assimilation of GOSAT data,

Deng et al. (2014) found that the uncertainty reduction on the estimates of the northern

high-latitude fluxes was negligible in winter and at a maximum in summer, which they

attributed to the seasonal differences in the GOSAT observational coverage. In this case,
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the a posteriori surface fluxes from the inversion should be in better agreement with true

fluxes. For example, in Liu et al. (2014), the a posteriori monthly fluxes were in better

agreement with the true fluxes, but the annual net fluxes were degraded.

3.5 Conclusions

The results of this work show that there are significant differences in the sensitivity

of measurements to surface fluxes between observing systems and observing modes that

vary spatially and temporally. We find that surface measurements are sensitive to surface

fluxes over North America and Europe throughout the year, suggesting that these regions

have temporally consistent constraints on fluxes throughout the year. However, we find

that surface measurements have little sensitivity to the tropics and Southern Hemisphere

(where there are few observations) and seasonally variable sensitivity in Asia, suggesting

limited ability to constrain these regions. In contrast, we find that OCO-2 and GOSAT

measurements have high sensitivity to tropical and sub-tropical fluxes throughout the

year but have seasonally variable sensitivity in the extratropics. Our results suggest

that space-based observing systems, particularly OCO-2, provide the most consistent

constraints on regional surface fluxes in the tropics.

We found that, for GOSAT, the ocean glint data provide the greatest sensitivity to

fluxes in the tropical and southern land regions in SON and DJF, whereas the nadir

H-gain land data offer the greatest constraints on fluxes in these land regions in MAM

and JJA, reflecting the seasonal latitudinal shift in the distribution of the GOSAT ocean

glint data. Our results explain why combining land and ocean GOSAT data enabled

Deng et al. (2016) to better disaggregate the regional fluxes in the tropics. For OCO-

2 we found that the ocean glint data provided the dominant sensitivity to the surface

fluxes in the northern subtropics, tropics, and Southern Hemisphere, mainly due to the

greater OCO-2 data density and the greater latitudinal range of the OCO-2 ocean glint

data coverage. We also found that more than 50% of the sensitivity of OCO-2 data to

the fluxes in the tropics and Southern Hemisphere in SON, DJF, and MAM comes from

data with WLs less than or equal to two. In the northern high latitudes, OCO-2 data

with WLs greater than 10 provide the dominant sensitivity to surface fluxes in MAM

and JJA. Our results suggests that it could be challenging for OCO-2 inversion analyses

that omit data with WLs greater than 10 to reliably capture the uptake of CO2 by the

boreal forests in spring and summer. If OCO-2 data with WLs greater than 10 were to

be included, more information might be obtained on the fluxes in the northern latitudes

across more of the seasonal cycle.
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Using a set of simple idealized OSSEs, we showed that differences in sensitivity to

surface fluxes can result in significant differences in a posteriori fluxes between observing

systems. In particular, because of their highly variable seasonal sensitivity to extra-

tropical fluxes, space-based observing systems are susceptible to systematic biases in

annual flux estimates in the extratropics. This suggests that obtaining high accuracy

in a posteriori regional flux estimates will be a challenge with the current set of observ-

ing systems, and that we should not expect a posteriori regional flux estimates to be

consistent between different observing systems. However, we find that surface and space-

based measurements have complementary sensitivities to surface fluxes, which reinforces

the idea that surface and space-based measurements can play complementary roles in

quantifying regional sources and sinks of CO2. Combining measurements from different

observing systems in flux inversions may lead to a posteriori fluxes with improved accu-

racy. However, this will also come with a new set of challenges as these different data sets

come with differences is spatial and temporal sampling as well as differences in random

and systematic errors. Further study is required to find how these different observational

data sets can be weighted in a combined inversion.



Chapter 4

Evaluating GPP and respiration
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This chapter is adapted from:

Byrne, B., Wunch, D., Jones, D. B. A., Strong, K., Deng, F., Baker, I., Köhler, P.,

Frankenberg, C., Joiner, J., Arora, V. K., Badawy, B., Harper A. B., Warneke, T., Perti,

C., Kivi, R., and Roehl, C. M. (2018). Evaluating GPP and respiration estimates over

northern midlatitude ecosystems using solar induced fluorescence and atmospheric CO2

measurements. J. Geophys. Res.-Biogeo., 123, 1–22, https://doi.org/10.1029/2018JG004472

4.1 Introduction

Observational constraints on GPP and Re are required to identify errors within TBMs. In

this study, we evaluate the seasonal cycle of GPP, Re and NEE produced by four TBMs

and FLUXCOM over northern mid-latitude ecosystems using observational constraints

from atmospheric CO2 and SIF measurements.

NEE can be constrained on large scales using atmospheric CO2 observations. On

seasonal timescales, variations of CO2 are primarily driven by NEE fluxes. Therefore,

modeled NEE fluxes can be evaluated by comparing simulated atmospheric CO2 using

68
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an atmospheric transport model with observed atmospheric CO2. This method has pre-

viously been applied to evaluate TBM fluxes (Messerschmidt et al., 2013; Peng et al.,

2015). Constraints on NEE can be related to GPP and Re through Eq. 1.3. Therefore,

if independent constraints on either GPP or Re are used in combination with constraints

on NEE, it would be possible to evaluate both GPP and Re. Currently, there are no

large-scale observational constraints on Re, but recent advances in remote sensing have

provided a new constraint on large-scale GPP.

Within the last few years, satellite observations of SIF have become possible (Franken-

berg et al., 2011a; Joiner et al., 2011; Guanter et al., 2012). SIF is the emission of

radiation by chlorophyll during photosynthesis and thus provides a proxy for GPP (Pa-

pageorgiou and Govindjee, 2007). Although challenges remain in quantifying GPP from

satellite SIF observations, many studies have found linear relationships between satellite

retrievals of SIF and GPP from the canopy to ecosystem scale on weekly to monthly

time scales (Frankenberg et al., 2011b; Guanter et al., 2012; Yang et al., 2015; Damm

et al., 2015; Zhang et al., 2016b,a; Wood et al., 2017; Sun et al., 2017). SIF is a more

direct proxy for GPP than vegetation indices (Walther et al., 2016; Jeong et al., 2017;

Luus et al., 2017), because other variables are required to estimate GPP from vegetation

indices. For example, PAR and light-use efficiency are required to estimate GPP from

NDVI (Field et al., 1995). In this study, we investigate the utility of using atmospheric

CO2 and SIF observations to evaluate fluxes of NEE, GPP and Re. First, observations of

atmospheric CO2 and SIF are used to evaluate estimates of NEE and GPP, respectively.

Then, constraints on NEE and GPP are combined to evaluate Re estimates.

For atmospheric CO2 observations, we use the retrieved XCO2 from the TCCON

(Wunch et al., 2011). Modeled XCO2 is generated by simulating atmospheric CO2 fields

with the GEOS-Chem chemical transport model driven with imposed NEE as input

surface fluxes. The simulated atmospheric CO2 fields are then integrated in altitude and

compared to TCCON. Using this method, the seasonal cycle of the model-NEE-based

XCO2 is compared with the seasonal cycle observed at several TCCON sites.

For SIF, the longest record of space-based observations is from the Global Ozone

Monitoring Experiment-2 (GOME-2) instrument aboard the Meteorological Operational

Satellite-A (MetOp-A), which was launched by the European Space Agency in 2006

(Joiner et al., 2013; Köhler et al., 2015). Eight years of GOME-2 SIF observations (from

2007–2014) are used to evaluate the mean seasonal behavior of GPP in the TBMs.

We evaluate the constraints that SIF and XCO2 provide on four TBMs and FLUX-

COM upscaled fluxes (Tramontana et al., 2016). Two of the TBMs examined here employ

diagnostic phenology: the Carnegie-Ames Stanford Approach (CASA, Potter et al., 1993;
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Randerson et al., 1996) and the Simple Biosphere model version 3 (SiB3, Baker et al.,

2008). For these TBMs, satellite observations of vegetation indices are assimilated to

prescribe phenology. These TBMs are widely used to generate prior fluxes for flux in-

version analyses (Schuh et al., 2010, 2013; Gurney et al., 2004), and would likely be

employed in flux inversions assimilating SIF and atmospheric CO2. Thus, it is necessary

to understand the level of a priori agreement to expect between the observations and

these TBMs. We also evaluate two prognostic TBMs: the Canadian Terrestrial Ecosys-

tem Model (CTEM, Melton and Arora, 2016), and JULES (Clark et al., 2011; Harper

et al., 2018). In contrast to the diagnostic TBMs, CTEM and JULES model phenology

only as a function of the driving meteorology. Prognostic TBMs are used in simula-

tions of future climate, thus it is desirable to understand the agreement of these TBM

fluxes with observational constraints. FLUXCOM products are generated using upscaling

approaches based on machine learning methods that integrate FLUXNET site level ob-

servations of CO2 fluxes, satellite remote sensing, and meteorological data (Tramontana

et al., 2016; Jung et al., 2017). For this study, we examine upscaled fluxes generated

using random forests (RF), multivariate regression splines (MARS) and artificial neu-

ral networks (ANN). FLUXCOM GPP and Re are widely considered to be among the

best estimates available, thus it is important to include these fluxes in our comparison.

FLUXCOM NEE estimates are known to produce an unrealistic large annual net sink

by the biosphere (18–28 Pg/yr) (Tramontana et al., 2016; Jung et al., 2017), thus we do

not evaluate FLUXCOM NEE against TCCON.

After evaluating model GPP and NEE, we examine the possibility of combining GPP

and NEE constraints from atmospheric CO2 and SIF observations to evaluate model Re.

An “optimized” Re seasonal cycle is calculated using NEE fluxes produced by two atmo-

spheric CO2 flux inversions and GPP fluxes produced by CASA, SiB3 and FLUXCOM,

as these GPP fluxes give close agreement with the normalized seasonal cycle of SIF.

We further examine the sensitivity of this estimate to uncertainties in GPP and NEE

fluxes, discuss possible reasons for differences between our optimized Re and TBM Re,

and discuss the current limitations of estimating optimized Re with existing observational

constraints. The area of study is limited to the northern extratropics (39◦-65◦ N). These

latitudinal limits were chosen because the seasonal variations in XCO2 and SIF are largest

over these latitudes, and thus provide the largest signal in the observations.

This paper is organized as follows. In Sec. 4.2, the data and our methods are described.

In Sec. 4.3, we present the results of our experiments. We first describe the agreement

between SIF and GPP, and then XCO2 and NEE. Then the feasibility of evaluating Re

estimates by combining GPP and NEE constraints is examined. In Sec. 4.4, we discuss
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the plausibility of our optimized Re seasonal cycle and possible sources of error. Then the

limitations of calculating optimized Re given the observational constraints is discussed.

In Sec. 4.5, we give our conclusions.

4.2 Data and methods

4.2.1 Terrestrial biosphere models

This study examines GPP, Re and NEE from four TBMs that use a range of input

parameters. The TBMs used are: CASA (Potter et al., 1993; Randerson et al., 1996),

SiB3 (Baker et al., 2008), CTEM (Melton and Arora, 2016), and JULES (Clark et al.,

2011; Harper et al., 2018). CASA and SiB3 assimilate satellite observations of vegetation

indices to produce diagnostic phenology, while CTEM and JULES employ prognostic

phenology in which the phenology is a function of the driving meteorology. We use two

sets of CTEM fluxes that are driven by different meteorology to examine the impact of

the driving meteorology on GPP, Re, and NEE. CTEM-CRU is driven by NCEP-CRU

(merged product of National Centers for Environmental Prediction (NCEP) reanalysis

and Climate Research Unit (CRU) observations) (Wei et al., 2014) and CTEM-GEM

is driven by Global Environmental Multi-scale - Modeling Air Quality and CHemistry

- Greenhouse Gas (GEM-MACH-GHG) operational weather prediction model (Anselmo

et al., 2010; Robichaud and Ménard, 2014; Makar et al., 2015; Polavarapu et al., 2016).

Details of the TBM runs are given in Table 4.1, and additional description of the config-

uration of the TBMs is given in below.

Carnegie-Ames Stanford approach (CASA) model

The version of the model used here, CASA-GFED3, was modified from Potter et al.

(1993) as described in Randerson et al. (1996) and van der Werf et al. (2006). It is

driven by Modern Era Retrospective-analysis for Research and Applications (MERRA)

reanalysis and satellite-observed NDVI to track plant phenology. We use the same fluxes

as are used for the CarbonTracker 2016 (http://carbontracker.noaa.gov) prior. CASA

outputs monthly fluxes of Net Primary Productivity (NPP) and heterotropic respiration

(RH). From these fluxes, GPP and Re are estimated to be GPP = 2NPP and Re =

RH − NPP. Temporal downscaling and smoothing was performed from monthly CASA

fluxes to 90 minute fluxes using temperature and shortwave radiation from the European

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis (note

this method differs from Olsen and Randerson (2004)). GFED CMS is used for global fire
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Table 4.1: Terrestrial biosphere models used in this study.
Model Meteorology Phenology Respiration variables Years

CASA MERRAa NDVI
carbon pool size (C),
temperature (T) and

soil moisture (M)
2007-2012

SiB3 MERRAb MODIS FPAR
and LAIe

T and M 2007-2012

CTEM-CRU NCEP-CRUc carbon-gain C, T and M 2009-2010
CTEM-GEM GEM-MACH-GHGd carbon-gain C, T and M 2009-2010
JULES NCEP-CRU temperature C, T, and M 2005-2014
aModern-Era Retrospective Analysis for Research and Applications (Rienecker et al., 2011)
b Precipitation scaled to Global Precipitation Climatology Project (GPCP: Adler et al., 2003)

following Baker et al. (2010)
cWei et al. (2014)
dAnselmo et al. (2010); Robichaud and Ménard (2014); Makar et al. (2015)
eStöckli et al. (2008)

emissions (http://nacp-files.nacarbon.org/nacp-kawa-01/). We use average model fluxes

by averaging the fluxes for 2007-2012.

Simple biosphere model (SiB3)

SiB3 was originally designed as a lower boundary for General Circulation Models with

explicit treatment of biophysical processes. The ability to ingest satellite phenology was

later introduced (Sellers et al., 1996a,b), and further refinements included a prognostic

canopy air space (Vidale and Stöckli, 2005), more realistic soil and snow (Baker et al.,

2003) and modifications to calculations of root water uptake and soil water stress (Baker

et al., 2008). The current version is called SiB3. Simulations used in this analysis use

phenology (Leaf Area Index, LAI; fraction of Photosynthetically Active Radiation, fPAR)

from the Moderate Resolution Imaging Spectroradiometer (MODIS). MERRA reanalysis

is used as model inputs, with precipitation scaled to Global Precipitation Climatology

Project (GPCP: Adler et al., 2003) following Baker et al. (2010).

Canadian terrestrial ecosystem model (CTEM)

CTEM is a dynamic vegetation model developed for inclusion in the Canadian Cen-

ter for Climate Modeling and Analysis (CCCma) coupled general circulation model.

Because CTEM is designed to model ecosystems under climate change, the phenology

parametrization has to be independent of current climatic factors. Thus, a “carbon-

gain” approach is used to determine phenology, which is based on local environmental
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conditions. In this approach, leaf onset is initiated when it is beneficial for the plant,

in carbon terms, to produce new leaves. Leaf offset is initiated by unfavorable environ-

mental conditions that incur carbon losses and these include shorter day length, cooler

temperatures, and dry soil moisture (Melton and Arora, 2016; Arora and Boer, 2005).

We use two sets of CTEM fluxes which are driven by different meteorology. One set is

generated using CRU-NCEP which we refer to as CTEM-CRU. Another set is generated

using the GEM-MACH-GHG (run is refer to as CTEM-GEM). We use average model

fluxes by averaging 2009-2010 fluxes, the only two years available.

Joint UK land environment simulator (JULES)

JULES is a community land surface model that has evolved from the UK Met Office

Surface Exchange Scheme. Phenology in JULES affects leaf growth rates and timing

of leaf growth/senescence based on temperature alone (Clark et al., 2011). Vegetation

cover is predicted based on nine plant functional types that compete for space based on

their relative productivity and height but are excluded from growing on agricultural land,

based on a fraction of agriculture in each grid cell (Harper et al., 2018). CRU-NCEP was

used as model forcing data.

4.2.2 Flux inversions

In addition to the NEE from the TBMs, posterior NEE fluxes from two flux inversion

analyses are examined: one that assimilates boundary layer CO2 observations (CT2016)

and one that assimilates XCO2 observations (GOSAT-Inv) from GOSAT. The motivation

for employing two different inversion analyses is that flux estimates from these analyses

are often divergent on regional scales. This is partially due to the sparsity of atmospheric

CO2 observations, which results in the observations strongly underconstraining NEE

fluxes, although other factors, such as errors in model transport, further confound reliable

NEE estimates. Thus, if features in optimized NEE are consistent between inversions,

we have increased confidence in the robustness of the results.

For the first inversion analysis, we use optimized NEE from the National Oceanic

and Atmospheric Administration’s CarbonTracker, version CT2016 (Peters et al., 2007,

with updates documented at http://carbontracker.noaa.gov). CT2016 optimizes NEE

by assimilating in situ observations of boundary layer atmospheric CO2. It employs an

ensemble Kalman filter approach to assimilate CO2 with atmospheric chemical transport

simulated by the TM5 offline atmospheric model (Krol et al., 2005). For CT2016, TM5

is driven by ERA-Interim assimilated meteorology from the ECMWF, with a horizontal
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resolution of 3◦× 2◦ globally and 1◦× 1◦ in a nested grid over North America.

In a second inversion, referred to as GOSAT-Inv, NEE fluxes are optimized by as-

similating GOSAT XCO2 observations using the GEOS-Chem 4D-Var data assimilation,

with version v35 of the GEOS-Chem adjoint model (Henze et al., 2007). To optimize

surface fluxes, the 4D-Var cost function is minimized as described in Deng et al. (2014)

to retrieve monthly scaling factors for prior ocean and terrestrial biosphere fluxes in each

grid cell. We use an assimilation window of nine months and keep posterior fluxes from

the first six months, then shift the inversion period forward by six months. Using this

method, optimized NEE spanning 2010–2013 is generated. Prior NEE fluxes are based

on the posterior fluxes from CT2016. We calculate a mean seasonal cycle using 3-hourly

fluxes from the period 2010-2013. For error statistics, we assign 16% error to fossil fuels,

38% error to biomass burning, 44% error to ocean fluxes, and 44% error to terrestrial

ecosystems, following Deng et al. (2014).

For the GOSAT retrievals, we use version v3.5 of the NASA ACOS GOSAT lite files.

All bias-corrected measurements from the TANSO-FTS shortwave infrared channel are

selected, including ocean glint, and high- and medium-gain nadir, which pass the quality

flag requirement. We generate “super-obs” from the GOSAT retrievals by aggregating

the observations to the grid size of our inversion. Error estimates are generated using

the method described by Kulawik et al. (2016). The reduction in error with aggregation

can be calculated using the expression error2 = a2 + b2/n, where a represents systematic

errors that do not decrease with averaging, b represents random errors that decrease

with averaging, and n represents the number of satellite observations that are averaged

(Kulawik et al., 2016). Kulawik et al. (2016) give a = 0.8 ppm and b = 1.6 ppm as mean

Northern Hemisphere geometric (co-located) values for GOSAT, and these are the values

that are used in our inversion analyses.

4.2.3 GOME-2 SIF

We use two different GOME-2 SIF products: NASA Level 2 GOME-2 version 26 (V26)

740 nm terrestrial chlorophyll fluorescence data (NASA-SIF, 2016; Joiner et al., 2013,

2016) and the GFZ Postdam product (GFZ-SIF, 2016; Köhler et al., 2015). We have

selected observations spanning the period 2007-2014. A “daily correction” is performed

to estimate daily average SIF from the instantaneous measurements (see supplementary

material of Frankenberg et al. (2011b) for details of this calculation). The observations are

then aggregated spatially to a 2◦× 2.5◦ grid and temporally to week of year by calculating

the median value.
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Figure 4.1: MODIS IGBP vegetation classification (at a horizontal resolution of 2◦× 2.5◦).
Coloring indicates that the given vegetation type makes up more than 50% of the veg-
etation type in the gridcell. The vegetation regions are: ENF, DNF, southern mixed
forests, northern mixed forests, grasslands and croplands. Red circles show the locations
of the four TCCON sites examined in this study: Park Falls (45.9◦N, 90.3◦W), Orléans
(48.0◦N, 2.1◦E), Bia lystok (53.2◦N, 23.0◦E), and Sodankylä (67.4◦N, 26.6◦E).

The relationship between SIF and GPP has been found to be dependent on vegetation

type (Guanter et al., 2012), therefore, we examine different vegetation types separately.

We examine GPP over the six northern vegetation regions shown in Figure 4.1: evergreen

needle leaf forests (ENF), deciduous needleleaf forests (DNF), southern mixed forests,

northern mixed forests, grasslands and croplands. The vegetation regions are based

on the vegetation types from the MODIS International Geosphere-Biosphere Program

(IGBP) land cover type classification product (Friedl et al., 2010; Channan et al., 2014).

On a 2◦ × 2.5◦ grid, each grid cell is assigned a given vegetation type if more than 50%

of the grid is made up of a single vegetation type. Mixed forests occur in two distinct

spatial regions in Eurasia and North America. For this reason, we split this category into

two groups: ”northern mixed forests” in Eurasia and ”southern mixed forests” in North

America.

To obtain a seasonal cycle for a given vegetation type, the spatial mean is calculated

for each region. The seasonal cycle is then smoothed using a 3-week running mean. The

mean offset of the SIF seasonal cycle is removed by subtracting the mean SIF value

outside of the growing season. We ensure that the period is outside the growing season

by checking that the time period is also outside of the growing season for FLUXCOM

GPP. Finally, the seasonal cycle of SIF is normalized so that the integrated annual total

SIF value equals 1. The normalization is required because the scaling between SIF and

GPP is not well known and because TBMs produce a large spread in the magnitude of

GPP (see Figure 4.2). Thus it is necessary to normalize annual GPP to compare the

seasonality. The same scaling and averaging is applied to model GPP.

We construct an error estimate for SIF from the random noise in the seasonal cycle
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and the error associated with removing the seasonal cycle offset. To estimate the random

noise, we calculate the SIF seasonal cycle for 2007-2014 for each year individually, for

both NASA and GFZ data products, and take the spread as the uncertainty. In reality,

this spread is due to random error combined with interannual variability in SIF, thus

it provides an upper bound on uncertainty. We estimate the error due to removing the

offset as being the range of SIF values over the dates used to calculate the offset; again

this provides an upper estimate of the errors. These errors are summed in quadrature

to obtain the total error. See Appendix A.1 for more information on GOME-2 SIF error

characterization. Note that these errors do not include systematic errors related to the

retrieval or differences between SIF and GPP. Systematic errors are not well characterized

and could impact the seasonality of SIF. During the winter months, snow cover and large

air masses could introduce biases. Cloud cover is also a potential source of bias, as SIF

is not observed under very cloudy conditions. However, Köhler et al. (2015) found that

the cloud cover threshold did not have a large impact on the temporal patterns of SIF.

4.2.4 Atmospheric XCO2

TCCON XCO2

We examine XCO2 from Sodankylä (Kivi et al., 2014; Kivi and Heikkinen, 2016), Bia lystok

(Deutscher et al., 2014), Orléans (Warneke et al., 2014) and Park Falls (Wennberg et al.,

2014b). To simulate XCO2 based on the NEE fluxes from the TBMs, we use the forward

model component of the GEOS-Chem adjoint, at a horizontal resolution of 2◦ × 2.5◦ with

47 vertical levels. The terrestrial biosphere fluxes are input at 3 hour resolution. We use

annually repeating biospheric fluxes by averaging the fluxes over the years given in Table

4.1. All other fluxes are identical for each simulation, and are the same as those used in

the inversion analyses described in Sec. 4.2.2. We simulate five years of CO2 fields (2008-

2012) with a one-year spin up period (2007) for each set of terrestrial biosphere fluxes. For

comparison with TCCON, the simulated atmospheric CO2 concentrations are sampled at

the time (in 3 hour time intervals) and grid box in which TCCON measurements occur.

The TCCON a priori information and averaging kernels are used to generate XCO2 (using

the method described in Wunch et al. (2011)).
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Seasonal cycle fit

The XCO2 time-series is detrended and an annual XCO2 cycle is found by fitting a function

of the form:

f(x) = a0 +
4∑

k=1

akcos(2πkx) + bksin(2πkx) (4.1)

where x is the fraction of the year. Equation 4.1 is a truncated Fourier series and is

similar to the NOAA seasonality fitting function that is commonly used to fit the mean

annual cycle (Thoning et al., 1989). To estimate uncertainty in the fit, a Monte Carlo

approach is used, in which a set of 50 fits is performed using randomly generated initial

parameters and the standard deviation of the resulting curves is used to estimate the

uncertainty. We then take the mean values of the curves as the best fit line. Note that

this is only the uncertainty on the fit and does not include other sources of error, such

as measurement error.

4.2.5 FLUXCOM

FLUXCOM products are generated using upscaling approaches based on machine learn-

ing methods that integrate FLUXNET site level observations, satellite remote sensing,

and meteorological data (Tramontana et al., 2016; Jung et al., 2017). Jung et al. (2017)

generate Re products using several machine learning methods. For this study, we down-

loaded the products generated using random forests (RF), multivariate regression splines

(MARS) and artificial neural networks (ANN) at daily resolution from the Data Portal of

the Max Planck Institute for Biochemistry (https://www.bgc-jena.mpg.de). The mean

seasonal cycle over 2008-2012 is calculated for each product.

4.2.6 Surface air and soil temperature

Surface air and soil temperatures are required for investigating the heterotrophic res-

piration (RH) produced by TBMs (Sec. 4.3.4). Near-surface air temperature (Tair) is

taken as the lowest atmospheric level of the assimilated meteorology from GEOS-5 after

interpolation to 2◦ × 2.5◦ with 47 vertical levels. This is the same meteorology used

to run the GEOS-Chem model. Soil temperature (Tsoil) is taken from the Modern-Era

Retrospective Analysis for Research and Applications, version 2 (MERRA-2) (Gelaro

et al., 2017). We take the soil temperature to be the maximum temperature of the top

three layers of soil (TSOIL1, TSOIL2 and TSOIL3), which covers a depth down to 0.4 m

(Koster et al., 2000).
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(a)

(b)

(c)

Figure 4.2: Mean seasonal cycles of (a) GPP, (b) Re, and (c) NEE simulated by SiB3
(green), CASA (blue), CTEM-CRU (dashed salmon), CTEM-GEM (dashed orange),
JULES (dashed purple), ANN (dotted gray), MARS (dotted purple-gray), and RF (dot-
ted cyan) between 39◦N and 65◦N. CT2016 (solid red) and GOSAT-Inv NEE (dash-dotted
red) are also plotted.

4.3 Results

4.3.1 Model fluxes

The mean GPP, Re, and NEE fluxes for the TBMs, FLUXCOM, and inversions over all

land between 39◦N and 65◦N are shown in Figure 4.2. This latitude range is used because,

based on GEOS-Chem tagged tracer simulations, NEE over this region produces 85% of

the amplitude of the seasonal cycle at Park Falls, 79% at Orléans, 87% at Bia lystok and

76% at Sodankylä. The mean seasonal cycle is calculated by averaging over the time

periods listed in Table 4.1 to remove interannual variability. CT2016 is averaged over

the period 2007–2012, and GOSAT-Inv is averaged over the period 2010–2013. Fluxes
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are defined so that negative values represent removal of CO2 from the atmosphere and

positive values indicate emission to the atmosphere.

The TBMs have large differences in the magnitude of total annual GPP and Re,

consistent with the results from Huntzinger et al. (2012). The start of the growing

season is quite variable between models, with JULES beginning earliest and SiB3 latest.

For the timing of the end of the growing season, the TBMs are split into two groups: the

TBMs with diagnostic phenology (CASA and SiB3) and FLUXCOM algorithms (ANN,

MARS and RF) have growing seasons that end earlier, whereas the TBMs with prognostic

phenology (CTEM and JULES) end two to four weeks later. For Re, the start of the

spring increase begins earliest for CASA and latest for SiB3. The timing of peak Re is

also quite variable between models, ranging from early June (CASA) to late July (SiB3).

The diagnostic TBMs and FLUXCOM show similar timing in decreasing Re throughout

the fall, whereas the prognostic TBMs shows significantly higher Re throughout the fall,

mirroring what is seen in GPP. The are also significant differences between models in

the magnitude of winter Re. Prognostic TBMs give the highest winter Re, followed

by diagnostic TBMs, whereas FLUXCOM estimates are the lowest. The two sets of

CTEM fluxes driven by different meteorology show some marked differences in fluxes,

with CTEM-CRU GPP and Re having larger magnitude than CTEM-GEM.

For NEE, all models produce a positive flux to the atmosphere in the winter months

and net drawdown into the terrestrial biosphere during most of the growing season.

However, there are differences between models in the timing of the period of net carbon

uptake. The start of net uptake ranges between early April and May and the end of

net uptake occurs between late August and early October. In contrast, there is close

agreement in the seasonality of NEE between CT2016 and GOSAT-Inv. The most notable

difference between the inversions is that GOSAT-Inv has somewhat weaker drawdown

from June through September, and reaches peak drawdown earlier than CT2016. The

inversion NEE fluxes generally fall in the middle of the modeled NEE fluxes from the

TBMs and FLUXCOM during the spring and fall, but produce quite strong drawdown

during the summer.

All three FLUXCOM NEE products are known to produce unrealistically large annual

net sinks (Tramontana et al., 2016; Jung et al., 2017). However, both MARS and RF

NEE show reasonable agreement with the flux inversion NEE through most of the growing

season (June–September). This suggests that low Re fluxes outside the growing season

and enhanced drawdown during the early spring could cause the MARS and RF NEE

annual bias. In contrast, ANN NEE shows reasonable agreement with the flux inversion

NEE during the winter but weaker drawdown during the growing season, suggesting a
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different source for the NEE annual bias.

4.3.2 Comparing model GPP and GOME-2 SIF

We compare the normalized seasonal cycle of SIF and model GPP over the six different

vegetation regions (Fig. 4.3). The normalization is required because the scaling between

SIF and GPP is not well constrained (see Sec. 4.2.3), so we are not able to evaluate the

magnitude of GPP using SIF observations. The two GOME-2 SIF products (NASA and

GFZ-Potsdam) are in close agreement throughout the year and for all vegetation regions.

Differences between the SIF products are always less than the estimated uncertainties,

and less than differences between SIF and modeled GPP. For the remainder of this study,

comparisons will be performed with the NASA product.

Differences between the modeled GPP and NASA GOME-2 SIF are variable, although

differences between model GPP and NASA GOME-2 SIF are generally consistent across

the vegetation regions. For example, the growing season in NASA GOME-2 SIF ends

earlier by several weeks than in the JULES GPP fluxes for all vegetation regions. The

two TBMs with diagnostic phenology and FLUXCOM GPP deviate the least from the

SIF seasonal cycle. The closer agreement for the diagnostic TBMs relative to the prog-

nostic TBMs suggests that the assimilation of vegetation indices improves GPP fluxes, as

expected, although differences in the driving meteorology could play a role. The normal-

ized seasonal cycle of SiB3 GPP is always within the SIF uncertainty for all vegetation

types and has a mean-root-mean square (RMS) difference of 0.0031. The normalized

seasonal cycle of CASA GPP falls within the SIF uncertainties everywhere except in

the fall for DNF and northern mixed forest regions, where CASA shows a more rapid

decrease in GPP. CASA GPP has a mean RMS difference of 0.0037 across the vegetation

regions. RMS differences for the FLUXCOM are 0.0038, 0.0038, 0.0044 for ANN, MARS

and RF respectively. For all FLUXCOM algorithms, GPP is slightly phase shifted earlier

in the year for all vegetation types, with the seasonal cycle starting and ending about

one week earlier. The TBMs with prognostic phenology, CTEM and JULES, have larger

differences between the seasonal cycle of modeled GPP and SIF. These prognostic models

suggest growing seasons that are too long by several weeks compared with SIF across the

vegetation regions studied here. See Appendix A.2 for additional details.

4.3.3 Comparing model NEE and TCCON XCO2

The mean seasonal cycles of observed and modeled XCO2 at Sodankylä, Bia lystok, Orléans,

and Park Falls are shown in Figure 4.4. All of the NEE fluxes reproduce the general shape
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Figure 4.3: Normalized seasonal cycles of GOME-2 SIF (NASA and GFZ), and model
GPP (SiB3, CASA, CTEM-CRU, CTEM-GEM, JULES and FLUXCOM ANN, FLUX-
COM MARS, and FLUXCOM RF) for six vegetation regions. For each panel, the upper
plot shows the seasonal cycle of GPP and SIF scaled so that the integral over the season
equals one. The lower plot shows the difference between scaled TBM or FLUXCOM GPP
and scaled NASA GOME-2 SIF. Grey shaded regions show the uncertainty estimate of
the SIF seasonal cycle.
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of the seasonal cycle, with maximum XCO2 in the early spring and minimum in the late

summer, although in some cases there are significant differences from the TCCON data

in amplitude and phase. The posterior NEE fluxes from the two inversions produce

the closest agreement with TCCON. This is expected because the inversions assimilate

atmospheric CO2 measurements (which are independent of TCCON observations). Of

the two inversions, GOSAT-Inv has a smaller RMS difference of 0.21 ppm across the

four sites, compared to 0.40 ppm for CT2016. However, the difference in RMS between

GOSAT-Inv and CT2016 is not considered meaningful, because the difference could be

due to transport differences between GEOS-Chem and TM5 (see Appendix A.3). Closer

agreement for GOSAT-Inv is expected because the inversion was performed with the

same chemical transport model used to simulate TCCON XCO2 . The good agreement

between the inversions and TCCON is reassuring because both inversions assimilate mea-

surements that are independent of TCCON. These results show good agreement despite

uneven observational coverage, errors in model transport, and biases in assimilated ob-

servations, all of which can strongly impact inversion analyses (Liu et al., 2014; Baker

et al., 2006a; Miller et al., 2018). Of the TBMs, SiB3 and CASA give the best agreement

with TCCON, with RMS differences of 0.50 ppm and 0.58 ppm, respectively. SiB3 gives a

smaller seasonal cycle amplitude than TCCON, such that the annual minimum is about

1 ppm higher across the sites examined here. SiB3 also gives an earlier drawdown of

XCO2 than suggested by TCCON data at Sodankylä, Bia lystok and Park Falls. CASA

gives a seasonal cycle that lags the TCCON data; the lag is largest at Orléans, where

CASA is about two weeks later than the measurements. However, it is unclear whether

these differences are significant, as they are approximately the same order of magnitude

as transport errors. See Appendix A.3 for more details of transport error quantification,

which is based on differences in XCO2 simulated by GEOS-Chem and TM5 as-well as

previous studies (Houweling et al., 2010; Basu et al., 2011; Keppel-Aleks et al., 2011,

2012; Barnes et al., 2016).

Of the TBMs with prognostic phenology, CTEM-GEM has the lowest RMS difference

relative to TCCON (0.73 ppm), whereas CTEM-CRU and JULES have RMS differences

of 1.39 ppm and 1.18 ppm, respectively. Simulated XCO2 using CTEM-CRU and CTEM-

GEM NEE show quite different seasonal cycle shapes and phases. In comparison to

CTEM-GEM, CTEM-CRU has a more rapid spring drawdown, which is delayed by ten

days at all sites. The amplitude of the seasonal cycle is larger for CTEM-CRU than for

CTEM-GEM by about 2 ppm at Orléans and Park Falls. In comparison to TCCON,

CTEM-GEM produces better agreement in the shape and timing of the XCO2 seasonal

cycle than CTEM-CRU, and is within 2 ppm of the TCCON data at all sites. Simulated
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Figure 4.4: Five-year mean XCO2 seasonal cycle at Sodankylä (top row), Bia lystok (second
row), Orléans (third row) and Park Falls (bottom row). TCCON XCO2 is shown in black.
The columns show, from left to right: GOSAT-Inv, CT2016, CASA, SiB3, CTEM-CRU,
CTEM-GEM, and JULES. Shaded regions indicate the uncertainty in the functional fit.
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Figure 4.5: The RMS difference between normalized GPP and NASA GOME-2 SIF
(averaged across all vegetation regions) versus the RMS difference between simulated
XCO2 and TCCON (averaged across the four TCCON sites).

XCO2 using JULES NEE produces a seasonal cycle which is phase shifted early relative

to TCCON at all sites by two to four weeks. JULES underestimates the amplitude of

the seasonal cycle by 3 ppm at Park Falls but overestimate the amplitude by 2.5 ppm at

Sodankylä.

4.3.4 Comparison of GPP and NEE

Figure 4.5 shows the mean RMS difference between model GPP and GOME-2 SIF versus

the mean RMS difference between model-NEE-based XCO2 and the TCCON XCO2 . The

TBMs with diagnostic phenology, SiB3 and CASA, have smaller SIF and TCCON RMS

differences than the TBMs with prognostic phenology. This suggests that assimilating

phenology improves both GPP and NEE fluxes. However, different driving meteorology

was used for the diagnostic TBMs (driven by MERRA) and prognostic TBMs (driven

by NCEP-CRU and GEM-MACH-GHG), thus it is unclear how much the differences in

driving meteorology could have contributed to the differences between the prognostic and

diagnostic TBM fluxes. It is possible that the driving meteorology is partially responsible

for the better agreement with SIF and XCO2 found with the diagnostic TBMs.

For the prognostic TBMs, the relative agreement between modeled GPP and GOME-

2 SIF can be quite different than between model-NEE-based XCO2 and TCCON XCO2 .

For example, XCO2 simulated with CTEM-GEM NEE has a smaller RMS with respect to

TCCON than CTEM-CRU, but CTEM-GEM GPP has a larger RMS with respect to SIF

than CTEM-CRU. This shows two things. First, it indicates that a small GPP RMS dif-



Chapter 4. Evaluationg GPP and Re with CO2 and SIF measurements 85

ference does not necessarily predict small XCO2 RMS difference. This suggests that there

are compensating discrepancies in GPP and Re that improve the NEE fluxes. Second, it

shows that TBM fluxes are highly sensitive to the driving meteorology. High sensitivity

to the driving meteorology has previously been reported for other TBMs (Poulter et al.,

2011). Differences between CTEM-GEM and CTEM-CRU fluxes are primarily due to

differences in moisture between the NCEP-CRU and GEM-MACH-GHG (Badawy et al.,

2018). NCEP-CRU is wetter than GEM-MACH-GHG, which increases GPP and Re

fluxes in CTEM. These results highlight the difficulty in validating TBMs using only

constraints on NEE. This remains a major difficulty in relating optimized NEE from flux

inversions to TBM errors or deficiencies.

Comparing SiB3 and CASA

As discussed above, GPP fluxes and model-NEE-based XCO2 from CASA and SiB3 show

close agreement with SIF and TCCON data, respectively. Figure 4.6 compares the season-

ality of GPP (times negative one), Re and NEE between CASA and SiB3 over 39◦-65◦ N.

The seasonality of GPP is similar for CASA and SiB3 but the seasonality of Re and NEE

shows significant differences. Re peaks about a month earlier in CASA than in SiB3,

causing CASA NEE to peak about a month later than in SiB3. Similar results are found

for individual vegetation regions (see Appendix A.4). The differences between CASA

and SiB3 found here are consistent with the results of Messerschmidt et al. (2013), who

found that differences in seasonality of NEE between TBMs were primarily due to the

differential phasing of Re with respect to GPP.

The difference in timing of Re between SiB3 and CASA could be explained by dif-

ferences in the parameterizations of heterotrophic respiration (RH) in the TBMs. SiB3

uses a “zero order” parameterization in which

RH ∝ f(T ) · f(M). (4.2)

So that RH is only dependent on on soil temperature through a function,

f(T ) = 2(Tsoil−298)/10, (4.3)

and soil moisture through a function f(M) (Denning et al., 1996). This parameterization

closely follows the seasonal cycle of soil temperature and peaks at the same time. Figure

4.6b shows SiB3 Re and f(T ) scaled to have the same annual flux as Re. Clearly, the

seasonal cycle of SiB3 Re and f(T ) align closely. In contrast, the CASA Re curve is phase
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Figure 4.6: GPP·(−1), Re, and NEE fluxes over 39◦–65◦ N. (a) CASA GPP·(−1), Re

and scaled f(T ) (Eq. 4.3). (b) SiB3 GPP·(−1), Re, and scaled f(T ) (Eq. 4.3). (c) SiB3
and CASA NEE.
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shifted earlier in the year relative to the f(T ) curve (Figure 4.6a). CASA uses a “first

order” parameterization (Randerson et al., 1996) that has an additional dependence on

the carbon pool size (C) available for RH , resulting in a phase shift in Re earlier in

the season (Randerson et al., 1996). The reason is that leaf and fine root litter pool

grow at the end of the growing season. Low temperatures throughout the winter prevent

significant respiration, thus, this pool is near its maximum in the early spring. This results

in a larger quantity of available substrate for respiration early in spring (Randerson et al.,

1996).

4.3.5 Estimating Re

Ideally, we would like to optimize Re by performing a “flux inversion” that assimilates

atmospheric CO2 and SIF observations. This would involve first forward modeling SIF

and XCO2 , and then optimizing GPP and Re by simultaneously assimilating SIF and XCO2

observations. This is a complicated task, although tools to do this are under development

(e.g., Schuh et al., 2016). Instead, we take a simpler approach that requires additional

assumptions. We assume NEE and GPP are known, which allows us to simply calculate

Re. We take inferred NEE fluxes, which have been optimized using CO2 observations

and produce XCO2 values that agreed closely with TCCON data, to be our “true” NEE.

Modeled GPP from CASA, SiB3, and FLUXCOM are taken as the “true” GPP for our

calculation. Given that the normalized seasonal cycles of SiB3, CASA and FLUXCOM

GPP were in close agreement with SIF, it is reasonable to assume that the differences in

NEE between the TBMs and inversions are primarily due to differences in the seasonal

cycle of Re and the magnitude of GPP. Note that it is not possible to use SIF in place

of the modeled GPP because the scaling between SIF and GPP is not well known.

The magnitude of GPP from SiB3 and CASA differ by about 45% at the peak of the

growing season and FLUXCOM lies between the two TBMs (Figure 4.2). Any error in the

magnitude of GPP will also be projected onto our optimized respiration estimate. Here

we examine “optimized” respiration in several steps. First, we calculate an “optimized”

Re over the six vegetation types combined using the equation:

optRinv−mod = NEEinv −GPPmod. (4.4)

Therefore, optRinv−mod is the respiration, which, combined with CASA, SiB3 or FLUX-

COM GPP, results in the inversion NEE. Second, we examine the sensitivity of optRinv−mod

to the magnitude of GPP by calculating optRinv−mod after scaling GPP over a range of

magnitudes, spanning the range of SiB3, CASA and FLUXCOM GPP products. Finally,
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possible ecological implications for the seasonality of optRinv−mod are discussed.

Optimized Re

GPP, Re and optRinv−mod for SiB3, CASA and FLUXCOM are shown in Figure 4.7. The

optRinv−mod curves show several features consistent across the ensemble. In particular,

optRinv−mod generally gives a broader seasonal cycle with a less pronounced summer

maximum than Re produced by SiB3, CASA and FLUXCOM. However, comparing the

actual fluxes is difficult due to the differences in magnitude and the fact that the annual

net drawdown is different between TBMs. All FLUXCOM algorithms overestimate the

net annual drawdown, such that the total annual optRinv−FLUXCOM is greater than that

modeled by the algorithms. In contrast, SiB3 fluxes are generated by assuming the

annual net NEE flux is approximately zero at each grid cell, and thus the magnitude of

optRinv−SiB3 is smaller than Re produced by the TBM.

To simplify these comparisons, the seasonal cycle of GPP, Re and optRinv−mod are nor-

malized by the annual total flux. After normalization, more features become clear (Figure

4.7b,d,f,h). As with the comparisons with SIF, close agreement is found in the season-

ality of normalized GPP between the models. In contrast, there are larger differences

in normalized Re between SiB3, CASA and FLUXCOM. In general, differences between

optRinv−mod and model Re are consistent with a broader seasonal cycle in optRinv−mod.

Normalized optRinv−mod is systematically lower in June–July and higher during October

relative to modeled Re. Optimized Re for CASA (optRinv−CASA) shows the largest differ-

ences from the mean. This behavior is due, primarily, to the larger magnitude of GPP

in CASA relative to SiB3 and FLUXCOM.

Sensitivity to GPP magnitude

If Eq. 4.4 is re-written as:

optRinv−mod = −GPPmod

(
1− NEEinv

GPPmod

)
, (4.5)

it is clear that optRinv−mod will become closer to the shape of GPP as the magnitude of

GPP increases. Here we calculate optRinv−mod after scaling SiB3, CASA and FLUXCOM

GPP over a range of values to examine the sensitivity of our results. Over the vegetation

regions examined here, SiB3 GPP gives an uptake of 23 Pg yr−1, ANN gives 23 Pg yr−1,

MARS gives 28 Pg yr−1, RF gives 29 Pg yr−1, and CASA gives 32 Pg yr−1. Therefore,

we scale GPP to vary over the range 23–32 Pg yr−1 and recalculate optRinv−mod. The
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Figure 4.7: Left column shows (a) model GPP·(−1), (c) model Re, (e) optRinv−mod, and
(g) the difference between optimized and model Re for SiB3, CASA, and FLUXCOM
(ANN, MARS, and RF). optRCT2016−mod (based on CT2016 NEE) is represented by solid
lines, whereas optRGOSATinv−mod (based on GOSAT-Inv) is indicated by dashed lines.
Right column shows the normalized seasonal cycles of (b) model GPP, (d) model Re, (f)
optRinv−mod, and (h) the difference between optimized and model Re. In all panels the
solid, thick black line represent the mean of all the curves shown.
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Figure 4.8: optRinv−mod (solid lines), after scaling GPP over a range of values, for
SiB3, CASA and FLUXCOM. optRinv−mod are calculated after first scaling GPP to (a)
23 Pg yr−1, (b) 26 Pg yr−1, (c) 29 Pg yr−1, and (d) 32 Pg yr−1. Re produced by SiB3,
CASA, and FLUXCOM without scaling is indicated by the dotted lines. Colors are as
in Figure 4.7.

resulting curves are shown in Figure 4.8. The optRinv−mod curves are similar when GPP is

scaled to the same annual total for SiB3, CASA and FLUXCOM. For the range of annual

total GPP examined here, optRinv−mod retains a broad summer maximum. However, a

summer peak in respiration becomes more defined as GPP is increased.

Implications of optRinv−mod

The optRinv−mod curves give systematically broader summer peaks in Re than are modeled

by the diagnostic TBMs: CASA and SiB3. Here we examine how Re fluxes in these TBMs

could be changed to bring the TBMs in agreement with optRinv−mod. The objective is to

determine whether realistic changes in TBM parameters could produce the seasonality

found in optRinv−mod, or whether changes to model equations are required. For this
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analysis, we consider the model equations for SiB3 and CASA,

Re = Ra +RH , (4.6)

Ra = − c0 ·GPP, (4.7)

RH = C · f(T ) · f(M), (4.8)

f(T ) = Q
(T−c1)/10
10 , (4.9)

where Ra is autotrophic respiration, RH is heterotrophic respiration, and C is the leaf

and fine root litter carbon pool size. For CASA, the constants given in Eq. 4.6–4.9 are:

c0 = 0.5, Q10 = 1.5, c1 = 273.15, and T = Tair (Randerson et al., 1996). For SiB3, the

constants given in Eq. 4.6–4.9 are: c0 = 0.6, Q10 = 2, c1 = 298, and T = Tsoil (Denning

et al., 1996). Note that RH in SiB3 does not have leaf and fine root litter carbon pool

dependence, we have artificially introduced this dependence for this analysis.

In Sec. 4.3.4, it was found that the seasonality of heterotrophic respiration (RH)

has a high sensitivity to the leaf and fine root litter carbon pool size. In the following

discussion, we show that adding realistic changes to the leaf and fine root litter carbon

pool can bring Re fluxes into closer agreement with optRinv−mod, but does not completely

resolve the differences. First, RH is calculated using Eq. 4.6 and Eq. 4.7, and assuming

Re = optRinv−mod, then, RH/f(T ) is calculated. RH/f(T ) is proportional to the leaf

and fine root litter carbon pool, neglecting soil moisture dependence. Figure 4.9 shows

optRinv−mod, RH , and RH/f(T ) based ob CASA and SiB3 model parameterizations. The

calculated RH increases in the spring (Mar–May). At the start of June, there is a rapid

decrease in RH which remains steady until mid-July when RH increases. RH remains

high until late November when RH decreases into winter. RH/f(T ) indicates that the

carbon pool generally increases from July through October and decreases through the

rest of the year. Notably, there is a very rapid decrease in RH/f(T ) during the spring.

This rapid decrease corresponds to the decrease in RH . These result suggests that the leaf

and fine root litter carbon pool is largely depleted in early June. This lack of substrate

then results in a significant decrease in RH at this time. RH then remains low until this

carbon pool begins to increase in mid July.

Overall, the calculated seasonal cycle of RH and RH/f(T ) suggests that there is an

abundance of substrate for heterotrophs to consume early in the growing season, which

is largely depleted by June, resulting in reduced RH over the summer. In general, the

seasonal cycle of RH and RH/f(T ) calculated here seem plausible, however, it is unlikely

that the carbon pool would begin to increase in July and is more likely this carbon pool

would not increase until the fall (Randerson et al., 1996). Thus, plausible changes in
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Figure 4.9: (a, b) optRinv−mod, (c, d) optimized RH , and (e, f) optimized RH/f(T ) using
parameterizations from Randerson et al. (1996) (left column) and from (Denning et al.,
1996) (right column). The solid black line shows the mean seasonal cycle and shaded
gray region shows the range of optimized Re for all NEE and GPP. The dotted black line
shows f(T ) for CASA (a) and for SiB3 (b) scaled to fit plot area.
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the seasonal cycle of the leaf and fine root litter carbon pool could partially account for

the differences found between Re and optRinv−mod, but it seems unlikely that this could

be the sole cause of the difference, as some unphysical changes to the carbon pool are

required. It is possible that neglecting the soil moisture term impacts the result here,

as soil moisture depletion during July could suppress Re until the fall, resulting in more

realistic seasonality.

The analysis presented here assumes that the model equations (Eqs 4.6–4.9) are

correct. However, in some cases the true biosphere is known to deviate from these

expressions. In many TBMs, including CASA and SiB3, Ra is assumed to be a constant

fraction of GPP implying a constant CUE. However, observations suggest substantial

variability in the CUE over the year (Arneth et al., 1998; DeLucia et al., 2007; Heskel

et al., 2013; Wehr et al., 2016; Tcherkez et al., 2017). Errors in model parameterizations,

such as a constant CUE, will result in systematic errors in modeled fluxes (discussed

in Sec. 4.4). Therefore, errors in model parameterization could also explain differences

between Re and optRinv−mod.

Continental scales

So far, the analysis for optRinv−mod has focused on all land between 39◦–65◦ N. In this

section, optRinv−mod is calculated separately over North America (51◦–167◦ W), Europe

(12◦ W–41◦ E), and Asia (41◦–180◦ E) between 39◦–65◦ N to evaluate the continental

differences in optRinv−mod. Figure 4.10 shows the normalized seasonal cycle of GPP,

Re, and optRinv−mod for each continent (absolute fluxes are given in Appendix A.5),

revealing significant differences in the seasonality of model GPP between the continents

(Fig. 4.10a–c). Europe has the longest growing season: normalized model GPP increases

earlier in spring than for the other continents, peaks in June and then slowly decreases

from July to November. For North America and Asia, modeled GPP peaks in early July.

Asia has the shortest growing season of the three continents.

Normalized model Re indicates that Europe has the broadest seasonal cycle of the

three continents, while North America and Asia have narrower summer peaks in modeled

Re (Fig. 4.10d–f). Similarly, normalized optRinv−mod indicates a broader seasonal cycle

for Europe relative to North America and Asia (Fig. 4.10g–i). Comparing optRinv−mod

and modeled Re, we find that there is consistency between modeled Re and optRinv−mod

throughout the spring and summer for Europe relative to North America and Asia, but,

optRinv−mod suggests enhanced Re in the late fall (Fig. 4.10k). For North America and

Asia, there are large differences between optRinv−mod and modeled Re (Fig. 4.10j,l). For

both continents, differences between optRinv−mod and modeled Re are similar to those seen
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Figure 4.10: Normalized seasonal cycles of (a–c) model GPP, (d–f) model Re, (g–i)
optRinv−mod, and (j–l) the difference between optRinv−mod and model Re for (left column)
North America, (middle column) Europe, and (right column) Asia. For subplots g–l,
optRCT2016−mod is represented by solid lines, whereas optRGOSATinv−mod is indicated by
dashed lines. In all panels the solid, heavy black line represent the mean of all the curves
shown.

for the entire northern extratropics, with optRinv−mod suggesting reduced Re in the early

summer and enhanced Re in the fall. Systematic differences between optRinv−mod and

modeled Re are largest for Asia, for which optRinv−mod suggests systematically lower Re

throughout June and into early July, and systematically higher Re from mid-September

to early November.

Why do optRinv−mod and model Re generally show consistency for Europe, but large

systematic differences for Asia? The answer may be linked to the differences in vegetation

and climate between the continents. Europe has a milder climate than Asia due to the

influence of the Gulf Stream. Furthermore, Europe has a large fraction of croplands

while Asia has a high fraction of evergreen and deciduous needleleaf forests. The simplest

explanation for the difference is that Europe has a milder climate and thus the TBMs and

FLUXCOM suggest a broader season in Re than for Asia. Since optRinv−mod generally

indicates a broader seasonal cycle in Re across the northern extratropics, this will result

in a smaller difference for Europe since the seasonality of Re is already broad.
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4.4 Discussion

The differences between optRinv−mod and FLUXCOM Re may indicate biases in the meth-

ods used to model GPP and Re at FLUXNET sites. At these sites, partitioning methods

are required to decompose observed NEE fluxes into GPP and Re components. Standard

methods perform the partitioning using hypothesized responses of GPP and/or Re to

light, water, and/or temperature (Wehr et al., 2016). These methods are also applied to

generate FLUXCOM products (Tramontana et al., 2016). One possible source of bias in

partitioning methods is that there is less turbulence at night which makes flux detection

more challenging. Another possibility is that current partitioning techniques are missing

ecological processes. Recently, Wehr et al. (2016) used isotopic measurements to deter-

mine daytime Re in a temperate deciduous forest (Harvard forest) and found that daytime

Re was only about half as large as night-time NEE during June–July but roughly equal

to night-time NEE during August–September. Standard partitioning methods do not ac-

count for this variability in daytime Re, thus Wehr et al. (2016) suggest that FLUXNET

Re fluxes are over-estimated in June–July relative to August–September. This suggests

that reduced daytime Re fluxes during June–July could be present across much of the

northern mid-latitudes, particularly in North America and Asia. The ecological expla-

nation for reduced June–July daytime Re suggested by Wehr et al. (2016) is the “Kok

effect”, wherein leaf respiration is inhibited by light (Heskel et al., 2013). Therefore,

this effect is largest during June–July when insolation is greatest. It is plausible that

the reduced optRinv−mod fluxes obtained in the work presented here could be due to the

Kok effect. However, it should be noted that Wehr et al. (2016) also found reduced

GPP during June–July (to balance NEE). In contrast, we find strong agreement in the

seasonality of FLUXCOM GPP and SIF. Therefore, it possible that another mechanism

is responsible. Croft et al. (2015) argue that neglecting variations in leaf chlorophyll

abundances may bias LUE GPP estimates.

The continental-scale differences between optRinv−mod and model Re found in this

study are consistent with those expected from the Kok effect. The magnitude of the Kok

effect has been found to depend on the plant species and ecosystem (Heskel et al., 2013;

Tcherkez et al., 2017). As pointed out by Tcherkez et al. (2017), the inhibition of daytime

respiration was found to be small for a multi-site study of European grasslands (Gilmanov

et al., 2007), but significant in a North American forest (Jassal et al., 2007). Furthermore,

the impact of the Kok effect has been suggested to be larger for evergreen vegetation

than for deciduous vegetation (Wohlfahrt et al., 2005; Heskel et al., 2013). Therefore,

one could expect that the Kok effect would be larger in temperate Asia than Europe,
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which has more evergreen forests but less cropland. Consistent with this, optRinv−mod

suggests greater reductions in Re in June–July in Asia than in Europe (Sec. 4.3.5).

The inhibition of daytime Ra due to the Kok effect also has implications for TBMs,

as it implies variability in the CUE throughout the year. In a recent review, Tcherkez

et al. (2017) concluded that leaf day respiration should be regarded as a central actor of

plant carbon-use efficiency. Furthermore, He et al. (2018) argue that understanding the

mechanisms behind spatiotemporal changes in Ra is critical for better quantifying global

CUE. However, as discussed in Sec. 4.3.5, many TBMs assume constant CUE throughout

the year. These results suggest that this assumption may introduce a systematic bias

of high Ra in June–July relative to August–September in TBMs, and may explain why

differences in the leaf and fine root litter carbon pool between SiB3 and CASA could not

fully explain the differences between model Re and optRinv−mod.

Enhanced fall Re recovered in optRinv−mod provides an interesting parallel with a

recent study of the Alaskan carbon cycle by Commane et al. (2017), who used aircraft

and tower atmospheric CO2 observations and GOME-2 SIF observations to show that Re

fluxes from Alaskan tundra are significant during October–December. We obtain similar

enhanced fall Re over our much larger study region, with the largest enhancement of Re in

Asia from mid-September to mid-November. These results suggest that fall Re fluxes are

larger across boreal and northern regions than has previously been appreciated. Precisely

why we obtain enhanced fall Re relative to SiB3, CASA and FLUXCOM is unclear.

Commane et al. (2017) showed that TBMs do not represent represent fall respiration

well, especially when soil temperatures are near 0 ◦C. They suggested that during the

zero curtain period, when the active layer is freezing from above and below, microbes

continue to metabolize in the subsurface as long as liquid water is present (Zona et al.,

2016), and that this process can persist for months after the surface is frozen and snow

covered. It is unclear if a similar process could explain the enhanced fall Re in our more

southern domain (39◦-65◦ N). Monson et al. (2006) showed that snow cover during the fall

can insulate the soils, producing enhanced Re. This mechanism could provide enhanced

Re fluxes in the northern parts of our domain. A second possibility is that the size of

the leaf and fine root litter carbon pool has an impact on the fall Re. The comparison

presented in Sec. 4.3.5 suggests that this carbon pool may increase rapidly over the fall

and peak in mid-October. If this is the case, it would provide a large quantity of substrate

for heterotrophic respiration in the mid to late fall, and provide a possible explanation

for the enhanced rates of fall Re found in this study.
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4.4.1 Remaining challenges

One challenge with exploiting SIF and XCO2 data is the differences in the scales on which

the two types of observations provide information on CO2 surface fluxes. The footprints

of SIF observations are highly localized; the observed SIF is representative of the footprint

of the satellite. In contrast, an XCO2 observation has a large surface NEE footprint. On

seasonal timescales, variations in XCO2 are driven by the meridional flux distribution

(Keppel-Aleks et al., 2011). Therefore, the scales that can be examined by combining

SIF and XCO2 observations are limited by the scales on which XCO2 observations can

inform surface fluxes.

Differences between inversions in regional net annual fluxes have been well docu-

mented, as annual net fluxes have been the primary focus of the majority of CO2 flux

inversion studies. To a lesser extent, regional-scale differences in the seasonal cycle of

NEE between inversions have also been documented in the literature, particularly when

comparing inversions which assimilate in-situ versus GOSAT observations (Chevallier

et al., 2014; Ishizawa et al., 2016). As a demonstration of these differences, we com-

pare the NEE fluxes from CT2016 and GOSAT-Inv at 2◦× 2.5◦ resolution. Figure 4.11

shows the maximum rate of NEE drawdown during the growing season for CT2016 and

GOSAT-Inv for each grid-cell. There are substantial differences between the inversions

which have structure on the scales of the biomes examined in this study. Thus, it is

unlikely that reliable NEE seasonal cycle estimates are possible on these scales, however,

more research is needed to quantify the scales that can be constrained.

As demonstrated in Sect 4.3.5, the magnitude of GPP has a large influence on the

optRinv−mod seasonal cycle. Thus, the fact that there is no consensus on the global total

GPP (Anav et al., 2015) remains a major limitation on inferring Re. Furthermore, we

do not have a forward model that can relate GPP to SIF observed from space. Previous

studies, which assimilated SIF to optimize GPP, have relied on independent GPP esti-

mates (Parazoo et al., 2014; Bowman et al., 2017; Liu et al., 2017). Parazoo et al. (2014)

prescribed the annual magnitude of GPP (using MPI-BGC), but optimized the temporal-

spatial structure redistributed by the assimilation of SIF. Therefore, the development of

a forward model relating GPP to SIF would greatly improve our ability to isolate GPP

and Re fluxes. These estimates could then be directly compared to FLUXCOM and TBM

GPP and Re.

Furthermore, most previous studies that assimilated SIF to optimize GPP have relied

on independent GPP estimates (Parazoo et al., 2014; Bowman et al., 2017; Liu et al.,

2017). Parazoo et al. (2014) prescribed the annual magnitude of GPP (using MPI-BGC)

but optimized the temporal-spatial structure redistributed by the assimilation of SIF.
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Figure 4.11: Maximum rate of drawdown (gC m−2 day−1) during the growing season for
(a) CT2016, (b) GOSAT-Inv, and (c) GOSAT-Inv minus CT2016.

Recently, forward models relating GPP to observed SIF have been developed (Van der

Tol et al., 2014; Lee et al., 2015). Employing these models in inverse calculations to

optimize GPP could improve our ability to isolate Re fluxes. These estimates could then

be directly compared to FLUXCOM and TBM GPP and Re.

4.5 Conclusions

In the first part of this study (Sec. 4.3.1–4.3.4), GOME-2 SIF and TCCON XCO2 data

were employed to evaluate carbon fluxes produced by three FLUXCOM products (ANN,

MARS, and RF) and four TBMs (CTEM, JULES, CASA, and SiB3). In general, the

normalized seasonal cycle of GPP for the TBMs with diagnostic phenology (SiB3 and

CASA) and FLUXCOM were in close agreement with SIF (with RMS differences less

than 0.0045). TBMs with prognostic phenology (CTEM and JULES) showed compa-

rably worse agreement with SIF (with RMS differences greater than 0.006). The closer

agreement between the seasonality of GPP and SIF for the diagnostic TBMs relative

to prognostic TBMs suggests that the assimilation of vegetation indices improves GPP

fluxes. However, we did not control for the driving meteorology, which could be partially

responsible for the differences. Comparisons of simulated XCO2 with TCCON showed

close agreement for the diagnostic TBMs (with RMS differences less than 0.6 ppm) and

worse agreement for the prognostic TBMs (with RMS differences greater than 0.7 ppm).

Differences in the driving meteorology for CTEM resulted in larges differences in simu-
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lated fluxes and, consequently, in the agreement with observations.

In the second part of this study (Sec. 4.3.5), a simple method for estimating Re

fluxes using constraints on GPP and NEE was described and tested. In this method,

optRinv−mod is calculated by making idealized assumptions about NEE and GPP. Strong

agreement between the seasonality of the normalized seasonal cycle of SiB3, CASA, and

FLUXCOM GPP with SIF suggested that differences between model-NEE-based XCO2

and TCCON XCO2 seasonality were driven by differences in Re. Thus, we assumed that

GPP from SiB3, CASA, and FLUXCOM were correct. To generate constraints on NEE,

we used optimized NEE from two flux inversions, which produced a posteriori CO2 fields

that were in close agreement with TCCON data. Assuming that GPP and NEE were

known, optRinv−mod was calculated as the difference between the optimized NEE and the

TBM and FLUXCOM GPP (Eq. 4.4).

Using this approach, we calculated optRinv−mod for all possible combinations of GPP

(ANN, MARS, RF, SiB3, and CASA) and NEE (CT2016, GOSAT-Inv). This ensemble of

GPP and NEE was found to produce optRinv−mod with reasonable precision. The largest

differences in the seasonality of optRinv−mod curves were due to the magnitude of GPP,

which is variable among models but not well constrained by observations (Anav et al.,

2015). optRinv−mod exhibited a broader summer peak than Re modeled by SiB3, CASA,

and FLUXCOM. The seasonality of optRinv−mod suggested reduced Re in the summer

but enhanced Re in the spring and fall. Differences were systematic from FLUXCOM

and the TBMs during June–July, when optRinv−mod was reduced, and during October,

when optRinv−mod was enhanced. Reduced Re during the early summer is consistent with

the results of Wehr et al. (2016), and could be explained by the Kok effect (inhibition

of leaf respiration by light). Enhanced fall Re is consistent with Commane et al. (2017),

who found significant fall Re in Alaska, and suggests that fall Re may be greater than

previously appreciated.

The seasonality of optRinv−mod has significant implications on Re calculations in

TBMs. We demonstrated that carbon pool dependence for RH is important for recov-

ering Re consistent with optRinv−mod, however, it was also shown that this carbon pool

dependence could not solely explain systematic differences in Re (Sec. 4.3.5). Instead,

the results suggest that using a constant CUE throughout the year introduces biases into

Ra fluxes. Overall, the results suggest that the inclusion of variable CUE for Ra and

carbon pool dependence for RH are important for accurately simulating Re.

Our results highlight the utility of the SIF data for informing CO2 flux inversions. The

significant differences found between bottom-up and top-down estimates of Re motivate

further development of inversion methods to assimilate both atmospheric CO2 and SIF
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observations. Based on this analysis, both CASA and SiB3 produce realistic prior GPP

and NEE fluxes and can therefore provide useful prior fluxes for future analysis. A current

limitation is that only large-scale optRinv−mod was investigated due to the fact that the

accuracy of the seasonal cycle of NEE from flux inversions on smaller scales is uncertain.

The scales over which the mean seasonal cycle of NEE is consistent between inversions

is not well documented in the literature, but needs to be further investigated to provide

GPP and Re estimates on smaller scales.



Chapter 5

On what scales can GOSAT flux

inversions constrain anomalies in

terrestrial ecosystems?

This chapter is adapted from:

Byrne, B., Jones, D. B. A., Strong, K., Polavarapu, S. M., Harper, A. B., Baker,

D. F., and Maksyutov, S. (2018). On what scales can GOSAT flux inversions constrain

anomalies in terrestrial ecosystems? submitted, Atmos. Chem. Phys.

5.1 Introduction

Many studies have investigated IAV in the carbon cycle using observations from the

global network of in situ CO2 measurements (Bousquet et al., 2000; Rödenbeck et al.,

2003; Bruhwiler et al., 2011; Peylin et al., 2013; Marcolla et al., 2017). This network

provides by far the longest direct record of atmospheric CO2 measurements, with many

sites functioning for decades. However, the spatial distribution of sites is inhomogeneous,

with sites most densely located in North America and Europe and comparatively few else-

where. Therefore, in situ observations from the global observation network are relatively

insensitive to CO2 fluxes over much of Asia and in the tropics (Chapter 3), where IAV

is the largest. Recently, space-based observations of atmospheric CO2 have provided

expanded observational coverage for atmospheric CO2. One of the satellites, GOSAT,

has been providing measurements of atmospheric CO2 since 2009. With multiple years

of measurements, it is now possible to investigate IAV in the carbon cycle with GOSAT

data.
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In this study, we investigate interannual flux anomalies estimated from GOSAT mea-

surements using the “flux inversion” method, wherein surface fluxes are estimated from

atmospheric CO2 measurements using a tracer transport model and Bayesian inverse

methods. A series of flux inversions using the GEOS-Chem 4D-Var data assimilation

system (Henze et al., 2007) are performed with different spatial resolutions, prior fluxes

and prior error covariances. We also examine the posterior fluxes from two publicly

available flux inversion estimates, the GOSAT Level 4 product (Maksyutov et al., 2013)

and CarbonTracker, version CT2016 (Peters et al., 2007, with updates documented at

http://carbontracker.noaa.gov), which is a flux inversion that assimilates CO2 observa-

tions from the surface network.

Posterior anomalies in NEE from the inversions are compared with “proxies”: vari-

ables that are known to be closely associated with IAV in the carbon cycle. Agreement

between the anomalies in the inversions and proxies provides corroborating evidence

that the inversions are correctly recovering anomalies in NEE (Deng et al., 2016; Liu

et al., 2017). Three proxies are examined: soil temperature (Tsoil) anomalies from the

MERRA-2 reanalysis (Reichle et al., 2011, 2017), the Monthly Self-calibrated Palmer

Drought Severity Index (scPDSI) (Dai, 2017), and SIF observed by GOME-2 (Joiner

et al., 2016). We also use flux data from FLUXCOM, which provides data-driven NEE

anomaly estimates (Tramontana et al., 2016; Jung et al., 2017).

Anomalies in temperature and water availability are closely linked to anomalies in

terrestrial ecosystems. On the local scales of FLUXNET sites (Baldocchi et al., 2001),

temperature and precipitation have both been shown to be major controls on NEE (see

Baldocchi et al. (2018) for a review). On regional and larger scales, stronger correlations

have been found with temperature anomalies than with precipitation anomalies (Wang

et al., 2013; Jung et al., 2017), particularly in the tropics. Jung et al. (2017) suggest that

this is partially due to sub-regional-scale spatial variability in water availability anomalies

that compensate, thereby reducing the influence of these anomalies on larger scales, while

temperature anomalies are generally more spatially coherent. Nevertheless, both tem-

perature and water availability anomalies strongly influence NEE anomalies over a wide

range of scales. Temperature anomalies and drought conditions in the tropics are largely

driven by ENSO variability. During the warm phase of ENSO (El Niño) large-areas of

tropical land become dryer and warmer, leading to a net emission of CO2 from the land

to the atmosphere, which amplifies the atmospheric CO2 growth rate. During the cold

phase of ENSO (La Niña), much of the tropical land is cooler and wetter than average,

leading to anomalously low CO2 growth rates (Jones and Cox, 2005). In the extratropics,

there is also significant variability in the carbon balance of terrestrial ecosystems related
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to temperature and moisture anomalies (Conway et al., 1994; Bousquet et al., 2000).

Wunch et al. (2013) show that the summer minima in the column-averaged dry-air mole

fraction of CO2 (XCO2) observed at northern mid-latitude TCCON sites is correlated

with surface temperature, indicating that mid-latitude positive temperature anomalies

correspond to reduced uptake by the northern extratropical biosphere during the growing

season. Many studies have examined extreme heatwaves or droughts in the extratrop-

ics, such as the 2003 European heatwave (Ciais et al., 2005) and 2010 Russian heat

wave and wildfires (Guerlet et al., 2013). In these cases, positive temperature anomalies

and drought conditions result in a release of CO2 from terrestrial ecosystems to the at-

mosphere. Zscheischler et al. (2014) show that relatively few extreme events dominate

anomalies in GPP, and likely NEE. Due to the large seasonal cycle of temperature, pre-

cipitation and insolation in the extratropics, the relationship between anomalies in NEE

and the proxies is likely a function of time of year. We focus our study of the northern

extratropics to the Northern Hemisphere summer (JJA).

SIF is the emission of radiation by chlorophyll during photosynthesis and thus pro-

vides a measure of GPP (Papageorgiou and Govindjee, 2007; Frankenberg et al., 2011b;

Guanter et al., 2012; Yang et al., 2015; Damm et al., 2015; Zhang et al., 2016a,b; Wood

et al., 2017). Therefore, reduced GPP is associated with reduced SIF, and vice-versa.

The relationship to anomalies in NEE is less direct because GPP and Re anomalies are

highly correlated (Baldocchi et al., 2018). Therefore, the extent to which SIF anomalies

and NEE anomalies should be correlated is not well understood. One study, Shiga et al.

(2018), shows that SIF can be used to inform the spatiotemporal distribution of NEE

over North America.

Upscaled NEE estimates from eddy-covariance measurements at flux towers can be

used to generate an observation-based estimate of NEE anomalies. Kondo et al. (2015)

compared the GOSAT L4 product and empirical eddy flux upscaling and found similar

responses to climate anomalies in temperate and boreal regions, while poorer agreement

was found in the tropics. Here, we use upscaled NEE estimates from FLUXCOM that are

generated using upscaling approaches based on machine learning methods that integrate

FLUXNET site level observations of CO2 fluxes, satellite remote sensing, and meteo-

rological data (Tramontana et al., 2016; Jung et al., 2017). For this study, upscaled

fluxes generated using MARS are used. Similar results were found for other upscaling

algorithms.

It is important to acknowledge that none of these proxies (or FLUXCOM) should

be expected to be perfectly correlated with the true NEE anomalies. Therefore, when

there is disagreement between the inversions and proxies, it unclear whether this should
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be attributed to the inversion NEE or the proxy. Comparisons of flux inversions with

the proxies are most useful for identifying “positive” results for which the assimilation

of atmospheric CO2 observations has introduced a strong correlation with the proxies.

However, these comparisons are less useful for identifying the limits of the inversions with

“negative” results, in which the null hypothesis (no correlation) cannot be rejected.

In addition to comparing our flux inversions with the proxies and the FLUXCOM

data, we also compare several TBMs with the proxies and the FLUXCOM data. TBMs

simulate GPP and Re, and therefore provide estimates of NEE. TBMs are widely ap-

plied to simulate projections of the future carbon cycle, however, different models show

large disagreements on the relative importance of different processes driving the uptake

(Huntzinger et al., 2017). One of the primary goals of atmospheric flux inversions is to

provide better constraints on NEE to evaluate these models. Therefore, it is useful to

determine whether the agreement between flux inversions and the proxies is closer than

the agreement between TBMs and the proxies.

This study has three main objectives. The first is to quantify the agreement between

GOSAT flux inversions and the flux proxies. This will be useful for identifying the

utility of using proxies to corroborate flux inversions results. The second is to determine

the spatial scales over which the GOSAT inversion constrains flux anomalies. GOSAT

observations are expected to best constrain fluxes on large scales, such as the entire

tropics. As scales decrease, finer scale structures in the atmospheric CO2 fields are

required to constrain fluxes, the smallest scales at which GOSAT observations provide

useful constraints on NEE anomalies is currently unclear. We quantify the ability of

GOSAT flux inversions to quantify NEE anomalies over a range of spatial scales by, first,

examining the agreement between the inversions and proxies over a range of spatial scales

and, second, examining the ability of GOSAT inversions to recover true flux anomalies by

performing a series of OSSEs. Monthly anomalies in the tropics are examined throughout

the year while anomalies in the northern extratropics are examined during the summer

(JJA). The third objective is to quantify the sensitivity of the results for the first two

objectives to the inversion set up. This is investigated with a series of GOSAT flux

inversions with different model resolution, prior fluxes, and prior error covariances.

This chapter is structured as follows. In Sec. 5.2, we describe the datasets used, flux

inversions performed, and how anomalies are calculated. Sec. 5.3, presents the results of

our analysis. Flux inversion NEE anomalies are compared with the proxies in the tropics

and northern extratropics individually. We then present an OSSE to examine the smallest

spatial scales for which NEE anomalies can be recovered from GOSAT observations.

Sec. 5.4 discusses the agreement in anomalies between the GOSAT flux inversions and
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proxies, the scales constrained by GOSAT flux inversions, and the sensitivity of these

results to he inversion set up. Finally, conclusions are given in Sec. 5.5.

5.2 Data and methods

5.2.1 FLUXCOM NEE data

FLUXCOM products are generated using upscaling approaches based on machine learn-

ing methods that integrate FLUXNET site level observations, satellite remote sensing,

and meteorological data (Tramontana et al., 2016; Jung et al., 2017). Explanatory vari-

ables from remote sensing measurements are averaged to produce a mean seasonal cycle

(Tramontana et al., 2016), such that all IAV is introduced by the driving reanalysis

(NCEP CRU). In particular, IAV is driven by air temperature, incoming global radiation

combined with the mean seasonal cycle of NDVI, and model based water availability

index. Jung et al. (2017) generate NEE products using several machine learning meth-

ods. We downloaded these products from the Data Portal of the Max Planck Institute

for Biochemistry (https://www.bgc-jena.mpg.de). We find that the different algorithms

generally give similar results, therefore we only present results using the multivariate

regression spline (MARS) NEE in this study.

5.2.2 Proxies

Dai Global Palmer Drought Severity Index

The scPDSI (Dai, 2017) provides a measure of drought severity on a 2.5◦×2.5◦ grid. The

scPDSI is computed using observed monthly surface air temperature and precipitation

and provides a measure of surface aridity anomalies and changes on seasonal to longer

time scales (Dai et al., 2004; Dai, 2011). We note that scPDSI may not be a good proxy

of soil moisture content over the high latitudes (>50◦).

SIF

We use the monthly gridded “SIF daily average” product from the NASA Level 3 GOME-

2 version 27 (V27) terrestrial chlorophyll fluorescence data (NASA-SIF, 2016; Joiner

et al., 2013, 2016). SIF anomalies are multiplied by negative one to change the sign

of the anomalies so that reduced SIF will be correlated with positive NEE anomalies

(emission of CO2 to the atmosphere).



Chapter 5. GOSAT interannual NEE constraints 106

Soil temperature

For the soil temperature proxy, we use soil temperatures from the MERRA-2 (Reichle

et al., 2011, 2017) reanalysis. Specifially, we use the average soil temperature over levels

1–3 (TSOIL1,TSOIL2,and TSOIL3), which reaches a depth of 0.73 m.

NINO 3.4 index

For the phase of ENSO, we use the sea surface temperature (SST) anomaly in the

NINO 3.4 region (5◦ S–5◦N, 120◦ S–170◦N) of the tropical Pacific Ocean. This re-

gion has been widely used to diagnose ENSO activity. The SST values are calcu-

lated from the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST)

dataset. The SST anomalies were downloaded from the National Oceanic and Atmo-

spheric Administration (NOAA) Earth System Research Laboratory (ESRL) website

(https://www.esrl.noaa.gov).

5.2.3 Inversion analyses

CarbonTracker

We use optimized NEE from the NOAA’s CarbonTracker, version CT2016 (Peters et al.,

2007, with updates documented at http://carbontracker.noaa.gov). CT2016 optimizes

NEE by assimilating in situ observations of boundary layer atmospheric CO2. It employs

the ensemble Kalman filter approach to assimilate CO2 with atmospheric chemical trans-

port simulated by the TM5 offline atmospheric model (Krol et al., 2005). For CT2016,

TM5 is driven by ERA-Interim assimilated meteorology from the ECMWF, with a hor-

izontal resolution of 3◦× 2◦ globally and 1◦× 1◦ in a nested grid over North America.

CT2016 also has IAV in biomass burning. Therefore, when analyzing posterior IAV in

CT2016 we examine the IAV in NEE alone (referred to as CT2016) and IAV due to NEE

and biomass burning combined (referred to as CT2016w/BB).

GOSAT level 4 data

We use the GOSAT level 4 data product (Maksyutov et al., 2013) produced by the Na-

tional Institute for Environmental Studies (NIES). This product is produced by assimi-

lating NIES Level 2 retrievals of XCO2 into the NIES global atmospheric tracer transport

model (NIES-TM) to optimize monthly CO2 fluxes for 64 sub-continental regions. The

Vegetation Integrative SImulator for Trace gases (VISIT), a prognostic biosphere model

(Ito, 2010; Saito et al., 2011), is used to generate prior biospheric fluxes for the inversion
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Table 5.1: Set-up of GEOS-Chem flux inversions. Differences are in model transport
resolution, prior fluxes, and prior errors.

Name Resolution Prior flux error Prior flux IAV
GC2×2.5−200% 2◦× 2.5◦ 200% No (mean 2010–2013)
GC2×2.5−66% 2◦× 2.5◦ 66% No (mean 2010–2013)
GC4×5−100% 4◦× 5◦ 100% No (mean 2010–2013)
GC4×5−44% 4◦× 5◦ 44% No (mean 2010–2013)

GC4×5−100%−IAV 4◦× 5◦ 100% Yes
GC4×5−44%−IAV 4◦× 5◦ 44% Yes

analyses. The GOSAT L4 product also has IAV in biomass burning. Therefore, when

analyzing posterior IAV, we examine IAV in NEE alone (referred to as GOSAT L4) and

IAV due to NEE and biomass burning combined (referred to as GOSAT L4w/BB).

GEOS-Chem

The GEOS-Chem flux inversions performed in this study are shown in Table 5.1. The flux

inversions are performed with different model configurations to examine the sensitivity

of the results to the inversion set-up. We perform inversions at two spatial resolutions,

2◦× 2.5◦ and 4◦× 5◦. The spatial resolution is varied to examine whether changes in

model transport significantly impact our results. It has previously been shown that

there are significant differences in tracer transport as model resolution is decreased in

GEOS-Chem (Yu et al., 2018; Stanevich, 2018a,b). In particular, Stanevich (2018a) show

that resolution-induced biases of up to 30% can be introduced on the scale of TransCom

regions for 4◦× 5◦ relative to 2◦× 2.5◦ for atmospheric methane (CH4) inversions.

The prior error statistics are varied between inversions. The prior error covariance

provides a metric of the uncertainty in the prior fluxes. If prior fluxes are well known then

small errors are applied. If they are poorly known then large prior errors are applied and

the observations will have a larger impact on the posterior fluxes. However, in general,

atmospheric CO2 observations strongly underconstrain the fluxes and additional regular-

ization considerations are required. To prevent overfitting of assimilated observations,

prior flux errors are typically tighter than the true uncertainty in NEE fluxes. Therefore,

the motivation for varying prior errors in this study is to examine the sensitivity of the

posterior flux anomalies to these prior constraints.

Finally, the prior NEE fluxes are varied between flux inversions. For all GEOS-Chem

inversions, the prior NEE fluxes are based on the posterior fluxes from CT2016. CT2016

fluxes are used because they are informed by atmospheric CO2 observations, and thus

provide a seasonal cycle of NEE which is closer to the truth than a TBM forward run (see
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Chapter 4). Using prior fluxes which are closer to the truth then justifies tighter prior

flux error covariances. We use two different set-ups of the CT2016 prior fluxes in the

inversions. For four inversions we remove the IAV from the CT2016 fluxes. To do this,

the fluxes are averaged over the four years (2010–2013) to generate a mean seasonal cycle.

We then repeat this climatology NEE fluxes for each year of the inversion. The reason

for removing prior IAV is so that all posterior NEE anomalies will be introduced through

the assimilation of GOSAT observations. This set-up is different to many previous flux

inversion studies which have included IAV in the prior fluxes. Therefore, to examine

the sensitivity of the posterior IAV to prior IAV, we also perform two inversions that

employ three-hourly CT2016 NEE fluxes over 2010–2013 unchanged from those available

at http://carbontracker.noaa.gov, other than spatial interpolation to fit our grid, so that

IAV is present on the prior NEE for these inversions. The inversions are given names with

a subscript following the convention “model resolution – percentage error applied to prior

fluxes – presence of prior IAV”, such that, an inversion analysis at 4◦×5◦ resolution with

100% uncertainty applied to prior fluxes and with prior IAV is named “GC4×5−100%−IAV.”

For GOSAT observations, we use version v3.5 of the NASA ACOS GOSAT lite files.

We selected all measurements from the TANSO-FTS SWIR channel, including ocean

glint, high gain and medium gain nadir, which pass the quality flag requirement and

have warn levels less than or equal to 15. We generate “super-obs” from the GOSAT

retrievals by aggregating the observations to the grid size of our inversion. We generate

error estimates using the method described by Kulawik et al. (2016). The reduction in

error with aggregation can be calculated using the expression error2 = a2 + b2/n, where

a represents systematic errors that do not decrease with averaging, b represents random

errors that decrease with averaging, and n represents the number of satellite observations

that are averaged (Kulawik et al., 2016). Kulawik et al. (2016) give a = 0.8 ppm and

b = 1.6 ppm as mean Northern Hemisphere geometric (co-located) values for GOSAT,

and these are the values that we use.

Observing system simulation experiments

Five OSSEs are performed, for which pseudo-data are generated by simulating atmo-

spheric CO2 with GEOS-Chem at 4◦× 5◦ spatial resolution and with year specific NEE

from JULES. The GEOS-Chem CO2 distribution is sampled according to the GOSAT

observational coverage. We generate pseudo XCO2 using the GOSAT averaging ker-

nel weighting and apply random errors to the XCO2 pseudo-obs consistent with the

error estimates described in Sec. 5.2.3. The inversion configuration for three of the

OSSEs is identical to GC4×5−44%, GC4×5−200%, and GC4x5−100%−IAV , which use the pos-
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terior CT2016 fluxes as their prior NEE (see Table 5.1). These OSSEs are referred to

as OSSECT2016−44%, OSSECT2016−100%, and OSSE4×5−100%−IAV, respectively. Two more

OSSEs use the same set up as GC4×5−44% and GC4×5−200%, except that for these we use

the 2010-2013 mean NEE fluxes from JULES as the prior fluxes. These two OSSEs are

referred to as OSSEJULES−44% and OSSEJULES−100%.

5.2.4 Terrestrial biosphere models

JULES

JULES is a community land surface model that has evolved from the UK Met Office

Surface Exchange Scheme. Phenology in JULES affects leaf growth rates and timing

of leaf growth/senescence based on temperature alone (Clark et al., 2011). Vegetation

cover is predicted based on nine plant functional types that compete for space based on

their relative productivity and height but are excluded from growing on agricultural land,

based on a fraction of agriculture in each grid cell (Harper et al., 2018). CRU-NCEP was

used as model forcing data.

VISIT

VISIT is a prognostic biosphere model (Ito, 2010; Saito et al., 2011) that simulates

carbon exchanges between the atmosphere and biosphere and among the carbon pools

within terrestrial ecosystems at a daily time step. Modeling of plant CO2 assimilation in

VISIT is based on a model of light extinction in the canopy, following the formulation

of Monsi and Saeki (1953). Autotrophic respiration is formulated as the sum of growth

respiration and maintenance respiration. Growth respiration is simulated as the cost

to produce new biomass, while maintenance respiration is represented as a function of

ground surface temperature. Heterotrophic respiration is the sum of respiration from

two layers, litter and humus, which is regulated by soil temperature and soil moisture

at each depth. VISIT is driven by reanalysis/assimilation climate datasets provided by

the Japan Meteorological Agency (JMA): the Japan 25-year reanalysis (JRA-25)/JMA

Climate Data Assimilation System JCDAS) (Onogi et al., 2007) for the period 1979–

present.
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Carnegie-Ames-Stanford Approach (CASA) Global Fire Emissions Database

(GFED) Carbon Monitoring System (CMS) model

The version of the model used here, referred to as CASA CMS, was modified from Potter

et al. (1993) as described in Randerson et al. (1996) and van der Werf et al. (2006). It

is driven by MERRA reanalysis and satellite-observed Normalized Difference Vegetation

Index (NDVI) to track plant phenology. These flux estimates were computed at monthly

time steps with 0.5◦ spatial resolution.

CASA GFED 4.1

The version of the model used here, CASA GFED 4.1, was modified from Potter et al.

(1993) as described in van der Werf et al. (2017). It is driven by ECMWF reanalysis and

satellite-observed NDVI to track plant phenology. These flux estimates were computed

at monthly time steps with 0.25◦ spatial resolution.

5.2.5 Anomalies and correlations

Monthly anomalies are calculated by subtracting the mean 2010-2013 value for a given

month from the monthly value for a specific year. For example, the NEE anomaly for a

given month and year is calculated using:

ANOM [year,month] = NEE[year,month]− 1

4

2013∑
i=2010

NEE[i,month]. (5.1)

Anomalies are calculated over a range of spatial scales. In each case, the quantity of

interest is first averaged into a spatial mean for each month, then anomalies are calculated.

The same procedure is followed for JJA anomalies except that the anomaly is calculated

over the entire three-month period instead of for a single month.

In the tropics, temporal correlations are performed to quantify agreement between

anomalies between NEE anomalies and proxy/FLUXCOM anomalies. We choose a null

hypothesis in which the correlation is zero. This is the correct null hypothesis for flux

inversions for which the prior NEE fluxes have no IAV. In flux inversions for which there

is IAV in the prior, the correlation between the proxies and prior IAV should be used as

the null hypothesis. However, this would be a significantly more difficult null hypothesis

to test, so for simplicity we choose a null hypothesis of zero correlation for all cases. The

threshold for rejection of the null hypothesis (α) is chosen to be 0.05, such that the null

hypothesis is rejected if the P-value (P) is less than 0.05. We acknowledge that this α
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Figure 5.1: Sub-continental regions in (a) the extratropics and (b) the tropics. In the
tropics, we generate three continents by combining the regions in the Americas, Africa
and the Middle East, and the Asia-Pacific and Indian sub-continent.

threshold is largely arbitrary but is widely used in the literature (Benjamin et al., 2018;

Lakens et al., 2018). Throughout the manuscript, correlations that satisfy this criterion

are called “strong”. In most cases a second test is performed, in which we test if the

correlation between the flux inversion IAV and the proxy is greater than that between

the NINO 3.4 index and the proxy, and conclude that the inversion and proxy only show

good agreement if both of these thresholds are met. The coefficient of correlation is

referred to as R.

We also perform a series of linear regressions. In the tropics, linear regressions are

performed after aggregating over all tropical land, such that the regression is performed

on a single 48 point time series. In the northern extratropics, linear regressions are

performed for the set of four JJA anomalies across five sub-continental regions resulting

in a 20 point dataset. For all regressions the y-intercept is close to zero, and thus is not

reported. The slope of the regressions and coefficient of determination (R2) are reported.

5.3 Results

5.3.1 Tropics

Monthly anomalies in the tropics are examined over a range of spatial scales. The anoma-

lies are aggregated to 4◦× 5◦, 8◦× 10◦, sub-continental regions (shown in Fig. 5.1), con-

tinents, and the entire tropics. Figure 5.2 shows the mean correlation coefficient between

the inversions/TBMs and proxies/FLUXCOM on scales ranging from 4◦× 5◦ grid cells

to the entire tropics. Correlations between the NINO 3.4 index and flux proxies are also
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Figure 5.2: Correlation over a range of scales for models and inversions with (top)
NINO 3.4 index, (second) (−1)×SIF, (third) scPDSI, (fourth) Tsoil, and (bottom) FLUX-
COM NEE in the tropics. Squares represent terrestrial ecosystem models: VISIT (cyan),
JULES (blue), CASA GFED CMS (green), CASA GFED 4.1 (magenta) and the black
circle shows the mean correlation of the models. GOSAT flux inversions are represented
by: GOSAT L4 (cyan up-triangle), GC4×5−44%−IAV (green up-triangle), GC4x5−100%−IAV

(green down-triangle), GC4×5−44% (red up-triangle), GC4×5−100% (red down-triangle),
GC2×2.5−66% (orange up-triangle), and GC2×2.5−200% (orange down-triangle). The green
star shows CT2016. The gray circle and line show the correlation with the NINO 3.4
index. Dashed black lines indicate the correlation required for an α of 0.05, therefore, all
correlations greater than the dashed black line indicate P<0.05.
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shown over the range of spatial scales. It is important to consider correlations between

the inversions/TBMs and proxies/FLUXCOM with the influence of ENSO variability in

mind, as ENSO is the primary driver of large-scale IAV in the tropics. Therefore, to

understand how well the flux inversions are capturing IAV it is useful to contrast cor-

relations between the inversion and proxies to correlations between the NINO 3.4 index

and proxies.

The correlation between posterior NEE anomalies and proxy/FLUXCOM anomalies

increase with aggregation (Fig. 5.2). This is expected as atmospheric CO2 observations

are expected to best constrain fluxes on large scales, such as the entire tropics. As

scales decrease, the signal from variations in the fluxes become weaker and more difficult

to constrain with the atmospheric CO2 observations. Correlations between the proxies

and the NINO 3.4 index also increase with aggregation. This is because the NINO 3.4

index reflects the large-scale ENSO-driven variability in the tropics. Therefore, increasing

correlation with aggregation for the NINO 3.4 index is a reflection of the large-scale

variability having a larger impact.

To categorize the agreement between the flux inversions and the proxies/FLUXCOM,

we state that the flux inversions agrees with a proxy on a given scale only if the correlation

is strong (P < 0.05) and greater than the correlation of the proxy/FLUXCOM with

the NINO 3.4 index (R > RNINO3.4). For the GEOS-Chem inversions, this occurs at

regional and larger scales for correlations with FLUXCOM NEE and at continental and

larger scales for Tsoil. For the GOSAT L4 inversion, the correlation only reaches this

threshold for Tsoil at the largest aggregation scale. These results suggest that GOSAT

observations provide flux information on continental and larger scales, while regional-

scale constraints may be possible. The fact that the correlation coefficient is variable

between GOSAT inversions indicates that the agreement between posterior fluxes and

the proxies//FLUXCOM is sensitive to the inversion configuration.

We investigate the influence of the inversion configuration by comparing the correla-

tions for the six GEOS-Chem inversions. The 2◦ × 2.5◦ inversions generally show slightly

better agreement with the proxies/FLUXCOM than the 4◦ × 5◦ inversions at regional

and continental scales. This could be due to improved transport with higher spatial res-

olution, however, other aspects of the inversion were changed such as the aggregation of

assimilated observations and prior error covariances, which may have also influenced the

results. The influence of prior IAV can be evaluated by comparing the 4◦ × 5◦ inversions

with and without prior IAV. Correlations are stronger for the inversions without IAV at

regional and continental scales. This suggests that prior IAV degrades the inversion and

is discussed in more detail in Sec. 5.4.3. The influence of prior error covariances can be
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evaluated by comparing the inversions with small (44% for 4◦ × 5◦ and 66% for 2◦ × 2.5◦)

and large (100% for 4◦ × 5◦ and 200% for 2◦ × 2.5◦) prior error. Larger prior errors gen-

erally result in larger correlations on regional and larger scales. Large prior errors means

that more movement away from the prior during the inversion is allowed, therefore, better

agreement with larger prior errors suggests that the GOSAT data information content is

sufficiently large that loose prior errors can be applied without degrading the posterior

results by over fitting the observations.

For CT2016, strong correlations that are greater than those for the NINO 3.4 index are

only obtained for SIF and only on the scale of the entire tropics. However, given the poor

correlation between SIF and the NINO 3.4 index, it is possible that this is a spurious

correlation. CT2016 is also the only inversion that does not show strong correlations

with the NINO 3.4 index when aggregated to the entire tropics. The poorer agreement

between CT2016 and the proxies/FLUXCOM than for GOSAT inversions suggests that

the network of surface observations does not provide sufficient information to constrain

tropical fluxes. However, it is also possible that the inversion set-up could play a role.

For the TBMs, correlations are highly model dependent. Of the models, JULES

shows the best agreement with the proxies/FLUXCOM. JULES shows strong correlations

greater than for the NINO 3.4 index at all scales for FLUXCOM NEE, regionally and over

the entire tropics for Tsoil, and regionally for scPDSI. These results suggest that JULES

predicts NEE anomalies in the tropics as well as the GOSAT inversion on continental

and larger scales, and may be better at regional and smaller scales. This suggests that it

may be challenging to use GOSAT flux inversions to evaluate IAV in JULES NEE. For

the other models, less agreement is seen with the proxies/FLUXCOM. The one exception

is CASA GFED 4.1 which shows strong correlations with SIF at all scales. This may

be due to the fact that this model assimilates greenness indices to estimate GPP fluxes.

Anomalies in the greenness indices are likely well correlated with SIF anomalies, therefore,

if anomalies in CASA NEE are driven by anomalies in GPP, it may explain the strong

correlation.

We now investigate the magnitude of tropical IAV in the inversions and the TBMs.

The magnitude of IAV relative to the proxies/FLUXCOM can be obtained by perform-

ing linear regressions of the anomalies. We limit our analysis to the scale of the entire

tropics, where the inversions and proxies/FLUXCOM agreed best. Table 5.2 shows the

slope and coefficient of determination (R2) for the regressions. There is a large amount

of variability in the slopes between inversions/TBMs for each proxy/FLUXCOM. The

GOSAT inversions are quite consistent with each other relative to CT2016 and the TBMs.

The GOSAT inversions give slopes of 1.03–2.10 for FLUXCOM and 0.061–0.12 for Tsoil.
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Table 5.2: Slope and coefficient of determination (R2) for linear regressions for anomalies
across the entire tropics.
Model/Inversion

gC m−2day−1

FLUXCOM NEE
gC m−2day−1

SIF
mW m−2 nm−1 sr−1 scPDSI Tsoil (K)

slope R2 slope R2 slope R2 slope R2

GC2×2.5−200% 1.87 0.69 0.90 0.03 0.078 0.27 0.100 0.61
GC2×2.5−66% 1.03 0.62 0.65 0.05 0.045 0.27 0.061 0.66
GC4×5−100% 1.70 0.69 0.54 0.01 0.067 0.24 0.093 0.63
GC4×5−44% 1.06 0.65 0.65 0.05 0.044 0.26 0.061 0.66

GC4×5−100%−IAV 2.10 0.61 0.94 0.03 0.071 0.16 0.12 0.56
GC4×5−44%−IAV 1.57 0.51 0.03 0.00 0.06 0.16 0.087 0.55

GOSAT L4 1.59 0.34 -0.30 0.00 0.017 0.01 0.106 0.46
GOSAT L4w/BB 1.69 0.33 -0.02 0.00 0.007 0.00 0.107 0.40

CT2016 0.66 0.12 1.58 0.14 0.042 0.11 0.057 0.27
CT2016w/BB 0.79 0.14 1.73 0.14 0.027 0.04 0.059 0.24

VISIT -0.50 0.03 -1.15 0.04 -0.13 0.45 0.006 0.00
CASA 4.1 0.38 0.06 1.88 0.32 0.030 0.09 0.023 0.07

CASA CMS 0.33 0.04 -0.09 0.00 -0.010 0.01 0.029 0.08
JULES 1.85 0.47 0.96 0.027 0.10 0.31 0.116 0.56

Comparing the GEOS-Chem inversions, the largest differences in the slopes are related

to the magnitude of the prior error covariances. Looser prior constraints result in slopes

that are 30–80% larger. There are also large differences in the magnitude of posterior

IAV between the inversions with and without prior IAV. For example, the slopes for

the regression between FLUXCOM and the 4◦ × 5◦ GEOS-Chem inversions with prior

anomalies are 25–50% larger than for GEOS-Chem inversions without priori IAV. The

GOSAT L4 product gives slopes which are consistent with the GEOS-Chem inversions.

Furthermore, the agreement between the GOSAT L4 product and proxies (or FLUX-

COM) is not sensitive to the inclusion of biomass burning. For CT2016, the best agree-

ment is found with Tsoil (0.24 ≤ R2 ≤ 0.27), for which CT2016 gives a smaller slope

than the GOSAT inversions. The agreement between CT2016 and proxies/FLUXCOM

is not sensitive to the inclusion of biomass burning. For the TBMs, JULES gives good

fits with Tsoil (R2 = 0.56) and FLUXCOM (R2 = 0.47) and gives slopes that are similar

in magnitude to the flux inversions. The rest of the TBMs have R2 that are too small to

make meaningful comparisons.

Detailed analysis of GC2×2.5−200%

We examine the agreement between the GC2×2.5−200% inversion and the proxies/FLUXCOM

in the tropics in more detail. Figure 5.3 (left column) shows the correlation coefficient for
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Figure 5.3: Correlations of monthly anomalies over tropical land at 4◦ × 5◦ spatial res-
olution. Columns show coefficient of correlation (R) of (left) GC2×2.5−200%, (center)
NINO 3.4 index, and (right) the difference between the two with (top row) the NINO 3.4
index, (second row) (−1)×SIF, (third row) scPDSI, (fourth row) Tsoil, and (bottom row)
FLUXCOM NEE.

each grid cell between the GC2×2.5−200% anomalies and the proxy/FLUXCOM anomalies.

There are broad positive correlations with the NINO 3.4 index across Central and South

America, tropical and southern Africa, and much of the Asia-Pacific. Generally, positive

correlations are present between GC2×2.5−200% and SIF, scPDSI, Tsoil, and FLUXCOM

NEE in the Americas, southern Africa, and the Asia-Pacific. Figure 5.3 (center column)

shows the correlation coefficient between the NINO 3.4 index and the proxies over the

tropics. Generally, the proxies show strong correlations with the NINO 3.4 index in many

of the same regions for which these proxies show strong correlations with GC2×2.5−200%.

This suggests that grid-scale correlations between GC2×2.5−200% and the proxies may be

a reflection of the large-scale anomalies across the tropics and do not necessarily imply

that the inversion is able to isolate the spatial footprint of ENSO-driven flux anomalies

on smaller scales.

We examine whether GC2×2.5−200% is able to isolate flux anomalies that are sepa-

rate from the large-scale tropical signal by comparing NEE anomalies for FLUXCOM

NEE and GC2×2.5−200% as a function of time. First, we aggregate GC2×2.5−200% and

FLUXCOM NEE to the entire tropics and the following continental-scale regions: the

Americas, Africa plus the Middle East, and the Asia-Pacific plus the Indian sub-continent
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Figure 5.4: NEE anomalies (gC m−2 day−1) for FLUXCOM and GC2×2.5−200% in the
tropics. (left column) Monthly anomalies, (center column) smoothed (3-month running
mean) monthly anomalies, and (right column) continental anomalies minus the scaled
mean tropical anomalies for (a–b) the entire tropics, (c–e) the Americas, (f–h) Africa
and the Middle East, and (i–k) the Asia Pacific and Indian sub-continent. For each
panel, R2 shows the coefficient of determination between GC2×2.5−200% and FLUXCOM
NEE anomalies within the panel.
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(Fig. 5.1). Figure 5.4 shows GC2×2.5−200% and FLUXCOM NEE anomalies as a func-

tion of time over the entire tropics and the continental-scale regions. We show raw

and smoothed (3-month running mean) monthly NEE anomalies as a function of time.

Over the entire tropics, FLUXCOM and GC2×2.5−200% are highly correlated (R2 = 0.69)

(which is shown in Fig. 5.2). On continental scales, the agreement between FLUXCOM

and GC2×2.5−200% is variable, ranging from R2 = 0.08 for Africa plus the Middle East

to R2 = 0.61 for the Americas. All correlations improve after smoothing, suggesting

that monthly scale variations are not correctly represented in GC2×2.5−200%, FLUXCOM

NEE, or both. We attempt to isolate anomalies specific to each continent by removing

the large-scale anomaly across the entire tropics. This is done by subtracting a mean

tropical anomaly (scaled to have the same variance as the continental anomaly) from the

continental anomaly using the following equation:

DIFFcontinent−tropics = ANOMcontinent − ANOMtropics ×
STD(ANOMcontinent)

STD(ANOMtropics)
, (5.2)

where STD() represents standard deviation and DIFFcontinent−tropics provides an estimate

of anomalies in NEE for a given continent that are not associated with the large-scale

ENSO-driven anomalies across the tropics. DIFFcontinent−tropics is shown for each continent

in Fig. 5.4e,h,k. The magnitude of the anomalies are reduced after removing the tropical

mean anomalies. Positive correlations are obtained for the Americas (R2 = 0.18), Africa

plus the Middle East (R2 = 0.07), and the Asia Pacific and India (R2 = 0.30). These

results suggest that GC2×2.5−200% is partially able to isolate NEE anomalies on continental

scales that are separate from the large-scale ENSO-induced variability, and suggests that

GOSAT flux inversions can be used to examine continental-scale flux anomalies in the

tropics. We note, however, that the the agreement in IAV between GC2×2.5−200% and

FLUXCOM is not as strong in Africa and the Middle East.

5.3.2 Northern extratropics

In the northern extratropics, the observational coverage of GOSAT is highly seasonal

and so we limit our analysis of anomalies in the northern extratropics to the summer

(JJA), when observational coverage is the best (Chapter 3). Fig. 5.5 shows the anoma-

lies for the proxies, FLUXCOM, and GC2×2.5−200% across the northern hemisphere for

JJA 2010–2013. The proxies and FLUXCOM generally show high coherence in anoma-

lies. Events for which FLUXCOM NEE gives enhanced emission to the atmosphere also

show reduced SIF, increased scPDSI, and increased Tsoil. We have highlighted (with
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Figure 5.5: Northern extratropical anomalies during JJA. Anomalies for (top row)
(−1)×SIF, (second) scPDSI, (third) Tsoil, (fourth) FLUXCOM NEE, and (bottom)
GC2x2.5 over JJA for (left to right) 2010–2013. Black boxes highlight major climate
anomalies: the 2010 Russian heat wave, 2011 drought in Mexico and southern USA, the
2012 North American drought, and the 2013 California drought.
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Table 5.3: Slope and coefficient of determination (R2) for linear regressions for regional
anomalies during JJA in the northern extratropics.
Model/Inversion

gC m−2day−1

FLUXCOM NEE
gC m−2day−1

SIF
mW m−2 nm−1 sr−1 scPDSI Tsoil (K)

slope R2 slope R2 slope R2 slope R2

GC2×2.5−200% 1.56 0.54 4.07 0.14 0.052 0.21 0.17 0.56
GC2×2.5−66% 1.28 0.65 3.32 0.16 0.041 0.24 0.13 0.57
GC4×5−100% 1.36 0.49 4.13 0.17 0.054 0.28 0.16 0.62
GC4×5−44% 1.29 0.64 3.36 0.17 0.045 0.29 0.14 0.65

GC4×5−100%−IAV 1.28 0.26 6.8 0.27 0.05 0.16 0.16 0.36
GC4×5−44%−IAV 0.79 0.15 4.66 0.20 0.026 0.06 0.10 0.21

GOSAT L4 1.59 0.33 5.86 0.17 0.086 0.35 0.19 0.43
GOSAT L4w/BB 1.59 0.34 6.52 0.21 0.090 0.39 0.18 0.39

CT2016 0.21 0.01 4.03 0.13 0.000 0.00 0.04 0.03
CT2016w/BB 0.18 0.006 4.59 0.16 0.002 0.00 0.03 0.01

VISIT 0.93 0.47 3.25 0.21 0.059 0.67 0.10 0.50
CASA 4.1 0.37 0.12 3.96 0.48 0.020 0.11 0.05 0.20

CASA CMS 0.16 0.01 4.13 0.34 0.00 0.00 0.02 0.02
JULES 1.58 0.29 7.26 0.23 0.075 0.23 0.23 0.52

boxes) major climate anomalies over this time period: the 2010 Russian heat wave, the

2011 drought in Mexico and southern USA, the 2012 North American drought, and the

2013 California drought. GC2×2.5−200% shows some ability to recover all of these major

anomalies, suggesting that the inversion can recover sub-continental IAV. However, there

are also instances where the inversion seems unable to recover anomalies. For example, in

2010, GC2×2.5−200% indicates a positive anomaly in North America, whereas the proxies

indicate near neutral or negative anomalies.

To examine agreement with the proxies on regional scales, we have aggregated the

inversions, the TBMs, proxies, and FLUXCOM into the five extratropical subcontinental

regions shown in Fig. 5.1. The JJA anomalies in these regions over 2010–2013 provide 20

data points. We performed a linear regression of these anomalies against the proxies and

FLUXCOM. Table 5.3 shows the slope and R2 values of the regressions. For the GOSAT

inversions, the 2◦ × 2.5◦ and 4◦ × 5◦ with no prior IAV show the closest agreement with

FLUXCOM NEE and Tsoil (0.49 ≤ R2 ≤ 0.65), while the inversions with prior IAV show

substantially poorer agreement (0.15 ≤ R2 ≤ 0.36). This is a larger difference between

the inversions with and without prior IAV than was found for the tropics (see Sec. 5.4.3).

The inversions with IAV also give a smaller slope indicating a smaller magnitude of IAV,

which is the opposite of what was found in the tropics. Comparing the inversions without

prior IAV, tight prior errors give 0.57 ≤ R2 ≤ 0.65, whereas loose prior constraints give
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0.49 ≤ R2 ≤ 0.62. This suggests that the inversions with loose prior constraints may be

over-fitting the data and degrading the agreement with proxies. As with the tropics, the

inversions with looser prior constraints give larger slopes, suggesting larger IAV.

Comparing the other inversions, the GOSAT L4 product shows agreement with FLUX-

COM NEE (R2 = 0.33) and Tsoil (R2 = 0.43). CT2016 shows poor agreement with all

proxies, indicating that this inversion is unable to isolate zonally asymmetric fluxes in

the northern extratropics, which is surprising given the high sensitivity of the surface

CO2 network to northern extratropical surface fluxes (Chapter 3). However, consistent

with this result, Polavarapu et al. (2018) show that flux inversions assimilating obser-

vations from the surface network are largely unable to recover zonally asymmetric flux

signals. CT2016 also includes prior IAV in the inversion which may negatively impact

the posterior IAV, based on the GEOS-Chem inversion results.

For the TBMs, VISIT shows close agreement with FLUXCOM NEE, scPDSI, and

Tsoil anomalies and to a lesser extent SIF anomalies. This is notable as VISIT generally

showed poor agreement with the proxies in the tropics. JULES shows close agreement

with Tsoil anomalies and some agreement with the other proxies. CASA GFED 4.1

shows good agreement with SIF anomalies, but comparatively poorer agreement with

the other proxies. CASA GFED CMS shows some agreement with SIF anomalies, but

little agreement with the other proxies.

5.3.3 Observing system simulation experiments

Tropics

Figure 5.6 shows the mean correlation coefficient between the posterior and true anoma-

lies in the tropics over a range of scales. The results are highly reminiscent of the

results between the GOSAT inversion and the proxies. The mean correlation between

the posterior and true NEE anomalies increases with aggregation for all OSSEs. Strong

correlations are obtained for all OSSEs on regional and larger scales. The inversion set up

also has an impact on the correlations between the posterior and true IAV. The largest

differences between OSSEs are obtained on regional and continental scales. On these

scales, OSSEJULES−100% has the largest correlation. This suggests that having a clima-

tological seasonal cycle close to the truth is important for recovering IAV in the tropics.

The inclusion of prior IAV (OSSE4×5−100%−IAV) does not appear to significantly degrade

the correlation relative to a prior without IAV (OSSECT2016−100%), in contrast to what

was found with the real data GOSAT inversions. The prior error constraints generally

have a large influence on the correlation with the truth. Loose prior constraints give
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Figure 5.6: Mean correlation coefficient (R) with the truth over a range of spatial scales
for CT2016 (white star), OSSE4x5−100%−IAV (white down-triangle), OSSECT2016−44% (grey
up-triangle), OSSECT2016−100% (grey down-triangle), OSSEJULES−44% (black up-triangle),
and OSSEJULES−100% (black down-triangle).

better agreement for all OSSEs, consistent with the GOSAT inversions.

On the scale of the entire tropics, we performed linear regressions between the poste-

rior and true anomalies, which are shown in Table 5.4. For all regressions, the magnitude

of IAV in the posterior fluxes is less than the truth (slope of 0.42–0.75). This suggests

that the inversions do not recover the full magnitude of NEE IAV. In addition to com-

paring posterior and true anomalies, we examine the similarities in posterior anomalies

between OSSEs. The right column of Table 5.4 shows the results of linear regressions

between posterior and OSSEJULES−100% NEE anomalies. The OSSEs without prior IAV

show better agreement with OSSEJULES−100% posterior anomalies than the true anoma-

lies. This suggests that the assimilation of pseudo-data is introducing NEE anomalies

in a similar way for all OSSEs and recovering the true IAV is primarily limited by the

observational coverage rather than the inversion set up. However, differences between

the OSSEs and truth may also be due to systematic biases introduced due to factors such

as uneven observational coverage (Chapter 3).

We examine the continental-scale anomalies in detail for OSSEJULES−100%, OSSECT2016−100%,

and OSSEIAV−100% in Figure 5.7, which shows the timeseries of continental-scale flux

anomalies in the tropics for the OSSEs. The correlation between the OSSEs and true

anomalies improves after performing a three-month running mean, consistent with the

GOSAT inversion results. Strong correlations between the OSSEs and truth are obtained

after removing the mean tropical signal (using Eq. 5.2). These results provide further

evidence that GOSAT inversions can largely recover continental-scale flux anomalies in

the tropics.
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Figure 5.7: Monthly NEE anomalies (gC m−2 day−1) for OSSEJULES−100% (red),
OSSECT2016−100% (green), OSSE4×5−100%−IAV (blue) and truth (black) in the tropics.
(left column) Monthly anomalies, (center column) smoothed (3-month running mean)
monthly anomalies, and (right column) continental anomalies minus the scaled mean
tropical anomalies for (a–b) the entire tropics, (c–e) the Americas, (f–h) Africa and the
Middle East, and (i–k) the Asia Pacific and Indian sub-continent.
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Table 5.4: Slope and coefficient of determination (R2) for linear regressions for OSSE
experiments.

Tropics
Inversion Truth OSSEJULES−100%

slope R2 slope R2

OSSEJULES−100% 0.67 0.53
OSSEJULES−44% 0.58 0.53 0.91 0.91

OSSECT2016−100% 0.55 0.61 0.84 0.84
OSSECT2016−44% 0.42 0.59 0.69 0.77

OSSE4×5−100%−IAV 0.75 0.69 0.70 0.48
CT2016 0.31 0.19 0.50 0.15

Northern Extratropics
Inversion Truth OSSEJULES−100%

slope R2 slope R2

OSSEJULES−100% 0.35 0.39
OSSEJULES−44% 0.27 0.48 0.76 0.80

OSSECT2016−100% 0.30 0.30 1.04 0.88
OSSECT2016−44% 0.31 0.43 1.06 0.62

OSSE4×5−100%−IAV 0.63 0.15 0.55 0.41
CT2016 0.48 0.46 0.18 0.05

Northern extratropics

Table 5.4 shows the slope and R2 for linear regressions of flux anomalies from the OSSEs

against the truth on sub-continental regions in the northern extratropics during JJA. In

all cases the slope is less than one, indicating that the OSSEs are not recovering the full

magnitude of IAV. The R2 values are less than between the GOSAT inversions and prox-

ies. This may be due to the fact that temporal anomalies in JULES NEE are highly vari-

able month-to-month and may have a shorter temporal correlation length scales than the

true anomalies. Comparing the different OSSE set ups, the OSSE4×5−100%−IAV performs

substantially worse than the OSSEs with no prior IAV (R2 = 0.15 versus R2 = 0.30–

0.48). This is consistent with comparisons between GOSAT inversions and proxies, and

suggests that employing prior IAV in the northern extratropics degrades posterior IAV

on sub-continental scales during JJA. OSSEs with tighter prior constraints give larger

R2, consistent with the GOSAT inversions. OSSEs with JULES mean seasonal cycle

also agree better with the truth than those which employ the mean seasonal cycle from

CT2016.
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5.4 Discussion

5.4.1 Implications of correlations between flux inversions and

proxies

The results of this study show varying degrees of agreement between anomalies in GOSAT

flux inversions and anomalies in proxies and FLUXCOM. We consistently find that Tsoil

and FLUXCOM NEE show the strongest agreement with the flux inversions, whereas

scPDSI and SIF show weaker agreement. In this section we discuss agreement between

the proxies and flux inversions in detail.

Agreement with Tsoil and scPDSI

The results show high consistency in the timing of anomalies between Tsoil and GOSAT

flux inversions on continental and larger scales in the tropics, and on sub-continental

scales in the northern extratropics during JJA. These results indicate that Tsoil is a

useful proxy for corroborating IAV in flux inversions in both the tropics and northern

extratropics. Linear regressions between GOSAT flux inversion and scPDSI IAV indicate

moderate agreement on the scale of the entire tropics (R2 ≤ 0.27) and on sub-continental

scales in the northern extratropics (R2 ≤ 0.29). The GOSAT flux inversion IAV consis-

tently shows closer agreement with Tsoil anomalies than with scPDSI in both the tropics

and northern extratropics. This is consistent with previous research that has mostly

shown that IAV is most closely related to temperature anomalies on large scales (Wang

et al., 2013; Jung et al., 2017).

Although the results of this study indicate that Tsoil is a useful metric for corrobo-

rating IAV in flux inversions, inferring the sensitivity of NEE anomalies to temperature

anomalies directly is not advised for the fits given in Tables 5.3 and 5.2. This is because

a number of factors have not been considered in this analysis. One factor is that tem-

perature anomalies are also correlated with moisture and biomass burning anomalies.

Keppel-Aleks et al. (2014a) show that accounting for these covariances results in reduced

sensitivity of NEE anomalies to temperature anomalies. A second factor is that the re-

lationship between NEE anomalies and temperature and moisture anomalies is variable,

depending on large-scale climate modes. For example, Fang et al. (2017) show that ei-

ther temperature or precipitation anomalies can be the primary driver NEE anomalies

based on ENSO phase. A third factor is that the impact of temperature and moisture

on NEE anomalies may be lagged. Ecosystems can take a months to years to recover

from droughts (Frank et al., 2015; Schwalm et al., 2017; Sippel et al., 2018). Baldocchi
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et al. (2018) found that a flux anomalies at number of FLUXNET sites are negatively

correlated with themselves after a one-year lag implying a highly oscillatory behavior in

the net carbon fluxes from year to year.

This leaves many opportunities for future work to further investigate the relationship

between NEE anomalies and climate variability in more detail. A further limit to the

comparisons of flux inversions with Tsoil and scPDSI anomalies in the tropics is that we

do not distinguish between seasons. The relationship between NEE, Tsoil and scPDSI

anomalies likely have substantial seasonal differences (Rödenbeck et al., 2018). We en-

courage future studies to examine the seasonally dependent relationships using longer

flux inversions, as well as studies which investigate lagged correlations and climate mode

relationships between inversion NEE anomalies and temperature and water availability

anomalies.

Agreement with SIF

It is notable that correlations with SIF are weaker than those with the other proxies.

Linear regressions indicate that SIF anomalies show some correspondence to GOSAT

flux inversion anomalies on sub-continental scales in the northern extratropics during

JJA (0.14 ≤ R2 ≤ 0.27), however, little agreement is found in the tropics (R2 ≤ 0.05).

This suggests that SIF may not be a good indicator of NEE IAV in the tropics, which

is likely due to the strong covariances between GPP and Re anomalies. However, it is

also possible that the IAV in SIF observed by GOME-2 is not reliable as spurious trends

have been found in the observations (Zhang et al., 2018). We examined the correlation

between FLUXCOM MARS GPP and SIF anomalies to test if the SIF anomalies used

here are consistent with independent estimates of GPP anomalies (Fig. 5.8). Spatially

heterogeneous agreement is found between the two datasets, with the closest agreement

occurring over semi-arid regions. However, correlations are generally positive over the

majority of the globe, suggesting that IAV from GOME-2 SIF is reliable.

Agreement with FLUXCOM NEE

The GEOS-Chem GOSAT flux inversions with no prior IAV showed close agreement

with FLUXCOM NEE anomalies in the tropics on regional and larger scales, and in

the northern extratropics on regional scales during JJA. This is a remarkable finding

as these data driven estimates of NEE IAV are independent, and agreement between

the two estimates provides a strong indication that the results are robust. Therefore,

comparisons with FLUXCOM NEE may provide a method for corroborating results from
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Figure 5.8: Correlation between FLUXCOM MARS GPP anomalies and SIF anomalies
at 2◦ × 2.5◦ spatial resolution.

flux inversion studies. However, it should be noted that the net annual NEE fluxes

produced by FLUXCOM are quite unrealistic (Tramontana et al., 2016; Jung et al.,

2017), with annual net draw-down by the biosphere of 18–28 Pg.

It may also be possible to evaluate the magnitude of IAV in FLUXCOM NEE through

comparisons with flux inversions. Here we compare the magnitude of IAV between the

GOSAT flux inversions and FLUXCOM NEE. The slope of the linear regression between

the inversions indicates the relative magnitude of the inversion and FLUXCOM NEE

anomalies. Over the entire tropics, the GOSAT inversions give slopes of 1.03–2.10 (mean

of 1.56), suggesting that the magnitude of NEE anomalies are underestimated by FLUX-

COM NEE. For JJA in the northern extratropics, the GOSAT inversions give slopes of

0.79–1.59 (mean of 1.31), again suggesting that the magnitude of NEE anomalies are

underestimated by FLUXCOM. Furthermore, the OSSEs suggested that the inversions

do not recover the full magnitude of IAV, providing further evidence that FLUXCOM

underestimates the magnitude of IAV. This result is consistent with previous studies

which indicate that FLUXCOM underestimate the magnitude of IAV (Jung et al., 2011,

2017).
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5.4.2 Scales constrained

We investigated the agreement between monthly anomalies in flux inversions and prox-

ies/FLUXCOM over a range of spatial scales in the tropics. The results showed that

the agreement between the inversions and the proxies/FLUXCOM were scale dependent,

which was corroborated by OSSEs. Here we synthesize these results and discuss the abil-

ity of GOSAT flux inversions to recover IAV in NEE over the range of scales examined

in this study.

The results provide strong evidence that GOSAT flux inversion can constrain monthly

flux anomalies on the scale of the entire tropics. All of the GEOS-Chem GOSAT flux

inversions obtained R2 ≥ 0.55 for linear regressions with Tsoil, and R2 ≥ 0.51 with FLUX-

COM NEE. The OSSEs provide further evidence that the true NEE anomalies could be

recovered, as linear regressions between the posterior and true anomalies give R2 ≥ 0.53.

These results provide strong evidence that the GOSAT inversions are recovering the tim-

ing of tropical NEE anomalies, however, there is less agreement on the magnitude of flux

anomalies over the tropics. The OSSEs indicate that GOSAT flux inversions can recover

42–68% of the magnitude of NEE anomalies, depending on the inversion set up.

On continental scales in the tropics, the results suggest that GOSAT flux inversion

can constrain monthly flux anomalies. The GEOS-Chem inversions show good agree-

ment with FLUXCOM NEE and Tsoil anomalies. However, the agreement between the

inversions and proxies/FLUXCOM on this scale is strongly influenced by the large-scale

ENSO anomalies. We isolated the continental-scale anomalies by subtracting a mean

tropical anomaly for GC2×2.5−200% and FLUXCOM (Fig. 5.4), and for the OSSEs (Fig.

5.7). We found that the anomalies were still correlated after removing the mean tropical

signal, suggesting that the continental-scale anomalies are largely recovered in the inver-

sions. However, we also found that the inversion set up can have a significant influence

on posterior anomalies on continental scales. The strongest correlations between the

proxies and inversions were obtained with higher resolution, looser prior constraints, and

no prior IAV. Similarly, OSSEs showed the best agreement with the truth when looser

prior constraints were employed, but results were less clear for the impact of prior IAV.

The OSSEs also showed that correlations with the truth were improved on continental

scales when the prior mean seasonal cycle was closer to the truth. Overall, these results

suggest that GOSAT observations contain information on continental-scale NEE anoma-

lies in the tropics, however, recovering the correct IAV from these observations may be

sensitive to the flux inversion set-up. Furthermore, the magnitude of NEE anomalies are

likely underestimated.

On regional scales in the tropics, the results were much more ambiguous. The GOSAT
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inversions generally showed good agreement with FLUXCOM NEE IAV on regional

scales, but not with Tsoil. The OSSEs also indicate marginal ability to recover regional

scale fluxes. From these results, we caution against making conclusions about IAV on re-

gional scales in the tropics using GOSAT flux inversions without corroborating evidence.

On smaller scales, there is little evidence that the flux inversions recover IAV.

In the northern extratropics during JJA, the results of this study suggest that regional-

scale constraints are possible. We found that large flux anomalies due to major climate

events are recovered in the inversion for GC2×2.5−200% (Fig 5.5), while linear regressions

showed close agreement for the GOSAT flux inversions with FLUXCOM NEE and Tsoil.

However, we also found evidence that the posterior NEE IAV was sensitive the the

inversion set up. The inversion analyses with prior IAV (GC4×5−44%−IAV, GC4x5−100%−IAV,

and GOSAT L4) showed weaker agreement with the proxies relative to the inversions

without prior IAV. Similarly, the OSSEs showed prior IAV reduced agreement between

the posterior and the “true” IAV.

5.4.3 Influence of the inversion configuration

Model horizontal resolution

The results of this study indicate that the spatial resolution of the model used in the

inversion analysis (2◦ × 2.5◦ or 4◦ × 5◦) has a relatively minor impact on posterior NEE

anomalies. This somewhat surprising since recent studies (Yu et al., 2018; Stanevich,

2018a,b) have shown significant transport differences for different resolution versions of

GEOS-Chem. Also, Deng et al. (2015) showed that that there are large biases in CO2

in the upper troposphere and lower stratosphere in GEOS-Chem that impact inferred

flux estimates. It is possible that although the model transport errors influence the

flux estimates, the resolution-dependent transport process are not sensitive to IAV for

the time period considered here. It could also be related to the information content

of GOSAT observations. As we have shown in this study, GOSAT observations only

constrain IAV on regional and larger scales. If transport errors have the largest impact

on smaller scales, it may explain why model resolution did not have a major impact on

our results.

Prior error covariances

All of the GEOS-Chem inversions were performed with tight (44% for 4◦ × 5◦ and 66%

for 2◦ × 2.5◦) and loose (100% for 4◦ × 5◦ and 200% for 2◦ × 2.5◦) prior error covariances.

The prior error covariances generally had a significant impact on the posterior IAV. In
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the tropics, inversions with loose prior constraints gave larger correlations with Tsoil and

FLUXCOM NEE on regional and continental scales. Similarly, for the OSSEs, looser prior

constraints gave larger correlations with the truth on regional and continental scales. This

suggests that the information content of the GOSAT observations is sufficiently large in

the tropics that prior error covariances of 100% for 4◦ × 5◦ or 200% for 2◦ × 2.5◦ can be

applied without degrading the posterior results by over fitting the observations.

In the northern extratropics, the inversions with tighter prior constraints gave larger

correlations with Tsoil and FLUXCOM NEE on regional and continental scales. Similarly,

tight prior constraints gave larger correlations with the truth for the OSSEs. These

results are the opposite of what was found for the tropics, and suggests that tighter error

constraints (as a percentage of NEE) should be applied in the northern extratropics than

in the tropics. These results suggest that, when the prior error covariances are loose in

the northern extratropics, the inversion over fits the GOSAT observations which degrades

the agreement with proxies (or the truth for OSSEs).

The largest impact of varying the prior error covariances is in the magnitude of

posterior IAV. When loose prior constraints are applied the magnitude of NEE anomalies

increases by 30–80% (15–30% for OSSEs) in the tropics and 5–60% (0–30% for OSSEs)

in the northern extratropics. These results imply that care should taken when making

conclusions about the magnitude of NEE anomalies from this analysis. Based on the

OSSEs, it seems likely that the inversions underestimate the magnitude of IAV on all

scales.

Prior fluxes

We investigated the influence of prior IAV on posterior NEE anomalies in flux inver-

sions by performing inversions with prior IAV (GC4×5−100%−IAV and GC4×5−44%−IAV) and

without prior IAV (GC4×5−100% and GC4×5−44%), as-well as OSSEs with and without

prior IAV. In the tropics, the impact of prior IAV is generally small. For the GOSAT

inversions, the presence of prior IAV degrades agreement with the proxies on all scales.

In the OSSEs, the presence of prior IAV degrades the agreement with the truth on con-

tinental scales, but improves agreement on regional scales and over the entire tropics.

In the northern extratropics, the presence of prior IAV has a large negative impact on

agreement with proxies for GOSAT inversions and on agreement with the truth in the

OSSEs.

The impact of prior IAV on the inversion is likely strongly dependent on how well

the prior IAV reflects the true IAV. Presumably, if the prior IAV was close to the true

IAV it would improve the posterior IAV. However, even when the prior and true IAV are
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Figure 5.9: Comparison of GCIAV posterior and prior IAV. (a) Correlation coefficient
(R) between the posterior and prior IAV in the tropics at the spatial scale of 4◦ × 5◦.
(b) Mean correlation coefficient (R) between posterior and prior IAV in the tropics for
different degrees of spatial aggregation. (c) Northern extratropical anomalies during JJA
for (top) prior and (bottom) posterior NEE for (left–right columns) 2010–2013.

correlated, the posterior IAV can still be degraded. Presumably, the reason that prior IAV

degrades posterior IAV is related to the fact that the observations under-constrain IAV,

such that the prior IAV strongly influences the spatiotemporal distribution of IAV in the

posterior NEE. To investigate this, we examined how closely the posterior IAV resembles

the prior IAV. Figure 5.9 shows the agreement between the posterior and prior IAV

for GC4x5−100%−IAV in the tropics and northern extratropics. Posterior IAV is strongly

correlated with IAV in the prior, particularly on smaller scales. The fact that correlations

between the prior and posterior IAV are strong at 4◦ × 5◦ and 8◦ × 10◦ is not surprising,

as the NEE fluxes are strongly under-constrained at these spatial scales. However, the

correlation with the prior IAV is substantially larger than with FLUXCOM on regional

(R2 = 0.55 versus R2 = 0.15) and continental (R2 = 0.46 versus R2 = 0.26) scales as

well. This suggests that IAV is still under-constrained even on continental scales. Only

on the scale of the entire tropics is the correlation with the prior (R2 = 0.42) less than

with the proxies (R2 = 0.61 for FLUXCOM NEE and R2 = 0.56 for Tsoil), indicating

that the observations are influencing the IAV more than the prior.

The reason prior IAV degrades posterior IAV could also be linked to the prior error

covariances. In our GEOS-Chem inversions, we prescribe error estimates as a fraction of

the prior NEE (e.g., 44% for the 4◦ × 5◦ inversions). Therefore, differences in the prior

fluxes between years imply differences in the errors. Differences in the spatiotemporal
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distribution of errors could lead to differences in the spatiotemporal distribution of NEE

between years, which could make isolating the contribution for IAV in NEE challenging.

We also investigated the impact of the prior mean seasonal cycle on posterior IAV.

We performed a series of OSSEs to examine the impact of the mean seasonal cycle

of the prior fluxes on the inversion and found that correlations with the truth were

significantly improved on continental scales when the mean seasonal cycle was closer to

the truth. In particular, OSSECT2016−100% gives much weaker correlations with the truth

than OSSEJULES−100% after removing the mean tropical signal (Fig. 5.7). These results

suggest that it is important to use prior fluxes with a realistic seasonal cycle to recover

IAV in NEE from GOSAT observations.

5.5 Conclusions

In this study, we examined the constraints on interannual anomalies in NEE provided by

GOSAT observations by performing a series of flux inversions. We addressed three main

objectives in this analysis. The first objective was to quantify the agreement between

GOSAT flux inversions and flux proxies, which are associated with IAV in the terrestrial

carbon cycle, and FLUXCOM NEE. We found strong correlations (P < 0.05, R >

RNINO3.4) with FLUXCOM NEE and Tsoil in the tropics on continental and larger scales,

and in the northern extratropics on sub-continental scales during the summer (R2 >

0.49), when there is no prior IAV. These results demonstrate that both FLUXCOM

NEE and Tsoil can be useful tools for corroborating flux inversion results. We found

flux anomalies from GOSAT inversions were less correlated with scPDSI and SIF. For

scPDSI we found some agreement on the scale of the entire tropics (R2 ≤ 0.27) and on

sub-continental scales in the northern extratropics (R2 ≤ 0.29). For SIF, there was some

agreement on sub-continental scales in the northern extratropics during JJA (0.14 ≤
R2 ≤ 0.27), however, little agreement was found in the tropics (R2 ≤ 0.05).

The second objective was to determine the spatial scales over which the GOSAT

inversion constrain flux anomalies. In the tropics, we found that continental and larger

scale flux anomalies can be captured in GOSAT inversions. This conclusion is supported

by strong agreement (P < 0.05, R > RNINO3.4) with Tsoil and FLUXCOM NEE, and a

series of OSSEs which showed that the true IAV can be largely recovered on these scales.

On regional scales in the tropics, the GOSAT flux inversions showed some agreement with

the proxies and FLUXCOM, but the OSSEs indicated that the GOSAT observations likely

strongly underconstrain IAV on these and smaller scales. In the northern extratropics,

we found that flux anomalies are recovered by GOSAT flux inversions on sub-continental
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regions during JJA. Strong agreement was found with anomalies in Tsoil (0.57 ≤ R2 ≤
0.65) and FLUXCOM NEE (0.49 ≤ R2 ≤ 0.65), when no prior IAV is used. OSSEs

supported these finding, indicating that GOSAT observations can recover regional scale

flux anomalies in the northern extratropics during JJA.

The third objective was to quantify the sensitivity of the results from the first two ob-

jectives to the inversion set-up. We found that the agreement between the flux inversions

and proxies can be sensitive to the inversion set-up. Posterior flux anomalies were most

sensitive to the prior fluxes and error covariances. In general, the inclusion of prior IAV

in the inversion degraded the agreement with FLUXCOM NEE and Tsoil, particularly in

the extratropics, and this result was supported by the OSSEs. We compared the impact

of the mean seasonal cycle on the posterior IAV by performing OSSEs and found that

having a prior climatological seasonal cycle that was close to the truth improved posterior

NEE anomalies on continental scales in the tropics. The prior error constraints also had

a significant impact on the results. We found that looser constraints in the tropics gave

better agreement with the proxies, while tighter constraints in the northern extratropics

gave better agreement with the proxies (as a percentage of the prior flux). The magnitude

of the prior constraints had a large impact on the magnitude of NEE anomalies. Also,

the OSSEs showed that the magnitude of NEE anomalies are underestimated even with

loose prior constraints. These results indicate that the prior fluxes and error covariances

need to be carefully considered. We recommend that annually repeating prior fluxes be

used to investigate IAV, and that the mean seasonal cycle of the prior fluxes be evaluated

before performing the inversion. The results also indicate that defining the prior error

covariance to be a fraction of the prior flux may produce either overfitting of GOSAT

data in the northern extratropics or underfitting of the data in the tropics.

Overall, our results show that Tsoil and FLUXCOM NEE are useful for evaluating IAV

in flux inversions. Furthermore, comparisons with the anomalies in Tsoil and FLUXCOM

NEE suggest that GOSAT flux inversions are useful tools for constraining IAV in NEE

on continental and larger scales in the tropics, and on regional scales in the northern

extratropics during JJA.
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OP-FTIR

6.1 Introduction

Urban greenhouse gas (GHG) emissions account for 37–49% of direct global GHG emis-

sions, and a larger fraction for indirect emissions (Seto et al., 2014). This is despite the

fact that urban areas only occupy 0.2–2.7% of ice-free land (Seto et al., 2014). Thus,

mitigating GHG emissions from urban areas will play an important role in mitigating

climate change. Bottom-up accounting of emissions will be required to monitor emission

reductions, however, independent verification of these estimates will also be needed. Mea-

surements of GHG enhancements in urban areas provide an independent observational

constraint to estimate emissions. Over the past decade, a number of projects have been

initiated to monitor GHGs in urban areas with the goal of providing top-down emission

constraints. Monitoring urban GHG emissions using atmospheric observations is still at

the experimental stage, with different approaches being applied for different projects.

The differences in approaches are partially due to available resources and the specific

problem addressed, but also because no approach is clearly superior to any other. A

number of different measuring platforms have been used, including surface-based in-situ

and flask measurements (Shusterman et al., 2016; Miles et al., 2017; Verhulst et al., 2017;

Bares et al., 2018; Xueref-Remy et al., 2018; Sargent et al., 2018), remote sensing of solar

absorption spectra (Viatte et al., 2017; Hedelius et al., 2018), and aircraft-based in-situ

observations (Cambaliza et al., 2015).

Here, we present an Open-Path Fourier Transform Infrared (OP-FTIR) spectroscopy

system for GHG monitoring in Toronto, Canada. OP-FTIR spectroscopy allows for the

monitoring of the abundances of atmospheric gases over an integrated atmospheric path

of up to several kilometers in length. An advantage of open-path systems over more

traditional in situ sampling observations is that open-path measurements are less sen-

134
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sitive to highly localized emissions in heterogeneous landscapes such as cities (Waxman

et al., 2017; Griffith et al., 2018), which have many different emission sources of green-

house gases. The integrated atmospheric path of these systems is more representative

of mesocale atmospheric tracer transport models with grid cells on the order of 1 km2

(i.e., 1 km × 1 km, Lauvaux et al., 2016) than in situ observations. Therefore, com-

parisons between forward models, simulating atmospheric trace gas abundances, and

OP-FTIR measurements are less affected by representativeness errors. The advantage

of an integrated atmospheric path has led to the deployment of OP-FTIR systems for a

number of applications, including monitoring of trace gases released by biomass burning

(Paton-Walsh et al., 2014), agricultural emissions (Flesch et al., 2016), shipping emissions

(Wiacek et al., 2018), city emissions (Griffith et al., 2018), and vehicle emissions (You

et al., 2017). You et al. (2017) demonstrate the advantage of OP-FTIR measurements

over in situ measurements in an urban environment, showing that OP-FTIR measure-

ments of trace species over a highway have much less wind direction dependence than in

situ measurements.

This study has two main objectives. The first is to describe the deployment of an

OP-FTIR observing system in downtown Toronto, and retrieval of CO2, CH4, CO, N2O,

and H2O from near continuous observations starting in November 2017. The second is

to examine the utility of estimating urban emissions of CO2 by comparing OP-FTIR

measurements with in situ measurements 5.4 km south of the OP-FTIR, at the southern

edge of Toronto. The chapter is structured as follows. Sec. 6.2 and Sec. 6.3 provide an

overview of the instrumentation and experimental set-up. Sec. 6.4 and Sec. 6.5 provide

descriptions of the data collection and trace gas retrievals. Sec. 6.6 examines nearby

meteorological data. Sec. 6.7 presents the results of this study. Retrieved gas concen-

trations are compared with nearby meteorological and in situ GHG measurements, and

preliminary flux estimation results are presented. Sec. 6.8 gives the conclusions of this

study.

6.2 Instrumentation

6.2.1 Bruker 125M

The Bruker IFS 125M is a mobile high-resolution spectrometer designed to have a spec-

tral range covering the mid-infrared through ultra-violet region with a spectral resolution

of up to 0.008 cm−1 in the mid-infrared and a maximum optical path difference (OPD)

of 112.5 cm. However, for this set-up, measurements are recorded over the range 1,900–
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Figure 6.1: Optical path of the Bruker IFS 125M spectrometer. Reprinted from the IFS
125M manual.

6,000 cm−1 with 0.4 cm−1 resolution. Figure 6.1 shows a schematic of the optical set-up of

the instrument. A collimated input beam is focused by an off-axis-paraboloid (OAP) mir-

ror onto computer-controlled filter and aperture wheels (no filter is used in the OP-FTIR

set-up). After passing the field stop, the input beam is re-collimated onto the beamsplit-

ter. For the OP-FTIR set-up used here, a CaF2 beam-splitter (14,000–1,850 cm−1) is

used. After recombining the beam from the two arms of the interferometer, a computer-

controlled mirror stage selects between two detectors. We use the photovoltaic indium

antimonide (InSb) detector (1,850–9,600 cm−1).

Measurement technique

The spectrometer records an absorption spectrum using the Fourier transform technique.

The scanning mirror produces an OPD between two beams separated by the beam-

splitter. Therefore, there is interference when the two beams are recombined by the

beam-splitter. The interference of these beams determines the intensity of radiation

recorded by the detector. By measuring the intensity of radiation as a function of OPD

an interferogram can be generated. The interferogram is converted into a spectrum

using a Fourier transform. In the practical implementation of this technique, additional

considerations are required. In particular, the Norton-Beer Medium apodization function

is applied to the interferogram to reduce the impact of the finite maximum OPD on

absorption line sidelobes.
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Figure 6.2: The OP-FTIR telescope and movable mirror mounted within a custom-built
frame.

6.2.2 Telescope

We use an RC Optical 12-inch Ritchey-Chrétien telescope, with gold-coated mirrors.

The telescope is oriented vertically and is housed within a custom built frame (Fig. 6.2).

The incoming infrared (IR) beam is directed into the top of the telescope by a 14-inch

movable mirror placed at the input of the telescope, which can be rotated and tilted,

thereby acquiring and directing the IR beam. The mirror motors are controlled by two

Applied Motion 3540i stepper motor drivers and Wantai 57BYG621 1.8 deg 2.2 Amp

stepper motors. A flat 45◦ mirror is located at the bottom of the telescope which re-

directs the vertical IR beam exiting the telescope horizontally towards the 125M.

6.2.3 Retro-reflector

We use a PLX AR-30-5 corner cube array retro-reflector housed in a National Electrical

Manufacturers Association (NEMA) enclosure that can be remotely opened via a radio
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control link to a garage door opener attached to the frame.

6.3 Instrument set-up

The IR globar source is mounted at the top of the telescope (Fig 6.3a). To approximate

an infinitesimal source, an aperture is placed directly in front of the globar. There is

a shutter located directly in front of the aperture, which can be raised to let the IR

beam pass or lowered to block the IR beam (the shutter is used to block the IR beam

to collect ambient spectra). After passing through the aperture, the beam diverges until

it reaches an OAP mirror. The OAP mirror’s focal point is located at the position of

the aperture so that the IR beam is collimated and directed towards a 45◦ flat mirror

placed at the center of the telescope. The beam is reflected off this mirror and onto the

movable flat mirror which directs the beam to the retro-reflector. Upon returning from

the retro-reflector, the beam fills the movable mirror and is directed into the telescope

(Fig 6.3b). Note that a fraction of the returning IR beam is directed back to the globar

source, while the rest of the beam is directed into the telescope.

When the IR beam enters the telescope, it is focused by the gold-coated hyperbolic

mirrors (Fig. 6.4). Upon exiting the telescope, the beam is re-directed to an OAP mirror

by a 45◦ flat mirror. The OAP mirror is located such that its focal point matches the focal

point of the telescope. Theoretically, the IR beam should be collimated after reflecting

off the OAP mirror. However, we were unable to position the OAP such that the beam

was collimated. Instead, we found that the beam would focus after reflecting of the

single OAP. To solve this problem, we placed a second OAP so that the focal point of the

second OAP matched the position where the beam comes to a focus. The beam is better

collimated after reflecting off this second OAP. The collimated beam is then directed into

the Bruker IFS 125M.

6.3.1 Location

The system is set up in a room on the 12th floor of the Burton tower of the McLennan

Physical Laboratories about 45 m AGL (43.6604◦ N, 79.3983◦ W) and the retro-reflector

is set up on the roof of the Galbraith building about 20 m AGL (43.6600◦ N, 79.3964◦ W)

(Fig. 6.5). The one-way path between the source and retro-reflctor is about 160 m. The

path crosses two streets (Russell St. and St. George St.) which are two-lane streets, and

is surrounded by multi-story buildings.

The OP-FTIR is located within the St. George Campus of the University of Toronto.
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Figure 6.3: View of the top of the telescope. Ray tracing (a) from the globar to the
retro-reflector and (b) from the retro-reflector into the telescope are shown. The shading
indicates the path of the IR beam.
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FTIR Spectrometer
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Flat mirror
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Figure 6.4: Light path for the entire optical system. The light path is shown as a
collimated beam emerging from the OAP at the top of the telescope, traveling to and
returning from the retro-reflector, being focused by the telescope and collimated again
before being directed into the Bruker 125M.

Figure 6.5: Path between the instrument and retro-reflector. (Google Earth V 7.3.2.5483.
(June 22, 2018). Toronto, Canada, 43◦39’37.13” N 79◦23’49.77” W, eye alt 246 m.)
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OP-FTIR location

Figure 6.6: Location of the OP-FTIR system in downtown Toronto, with
buildings which are 100 m or greater in height indicated by markers
(http://skyscraperpage.com/cities/maps/?cityID=12).

Figure 6.6 shows the location of the OP-FTIR setup within downtown Toronto. The setup

is approximately 3.5 km north of Lake Ontario. The downtown core of Toronto is located

to the east and southeast with many tall buildings (Fig. 6.6). The city of Toronto is

home to nearly 3 million people and is located within the “Golden Horseshoe”, a densely

populated region of about 9 million which straddles the northeast and southeast coasts

of Lake Ontario.

6.4 Data collection

Spectra are collected using an OPUS macro (Bruker software that comes with the 125M).

The macro performs the following series of tasks in a repeating loop. First, the macro

raises the globar shutter and records 40 co-added scans at 0.4 cm−1 resolution. Then, the

macro lowers the shutter and records 40 co-added scans at 0.4 cm−1 resolution. These

steps are repeated until the system is turned off. An example of the data collected from

one iteration of the macro is shown in Fig. 6.7a. The spectra collected with the shutter
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raised and lowered are shown in blue are red respectively.

6.4.1 Spectra processing

To isolate the detection of radiation from the globar source, we must subtract ambient

blackbody emission and stray light that enters the instrument. To do this, we take the

difference between measurements with the shutter raised and shutter lowered:

yr−li1 = yri − yli−1, (6.1)

yr−li2 = yri − yli+1 (6.2)

where yl is the measured spectrum with the IR source blocked (recorded when shutter

is lowered, such that the signal is only due to ambient emission between the telescope

and retro-reflector), yr is the measured spectrum with the IR source (recorded when

the shutter is raised, so that the signal is due to the IR source and ambient emissions

between the telescope and retro-reflector), and yr−l is the calculated spectrum due to

the IR source only (includes absorption by gases along the path between telescope and

retro-reflector). The subscript “i” represents the iteration for data collection. Figure 6.7b

shows the difference between the spectra recorded with the shutter raised and lowered.

Because the ambient spectra can change quite rapidly, we calculate the absorption

spectrum using the ambient radiation collected before and after the spectrum yri . Equa-

tion 6.1 is used when the shutter-lowered ambient-light spectrum is recorded before the

shutter-raised spectrum, and Eq. 6.2 is used when the shutter-lowered ambient-light spec-

trum is recorded after the shutter-raised spectrum. The transmission spectrum (yt) is

then obtained by taking the ratio of yr−l and a background spectrum (y0):

yti1 =
yr−li1

y0
, (6.3)

yti2 =
yr−li2

y0
. (6.4)

The background spectrum (y0) is the spectrum due to the globar source before trans-

mission through the atmospheric path. To obtain this spectrum, the retro-reflector was

placed at a distance of 2 m from the movable flat mirror. Spectra were measured with the

shutter raised and lowered, and y0 was calculated using Eqs. 6.1 and 6.3. The trace gas

retrieval is performed on yti1 and yti2, and the retrieved mole fractions are averaged. Cur-

rently, the same y0 spectrum is used for all retrievals. However, variations in the source

(due to factors such as temperature changes) could impact the source signal. Therefore,
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Figure 6.7: a) OP-FTIR absorption spectra recorded with the global shutter raised (blue)
and lowered (red). b) The difference between spectra recorded with the shutter raised
and lowered.
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in the future it would be preferable to measure background spectra on a regular basis.

6.5 Trace gas retrievals

Trace gas dry-air mole fractions are retrieved using version 5 of the Multiple Atmospheric

Layer Transmission (MALT) code (Griffith, 1996, 2003). CO2, CO, N2O, and H2O dry-

air mole fractions are retrieved in the range 2132.52–2234.97 cm−1. CH4 and H2O are

retrieved from 2900–3027 cm−1. These wavenumber ranges were selected based on per-

sonal communication with Aldona Wiacek and Li Li at St. Mary’s University, and are

the same ranges used for their retrievals (Wiacek et al., 2018). Note that Appendix C

provides a description of how to run the codes to perform the retrieval.

6.5.1 Radiative transfer theory

The description here follows from Goody and Yung (1995), Petty (2006) and Pierrehum-

bert (2010). The absorption and emission of IR radiation by atmospheric gases is caused

by transitions in the vibrational–rotational states of the molecules. Each possible energy

transition is associated with a unique frequency of radiation and results in an absorption

or emission line. The ability of a given absorption line to attenuate radiation is charac-

terized by an absorption coefficient (σ) and has dimensions of area per mass (or area per

molecule). The absorption coefficient for an absorption line centered at frequency ν0 is

defined as,

σ(ν − ν0) ≡ S · f(ν − ν0), (6.5)

where S denotes the strength of the absorption line and f(ν − ν0) denotes the line

shape. The strength of a given absorption/emission line is dependent on the transition

probability between two energy states and the fraction of molecules that occupy the

initial energy state (which is dependent on temperature). The line shape deviates from

the Dirac delta function due to two main broadening mechanisms: Doppler broadening

and pressure broadening. Doppler broadening is caused by the Doppler shifts resulting

from the velocity distribution of the molecules. Pressure broadening is a result of elastic

collisions between molecules.

The optical depth, τ(ν), characterizes the absorption over an atmospheric path and

is given by

τ(ν) =
∑
i

∑
k

σki (ν) · ai, (6.6)

where i denotes atmospheric species, k denotes absorption lines, and ai is the column
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density and is equal to the path length times the number density. The transmission

spectrum, T , is given by

T (ν) =
I(ν)

I0(ν)
= e−τ(ν), (6.7)

where I(ν) and I0(ν) are the intensities before and after transmission through the path.

In real-world applications of remote sensing, the influence of the observing system on

the recorded spectra also needs to be considered. The intensity of radiation recorded by

an FTIR spectrometer is convolved with an instrumental line shape function (fI(ν)). The

instrument line shape is a function of the maximum optical path difference, field-of-view,

instrument misalignment and apodization applied to the interferogram. The measured

transmission, T ′(ν), is given by

T (′ν) =
I ′(ν)

I ′0(ν)
=

I(ν) ∗ fI(ν)

I0(ν) ∗ fI(ν)
, (6.8)

where I ′(ν) and I ′0(ν) are the measured intensities before and after transmission through

the path.

6.5.2 MALT

We use MALT5 (Griffith, 1996, 2003) to retrieve gas dry-air mole fractions. MALT

consists of a forward model that calculates transmission spectra and an inverse algorithm

that optimizes gas dry-air mole fractions from measured spectra.

Forward model

The MALT forward model calculates the atmospheric transmission spectra from inputs

of species dry-air mole fractions, temperature, pressure, and path length, in addition to

instrument parameters to account for the instrument line shape. MALT calculates a set

of reference spectra based on the HITRAN line parameter database; we use version 2012

of the HITRAN database (Rothman et al., 2013) for our analysis. The forward model is

described in detail in Griffith (1996).

Inversion

A measured spectrum is fitted to a MALT forward-model-calculated spectrum by iterative

non-linear least squares to obtain a best-fit (minimum residual) match to the measured

spectrum, as detailed in Griffith et al. (2012). Component gas abundances and instrument

line shape parameters can be fixed or fitted as part of the fitting process. The inversion is
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performed using the Levenberg-Marquardt non-linear least squares algorithm. Optimized

gas path-densities (and instrument line shape parameters) are found by iteratively solving

the equation

xi+1 = xi + (HTH + γiI)−1HT [yt −H(xi)]. (6.9)

where y is the observed spectrum, x is a vector of the gas path-densities for multiple

species, H() is the MALT forward model, H is the weighting function matrix, and γ is

a weighting parameter which is adjusted between optimization steps. When γi → 0, the

step tends to the Gauss-Newton method, whereas when γi → ∞, the step tends to the

steepest descent and the step size tends to zero (Rodgers, 2000). The implementation

of this algorithm within MALT is based on the description of the algorithm in Press

et al. (1992). The same a priori dry-air mole fractions for retrieved gases are used for

all retrievals, they are taken to be 1 % of the atmosphere for H2O, 400 ppm for CO2,

150 ppb for CO, 300 ppb for N2O and 1700 ppb for CH4.

Processing

The spectra are processed through the MALT5 executable in batch mode. Two text

files are input to the executable: first, a parameter file with the instrument information

and path length and, second, a text file containing the path (file and directory on the

computer) of the source spectra (yr−l), source background data files (y0), temperature

and pressure measurements (see Sec. 6.6). An example of an optimized spectral fit is

shown in Fig 6.8. MALT5 outputs optimized wet-air mole-fractions for each gas as well

the residuals for the fits. Wet-air mole fractions are converted to dry-air mole fractions

using:

GASdry = GASwet ·
1

1− H2Owet

(6.10)

where

GASwet =
molgas
molwet air

, GASdry =
molgas
moldry air

. (6.11)

6.6 Meteorological data

A Davis Vantage Pro Plus 2 meteorological station (met-station) is installed on the roof

of the Burton tower of the McLennan Physical Laboratories, approximately 61 m AGL

(174 m above sea level). The met-station is installed on the side-railing on the southeast

corner of the building, approximately 2 m above the roof. The location is not ideal, as

there are obstacles on the building within ∼2 m of the met-station which likely impact
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Figure 6.8: (a) Measured, (b) fitted, and (c) residual spectra in the wavenumber range
2132.52–2234.97 cm−1 for 1 April 2018 at 22:25 local time. The fitted spectrum is ob-
tained by optimizing CO2, CO, N2O, and H2O dry-air mole fractions.
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Figure 6.9: Scatter plots of ECCC vs. McLennan met-station data. The panels show
(a) temperature, (b) pressure, (c) wind direction, and (d) wind speed after averaging to
hourly temporal resolution. The black line indicates the 1:1 line and the red line shows
the linear regression.

the observed winds. The met-station records meteorological variables (including tem-

perature, pressure, wind direction, and wind speed) at one-minute temporal resolution.

Measurements from the McLennan met-station have been compared against data from

two nearby met-stations. One station, refereed to as “Wallberg”, is located on the roof

of the four-story Wallberg building, approximately 300 m from the McLennan building.

This site is run as part of the Southern Ontario Centre for Atmospheric Aerosol Research

(SOCAAR). The other site, refereed to as the “ECCC” station, is run by ECCC and is

located about 4 km south of the McLennan building on Toronto Island (note that the

met-station is not at Hanlan’s Point). Figures 6.9 and 6.10 show comparisons of temper-

ature, pressure, wind direction, and wind speed from the McLennan building vs. ECCC

and Wallberg data, respectively. Note that the ECCC met-station records wind observa-

tions with lower wind speed and wind direction resolution that the other sites, leading to

apparent gaps in Fig. 6.9. There is high consistency in measurements of temperature and

pressure between the stations. Based on the Hypsometric equation and pressure offsets

between stations, the Wallberg and ECCC stations are ∼13.4 m and ∼104.9 m and lower

than the McLennan station, respectively. In reality, Wallberg station is 11 stories below
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Figure 6.10: Scatter plots of Wallberg vs. McLennan met-station data. The panels show
(a) temperature, (b) pressure, (c) wind direction, and (d) wind speed after averaging to
hourly temporal resolution. The black line indicates the 1:1 line and the red line shows
the linear regression.

the met-station (∼36 m) and the ECCC station just above lake Ontario (∼100 m below

McLennan station). Thus, the pressure difference between McLennan and ECCC sta-

tions seems reasonable, but it appears that pressure measurements at Wallberg station

are biased low.

The sites show less consistency in wind data. Part of the reason for this is that the

variance is larger for wind observations. For example, in calculating hourly means from

one minute measurements for the McLennan data, standard deviations of 0.22 ◦C are

obtained for temperature, 0.17 hPa for pressure, 0.43 m s−1 for wind speed, and 17◦ for

wind direction. However, this variance cannot explain all of the differences in wind fields

between met-stations. It is likely that the placement of the met-stations also impacts

the differences between sites. First, both the McLennan and Wallberg met-stations are

close to surfaces. This could result in local turbulent flow that is not representative of

the flow further above the surfaces. Second, differences in the height above ground level

could impact observed winds. The heights of the met-stations are comparable to the

mean building height in the surrounding area. This may lead to complicated flows which

are variable over short distances, resulting in differences in the winds between sites.
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6.7 Results

Note that none of the trace gas retrievals presented here have been calibrated against in-

dependent measurements, however, in Appendix B I describe some rudimentary attempts

to calibrate the measurements and challenges faced. Figure 6.11 shows the time series

of the OP-FTIR dry-air mole fractions from November 6, 2017, through June 30, 2018.

A number of large enhancements are observed over this time period for all gases. CO

and CO2 are highly correlated (R2=0.83 for hourly means) throughout the time series.

This is expected because CO2 and CO are both produced by the combustion of fossil

fuels. However, the correlation is greater over the winter (R2=0.87 before April 1, 2018)

than during the growing season (R2=0.79 after April 1, 2018), due to the fact that the

biosphere strongly influences CO2 but not CO. N2O shows a much smaller dynamic range

than CO and CO2, and only varies by ∼3 % of its mean dry-air mole fractions. That

said, there is still considerable variability in N2O over the winter, which is indicative of

a local source. There also appears to be an enhancement between the middle of April

and early June. This could be due to fertilizer being deployed on farms or on household

lawns. CH4 is found to be highly variable throughout the time series, with dry-air mole

fractions frequently exceeding 2600 ppb. This range in abundance is larger than would

be expected from background city emissions, and suggests a spatially localized source.

Interestingly, the variability in CH4 seems to decrease though the spring, with less large

enhancements. This could be due to reduced emissions from a localized source.

6.7.1 Sensitivity of GHGs to meteorology

Figure 6.12 shows hourly-mean gas dry-air mole fractions as a function of wind speed

(from the McLennan met-station). All gases show enhancements at low wind speeds,

indicating that local urban emissions are significantly impacting observed dry-air mole

fractions. Figure 6.13 shows pollution roses of the mean gas dry-air mole fractions as

a function of wind speed and direction. CO and CO2 show the greatest wind speed

dependence of the gases, with large enhancements at low wind speeds (mean dry-air

mole fraction increase by 150% for CO and 13% for CO2 at low wind speeds relative

to high wind speeds). This is expected, as fossil fuel combustion is expected to be a

large source of these species nearby, within downtown Toronto. Furthermore, CO and

CO2 do not show large wind direction dependence. N2O shows wind speed dependence

(mean dry-air mole fraction increase by 1.5% at low wind speeds relative to high wind

speeds), suggesting that there is a substantial urban source of N2O, presumably from

combustion (Becker et al., 1999; Colorado et al., 2017). N2O also shows some wind
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Figure 6.11: Time series of (a) H2O (b) CO, (c) CO2, (d) N2O, and (e) CH4 dry-air mole
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and (d) CH4 dry-air mole fractions as a function of wind speed for November 2017
through June 2018. Blue dots show the mean dry-air mole fractions for each wind speed.
Meteorological data is taken from the McLennan met-station.

direction dependence, with enhanced dry-air mole fractions for wind from the northeast.

The cause of this wind direction dependence is unclear. CH4 only shows weak wind speed

dependence, but strong wind direction dependence with enhanced dry-air mole fractions

for wind from the southwest. This suggests that there is a large spatially localized source

to the southwest of the OP-FTIR.

6.7.2 Comparison to Hanlan’s Point station

ECCC runs an in-situ GHG observing site, called Hanlan’s Point station, approximately

5.4 km south of the OP-FTIR system (Figure 6.14). In this section, the gradients in CO,

CO2, and CH4 between the OP-FTIR and ECCC’s Hanlan Point station are investigated

for Nov 6, 2017–June 30, 2018.

Hanlan’s Point station is on the southern edge of the city of Toronto. Therefore,

measurements at this site are not influenced by urban emissions when the airmass is

advected over the site from the south. Figure 6.15 shows the gradient in CO, CO2,
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Figure 6.13: Pollution roses for OP-FTIR measurements of (a) CO, (b), CO2, (c) N2O,
and (d) CH4 spanning November 2017 through June 2018. Meteorological data is taken
from the McLennan met-station.

and CH4 between the OP-FTIR and Hanlan’s Point station (OP-FTIR minus Hanlan’s

Point) as a function of wind speed and direction. Meteorological data was taken from the

McLennan met-station. To ensure that the wind direction measurements were reliable,

data points were only included in the plot if the wind direction at the Toronto Island

ECCC met-station and McLennan met-station were in within the same 45◦ wind direction

bin. For all gases and wind conditions, the gradient between sites is generally greater than

zero. This is expected because the OP-FTIR is closer to anthropogenic emission sources

than Hanlan’s Point station. However, there may also be a positive bias in the OP-FTIR

measurements which increases the gradient. For CO and CO2, the gradient between

the sites is generally larger if the wind is from the south. This is expected because air

from the south should not be impacted by Toronto emissions when passing over Hanlan’s

Point. For CH4, the gradient is largest when the wind is from the southwest. This is

likely due to the fact that the OP-FTIR measurements seem to be influenced by a highly

localized CH4 source as discussed above.

To isolate the atmospheric imprint of Toronto GHG emissions on these two sites,

the gradient between the sites can be isolated for wind from the north and from the

south. This is obtained by calculating the gradient between the sites for all hours in
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Figure 6.14: Locations of the OP-FTIR and Hanlan’s Point station within Toronto,
Ontario. Google Maps (2018).
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teorological data is taken from the McLennan met-station, but the wind direction must
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which the wind is from the north (±45◦) or south (±45◦) and the wind speed is greater

than 1.5 m s−1. Note that the results were not sensitive to small changes in wind direc-

tion/speed cutoff. Figure 6.16 shows the resulting histogram of the gradients between the

sites when these criteria are met. In general, the gradient between sites is significantly

larger for wind from the south relative to wind from the north. This demonstrates that

Toronto emissions significantly impact the gradient in GHG dry-air mole fractions as air-

masses from the south move over these sites. However, there is also significant variance

in the gradient between the sites after accounting for wind direction. This could be due

to a number of factors, including the stability of the boundary layer and wind speed. If

surface fluxes are to be estimated using the dry-air mole fractions gradient between these

sites, then these additional factors will need to be accounted for.

6.7.3 Potential for flux estimation

In this section, the plausibility of estimating surface emissions from the gradient in GHG

dry-air mole fractions between the OP-FTIR and Hanlan’s Point is discussed. The sim-

plest method for estimating emissions based on the GHG gradient would be to use mass

balance. Take the continuity equation for conservation of mass of tracer Cgas (Eq. 2.1)

and assume there is no divergence:

∂Cgas
∂t

+���
���:0

∇ · Cgasv = F, (6.12)

where Cgas = ρqgas and F is the surface flux (in units of g s−1) occurring at the surface

over area A. This equation can then be re-written as:

F =
∂Cgas
∂t

=
∂Cgas
∂x

dx

dt
=
∂Cgas
∂x

U. (6.13)

where U = dx/dt. If Cgas is in units of grams of CO2 in a boundary layer column, then

it can be expressed as a function of observable quantities:

Cgas = 〈Sgas〉
Mgas

Mair

ρdryAh, (6.14)

where 〈Sgas〉 is the bulk boundary layer dry-air mole fraction of a given gas, Mgas is the

molar mass of the gas of interest, Mair is the molar mass of dry air, ρdry is the air density,

A is the surface area, and h is the boundary layer height. Substituting Eq. 6.14 into
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Figure 6.16: Number of occurrences of hourly gradients in (a) CO2, (b) CO, and (c) CH4

for wind from the north (blue) and from the south (green) and for wind speeds between
1.5 m s−1 and 4.5 m s−1.
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Eq. 6.13 gives:

F =
∂C

∂x
U =

ρdryAhUMgas

Mair

∂〈Sgas〉
∂x

≈ ρdryAhUMgas

Mair

∆〈Sgas〉
∆x

. (6.15)

The flux per unit area can be written as:

F

A
=
ρdryhUMgas

Mair

∆〈Sgas〉
∆x

=
ρdryMgas

Mair

[
hU

∆〈Sgas〉
∆x

]
. (6.16)

Note that the quantities in Eq. 6.16 represent bulk boundary layer values. h can be

estimated by a numerical model or observed by a lidar. U can be approximated based

on the wind measurements from the McLennan met-station. ∆〈Sgas〉 can be estimated

based on the GHG gradient between the OP-FTIR and Hanlan’s Point. If we take typical

values for these quantities and plug them into Eq. 6.16, we get

F

A
=

(1225 g m−3)(44 g mol−1)

(28 g mol−1)

[
(1000 m)(4 m s−1)

15× 10−6

5400 m

]
(6.17)

= 2.1× 10−2 g m−2 s−1 (6.18)

For comparison, Pugliese et al. (2018) estimate CO2 emissions of 5–10× 10−4 g m−2 s−1

for downtown Toronto based on bottom-up estimates. Thus, this calculation seems to

overestimate Toronto emissions by a factor of 20–40. It is challenging to isolate the

exact cause of the large error in the estimated flux as there are many possible sources

of error. One source of error is that the gradient between the OP-FTIR and Hanlan’s

Point is not representative of the boundary layer mean gradient. Based on Eq. 1.7, the

observed gradient should be expected to be ∼5 times larger than the bulk boundary

layer gradient. Furthermore, the OP-FTIR system is within 20 m of a road which could

enhance CO2 dry-air mole fractions above background city emissions. High-resolution

atmospheric transport models which can resolve atmospheric transport within street

canyons, combined with inversion methods, will likely be required to produce robust flux

estimates based on these data.

6.8 Conclusions

An OP-FTIR system has been installed on the St. George Campus of the University

of Toronto. The system has been used to retrieve CO2, CO, N2O, and CH4 dry-air

mole fractions since 6 November 2017, producing a time series with over 1500 measure-

ments. Comparisons with meteorological observations have shown that retrieved gas
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dry-air mole fractions are sensitive to urban emissions from Toronto. CO2, CO, and N2O

appear to be influenced by large-scale urban emissions, while CH4 observations are con-

taminated by a localized source southeast of the observing system, presumably a natural

gas leak. By performing comparisons with nearby measurements from Hanlan’s Point, it

was demonstrated that the gradient in CO2 and CO measurements between these sites

contains information on urban emissions which may allow for flux estimation. However,

preliminary flux calculations result in an unrealistically large source of CO2 relative to

bottom-up estimates.



Chapter 7

Conclusions

The magnitude of future climate change is dependent on the magnitude of changes in

GHGs. Predicting the future rise in atmospheric CO2 will require both CO2 emission

monitoring and TBMs that can reliably simulate uptake by the terrestrial biosphere. This

thesis addressed the challenge of diagnosing changes in atmospheric GHGs. In particular,

the following two questions were addressed:

1. How can deficiencies in TBMs be identified from top-down constraints?

2. Can an OP-FTIR system monitor urban GHG emissions in Toronto?

7.1 Identifying deficiencies in TBMs

To address the first question, three studies were undertaken:

• In Chapter 3, the sensitivity of NEE constraints to the observational coverage of

several observing systems was examined. It was shown that the spatiotemporal

differences in observational coverage between observing systems can have a large

impact on estimated fluxes. This implies that careful consideration is required in

interpreting constraints on NEE from any given observing system.

• In Chapter 4, observational constraints from atmospheric CO2 and SIF observa-

tions were combined to evaluate the seasonality of NEE, GPP and Re fluxes over

the northern mid-latitudes for a set of TBMs. It was found that the subset of mod-

els which assimilated phenology observations produced realistic GPP seasonality,

however, these model were systematically biased in the seasonality of Re. This bias

was attributed to parameterizations of Re within the models.

160



Chapter 7. Conclusions 161

• In Chapter 5, GOSAT flux inversions were shown to have strong agreement in the

timing of anomalies with MERRA Tsoil and FLUXCOM NEE. These results showed

that GOSAT flux inversion largely recover NEE anomalies in the tropics on conti-

nental and larger scales, and in the northern extratropics on sub-continental scales

during the summer. Furthermore, NEE monthly anomalies were generally better

captured by the GOSAT inversions than TBMs, indicating that the inversions can

be used to evaluate IAV in TBMs.

These studies demonstrate that atmospheric CO2 observations provide a constraint

on NEE fluxes that is sufficient to evaluate the seasonal cycle and IAV in TBMs. Fur-

thermore, combining these constraints with SIF observations or temperature anomalies

can elucidate the origin of errors within TBM parameterizations. This type of analysis

provides an effective application for atmospheric CO2 constraints, which has been under-

appreciated within the flux inversion community as only a few of previous studies have

directly evaluated TBMs (Messerschmidt et al., 2013; Peng et al., 2015; Keppel-Aleks

et al., 2014b). Thus, there are many opportunities to build on the results presented here.

In this thesis, it was shown that the CO2 flux constraints provided by an observing

system should be considered within the spatiotemporal coverage of the observations.

Currently, only limited constraints can be obtained in the extratropical winter from space-

based observing systems, and surface observations are too sparse to provide constraints in

the tropics. There is a need to combine the atmospheric CO2 constraints from different

observing systems to provide constraints on NEE with more uniform spatiotemporal

sensitivity. In particular, combining space-based measurements with TCCON and surface

measurements could provide increased observational constraints on the seasonal cycle in

the northern extra-tropics. However, combining measurements from different observing

systems with a single inversion framework is challenging, as the relative weighting which

should be applied to different observing systems can be difficult to diagnose.

Based on the results of this thesis, several different approaches could be undertaken

to evaluate TBMs in future studies. Combining constraints from atmospheric CO2 and

SIF observations was found to be a powerful approach to evaluate model GPP and Re

fluxes. This type of analysis could be extended to smaller scales if NEE flux estimates are

robust on these scales. However, the minimum scale at which flux inversions can provide

constraints on the seasonal cycle is not well documented, but is required to extend this

analysis. A long-term objective of this research should be the development of data

assimilation systems which can assimilate both atmospheric CO2 and SIF observations.

In the future, assimilation systems that utilize physical forward model relating GPP and

observed SIF (e.g., Van der Tol et al., 2014) could improve constraints on GPP.
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Another avenue of future research would be to examine flux anomalies in more detail.

Recently, there has been substantial interest in looking at NEE anomalies from flux

inversions (Liu et al., 2017; Bowman et al., 2017; Rödenbeck et al., 2018). However, these

constraints have not been applied to evaluate TBMs. Future research could evaluate the

response of TBM GPP, Re, and NEE anomalies to climate anomalies, following a similar

set-up to Liu et al. (2017). However, caution would be required to ensure that these events

are well captured by the flux inversions. Based on the results found here, this type of

analysis should be on continental or larger scales in the tropics or on sub-continental or

larger scales in the northern extratropics during the summer.

7.2 Monitoring emission targets

To address the second question of this thesis, one study was undertaken:

• In Chapter 6, the installation of a OP-FTIR system in downtown Toronto was

described and timeseries of CO2, CO, CH4, and N2O were retrieved. Comparisons

of the observed gases with meteorological observations were presented, as were

comparisons with observed CO2, CO, and CH4 at ECCC’s Hanlan’s Point station.

The OP-FTIR system presented in this thesis will provide GHG measurements as an

important component of a larger Toronto-wide network of observing sites. The OP-FTIR

system is currently highly automated with minimal support needed to refill the LN2 dewar

and close the system down during bad weather. From the preliminary analysis presented

in this thesis, three major issues have been identified which should be top priorities for

future work:

1. Reliable meteorological data.

2. Mechanism to calibrate the OP-FTIR measurements.

3. Relating measured CO2 to the boundary layer mean mole fraction.

Currently, the met-station is located on the southeast corner of the roof of the Burton

tower. Based on comparisons with other nearby met-stations, there are likely artifacts in

the wind data due to nearby obstacles. It is recommended that this station be raised on

a pole (by several meters, if possible). This should help minimize the impact of nearby

obstacles on the observed wind fields. It would also be useful to install a second met-

station at the location of the retro-reflector (also raised several meters from the building

roof). These steps would provide more reliable meteorological data.
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Currently, there is not a reliable method to frequently calibrate the OP-FTIR sys-

tem. CO2 and CH4 can be compared against the Los Gatos Research (LGR) multi-gas

analyser, an in situ system which can in-turn be calibrated against a standard gas. If per-

formed regularly, this could provide a good mechanism to calibrate the gases. An initial

attempt at calibration is descrived in Appendix B. The LGR is unable to measure CO or

N2O. To calibrate N2O observations, it may be possible to use an observing system that

is currently under development and will be deployed for balloon-borne observations [per-

sonal communication, John Saunders, 2018]. In the future, an ideal calibration system

could be obtained by installing in-situ systems at both the telescope and retro-reflector.

This set-up would have the added benefit of allowing the investigation of the variability

of GHG concentrations between the in-situ and OP-FTIR systems.

Besides these high priority issues, there are several optional changes to the OP-FTIR

system which could be further investigated. The retro-reflector could be relocated to

increase the measurement pathlength. Some tests performed by moving the retro-reflector

over a range of distances suggests that the pathlength could be doubled. The main

challenge in extending the pathlength is finding a suitable location for the retro-reflector.

Ideally, the entire path should be distant from surfaces and any vents on buildings. The

retro-reflector should also be raised by several stories from street level to minimize the

impact of localized sources. Another possibility would be to change the optical set-up of

the system. If the source were directed through the intereferometer before being sent to

the retro-reflector, the ambient (lowered shutter) spectrum would no longer be required

and the frequency of observation could be doubled. Alternatively, the source could be

set-up at the position of the retro-reflector and collimated such that only a one-way path

is used, which would be expected to increase the signal. However, before changing the

optical set-up, it should be noted that the current system was challenging to get running

smoothly and these changes could take a long time to fully implement. A cost benefit

analysis should be carefully thought through before changing the set-up.

There may be an opportunity to retrieve more trace gases from the recorded spectra.

Some attempts were made to retrieve O3 and C2H6, but the signal was found to be

insufficient. The feasibility of retrieving isotopologues has not been fully investigated,

but could be a productive area of future research. There appears to be promise in

retrieving HDO/H2O fractionation (which will be reported in a research paper using OP-

FTIR observations), but isotopologues of long-lived atmospheric species have not been

performed to a useful precision. Retrieving isotopologues of CO2 and CH4 would be

useful for source attribution (e.g., Pataki et al., 2003; Newman et al., 2016). If there

is insufficient signal to retrieve isotopologues with the current set-up, extending the
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pathlength and/or installing a brighter source could help.

The discussion so-far has focused on future work in terms of data collection, however,

there are also opportunities for future work in estimating fluxes. Estimating surface fluxes

from the OP-FTIR system alone is not feasible, instead, these observations should be

combined with background observations from existing observing systems. ECCC’s Han-

lan’s Point station likely offers the best site for comparisons. By examining gradients in

the observed concentrations between sites, surface fluxes can be inferred. However, there

are also a number of challenges associated with this. In particular, the vertical struc-

ture of the concentration field needs to be well understood to infer emissions. This will

likely require a tracer-transport model with high vertical resolution within the boundary

layer. Currently, the best option to estimate concentration gradients would be to use

the Environment Canada Carbon Assimilation System (EC-CAS) on the nested Pan-Am

domain, providing 2.5 km× 2.5 km horizontal resolution. Another possibility would be

to have a free-running version of Weather Research and Forecasting model coupled with

Chemistry (WRF-Chem) and impose boundary conditions from EC-CAS. The longer-

term goal should be to use a high-resolution model coupled with an inversion method

to estimate fluxes. This could be done in collaboration with other scientists working

on Toronto emissions (e.g., Felix Vogel, ECCC; Debra Wunch, University of Toronto;

Jennifer Murphy, University of Toronto).
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Appendix

A.1 GOME-2 SIF errors

The precision of GOME-2 SIF observations is quite low, with single measurement errors

comparable to the retrieved SIF value. Therefore, large numbers of observations need

to be combined to average out random errors. Here we show the presence of random

errors between years and thus demonstrate that averaging between years is required to

calculate a precise mean seasonal cycle, using the NASA GOME-2 SIF data.

As discussed in the main text, we first aggregated the observations spatially to a

2◦× 2.5◦ grid and temporally to week of year by calculating the median value. However,

even with this averaging, the random error remain substantial. This is demonstrated for

evergreen needleleaf forests in Fig. A.1. There are substantial random fluctuations in

the timeseries for any given year, which originate from random error in the observations.

If all of these years are averaged together, then the random fluctuations are largely

eliminated. The year-to-year variability in the signal (SIF emissions) will also be present

between years and contributes to the variance estimate.

A.2 Seasonality of SIF and TBMs

Figure A.2 shows the start, end, and length of the growing season, where the start and

end of the season are determined by the date that the GPP (or SIF) reaches 25% of

the peak value. The two sets of fluxes generated with CTEM can have quite marked

differences. The start of the growing season for CTEM-CRU GPP is within one week of

SIF across the vegetation types, whereas the start for CTEM-GEM is one to three weeks

early. The end of the growing season is coincident for CTEM-CRU and CTEM-GEM for

165
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  Week of year

Figure A.1: Seasonal cycle of NASA GOME-2 SIF over the years 2008-2013 for the ENF
vegetation region. Also plotted is the mean seasonal cycle averaged over this time period.
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Figure A.2: (a) Start of season (day when SIF (GPP) reaches 25% of the maximum
value), (b) end of season (day when SIF (GPP) reaches below 25% of the maximum
value), and (c) length of the season (in days).
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all but one vegetation type. However, the end of the growing season in the CTEM fluxes

are up to five weeks later than in the SIF data. This results in CTEM fluxes predicting

a longer growing season than SIF. On average, across the vegetation types, CTEM-CRU

and CTEM-GEM predict growing seasons which are two weeks and four weeks longer

than that suggested by the SIF data, respectively. JULES GPP has the same systematic

differences relative to NASA GOME-2 SIF across all vegetation regions except for DNF.

Over these regions, JULES predicts an earlier start (about two and a half weeks) and

a later end (about three weeks) of the growing season. For DNF, the start of growing

season is coincident for JULES GPP and the SIF data, however, the end of the growing

season is delayed by a few weeks in JULES.

A.3 Model transport errors

The magnitude of the error associated with transport is difficult to quantify, although

some insights can be garnered from previous studies. Houweling et al. (2010) performed

an intercomparison of transport models using the same set of surface fluxes. They found

that forward simulations of XCO2 lead to mean model-to-model differences of 0.5 ppm

over the continents and 0.27 ppm over the oceans. Looking at the seasonal cycle of XCO2

at Park Falls, Basu et al. (2011) attempted to isolate the magnitude of transport error in

their model-data mismatch estimated (based on TM5). They found that model transport

errors combined with errors in calculating XCO2 resulted in an error of less than or equal

to 1 ppm in the amplitude of the seasonal cycle. We can also get some insights into the

magnitude of transport errors from the model-data mismatch using CT2016 NEE.

We examine the difference in the mean seasonal cycle of XCO2 simulated by GEOS-

Chem and TM5 at Sodankylä, Bia lystok, Orléans and Park Falls. We use CT2016 NEE

as the biosphere fluxes in both simulation, therefore, difference in the mean seasonal

cycles of XCO2 from GEOS-Chem and TM5 should largely be due to differences in model

transport.

However, there are some differences in the method used to calculate mean seasonal

cycle of XCO2 from TM5 in comparison to GEOS-Chem. First, we use TM5 XCO2 simu-

lated from year specific CT2016 NEE fields rather than mean NEE. Second, additional

data filtering is performed when calculating the mean seasonal cycles of XCO2 for TM5.

Only TCCON retrievals with a solar zenith angle of less than or equal to 60◦ are retained.

If a day has fewer than 50 retrievals left, no data are processed from that day. There is

also an outliers detection scheme involving a quadratic fit to time for each day’s retrieval.

Any retrieval whose residual XCO2 from this fit is more than three standard deviations
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Figure A.3: Mean XCO2 seasonal cycle at a) Sodankylä, b) Bia lystok, c) Orléans and d)
Park Falls. Solid lines show the mean XCO2 seasonal cycle from TCCON observations
(black) and simulated by GEOS-Chem (red) over the period 2008-2012 with minimal data
screening. Dashed lines show the mean XCO2 seasonal cycle from TCCON observations
after additional data screening was performed (black) and simulated by TM5 (red) over
the period 2008-2014 (also with additional data screening).

from the curve is rejected, and the procedure is iterated with a new fit until there are

no such outliers remaining. Finally, we create 30-minute averages if and only if there are

more than 10 retrievals within the 30-minute interval. Due to this additional filtering,

the number of data points is significantly reduced. To achieve a good seasonal cycle fit

of the simulated XCO2 , we fit the years 2008-2014, which is two years longer than for the

GEOS-Chem fits. We also fit a mean seasonal cycle to the TCCON observations which

have undergone this additional data filtering.

Figure A.3 shows the mean seasonal cycle of XCO2 for TCCON and simulated by

GEOS-Chem and TM5 using CT2016 NEE at the four TCCON sites examined in this

study. Due to differences in data filtering, there are differences between the mean seasonal
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cycles calculated from the TCCON observations of up to 1 ppm at the same TCCON

site. Differences between GEOS-Chem and TM5 mean seasonal cycles are of the same

magnitude as these differences, thus it is difficult to determine whether these differences

are primarily due to transport or data filtering. Nevertheless, differences in the mean

XCO2 seasonal cycle are always less than or equal to 1 ppm. This suggests that transport

errors are likely smaller than 1 ppm, consistent with previous studies (e.g., Houweling

et al., 2010; Basu et al., 2011).

We should also note that the XCO2 seasonal cycle at these TCCON sites is not solely

driven by NEE in the vegetation regions examined here, but is also dependent on NEE

outside these regions (Keppel-Aleks et al., 2011, 2012). For example, Barnes et al. (2016)

have shown that the XCO2 seasonal cycle over northern mid-latitude regions is influenced

by NEE throughout the midlatitudes as the CO2 signal is transport upward and poleward

by isentropic transport. To ensure that the XCO2 seasonal cycle at the four TCCON sites

examined here are driven by NEE in the regions of interest we performed tagged tracer

runs with the GEOS-Chem forward model at 2◦× 2.5◦ resolution. In these runs, all of

the NEE between 39◦ and 65◦ N is tracked so that its contribution to the seasonal cycle

can be calculated. We find that NEE in these regions is responsible for 76% (Sodankylä)

to 87% (Bia lystok) of the XCO2 seasonal cycle at these TCCON sites.

A.4 SiB3 and CASA comparison for individual veg-

etation types

Figure A.4 shows the day of the year when the TBM GPP, Re and NEE drawdown

reach peak values for each vegetation region in SiB3 and CASA. Examining the timing

of peak GPP, Re and NEE drawdown for SiB3 reveals that (except for DNF) peak NEE

drawdown occurs earliest followed by peak GPP and then Re (between day 225–235). For

CASA, peak Re typically occurs around the same day of the year as peak GPP (except

for DNF), whereas peak NEE typically occurs after peak GPP and Re (except for DNF

and southern mixed forests). Comparing SiB3 and CASA, we find the date of peak GPP

is similar for both TBMs, as indicated by comparisons with SIF, but peak Re and NEE

are significantly different between the TBMs. Peak Re for CASA occurs three to four

weeks earlier than for SiB3 (except for ENF), and thus peak NEE occurs two to five

weeks later. The differences between SiB and CASA found here are consistent with the

results of Messerschmidt et al. (2013), who found that differences in seasonality of NEE

between TBMs were primarily due to the differential phasing of Re with respect to GPP.
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Figure A.4: Day of year at which the peak GPP (black), peak Re (light gray) and peak
NEE (dark gray) occur for (a) SiB3 and (b) CASA, and (c) the difference in timing
between SiB3 and CASA.
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Figure A.5: Seasonal cycles of (a–c) inversion NEE (d–f) model GPP, (g–i) model Re,
(j–l) optRinv−mod, and (m–o) the difference between optRinv−mod and model Re for (left
column) North America, (middle column) Europe, and (right column) Asia. For subplots
a–c, CT2016 NEE is the solid line and GOSAT-Inv is the dash-dot line. For subplots
m–n, optRCT2016−mod is represented by solid lines, whereas optRGOSATinv−mod is indicated
by dashed lines. In all panels the solid, heavy black line represent the mean of all the
curves shown.

A.5 Continental scales

Figure A.5 shows inversion NEE, model GPP, model Re, and optRinv−mod for North Amer-

ica, Europe and Asia. As was found for the entire northern extratropics, there are large

differences in the magnitude of GPP between models. The difference is particularly large

for North America, where CASA GPP is much larger than SiB3 GPP and FLUXCOM

GPP.



Appendix B

Initial side-by-side comparisons of

the OP-FTIR and LGR

We performed initial side-by-side comparisons between the OP-FTIR and LGR, an in

situ analyzer that has been calibrated against a standard gas. We first performed mea-

surements with the LGR situated on the 15th floor balcony of the Burton Tower (Fig. B.1)

and then with the LGR situated on the Galbraith roof near the retro-reflector (Fig. B.2).

The results suggest that CO2 and CH4 fields have a significant amount of spatial hetero-

geneity over the OP-FTIR path. We find poorer agreement for CO2 than CH4. For CO2,

there is significant variability measured by the LGR at the position of the retro-reflector,

suggesting that nearby emissions (presumably vehicular emissions) are resulting in large

mole fraction enhancements. In contrast, the LGR CO2 measurements on the Burton

Tower balcony indicate that there is sensitivity to boundary layer dynamics, with lower

CO2 mole fractions observed in the afternoon (when vertical mixing is strongest). Pre-

sumably, the OP-FTIR is measuring a combination of these signals, which results in poor

agreement with in situ measurements at both locations. For CH4, agreement between

the OP-FTIR and LGR is better. There is a low bias in OP-FTIR measurements relative

to LGR measurements on the Burton Tower balcony, however, this could be explained

differences in the sensitivity to the nearby CH4 localized source.
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Figure B.1: Measurements of (a) CO2 and (c) CH4 from the (red) OP-FTIR and (black)
3 second averages and (green) 6 minute medians with the LGR positioned on the Burton
Tower balcony on September 4th, 2018. Scatter plot and linear regression of OP-FTIR
measurements against LGR measurements for (b) CO2 and (d) CH4.
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Figure B.2: Measurements of (a) CO2 and (c) CH4 from the (red) OP-FTIR and (black)
3 second averages and (green) 6 minute medians with the LGR positioned on the Gal-
braith roof on September 7th, 2018. Scatter plot and linear regression of OP-FTIR
measurements against LGR measurements for (b) CO2 and (d) CH4.



Appendix C

Processing of OP-FTIR data

This appendix provides some guidance on how to process the raw meteorological and

OPUS files to perform the retrievals. This an outline and some changes may need to be

made to the programs depending on the specific retrieval that is being performed.

C.1 Matlab processing

A matlab program (“/export/data/home/bbyrne/make test shutter.m”, or similar) is

used to create input text files for the python code and MALT code. These text files are:

1. “test1.txt”, a python code that subtracts the shutter raised and lowered spectra.

2. “malt input1.txt”, the input file to MALT. There are two versions of this program:

one that subtracts the preceding lowered shutter spectrum (/home/bbyrne/make test shutter.m)

and one that subtracts the lowered shutter spectrum measured after the open shut-

ter measurement (/home/bbyrne/make test shutter opp.m).

Before running the matlab code, the met fields and spectral data files need to be moved

to the right locations. First, for the met fields:

• The met fields need to be copied over from “/net/deluge/pb 1/projects...

.../TAO/data/BomemDA8/Sun/YYYY MM/Auxiliary/mmm Log Folder/mmmYYlog.txt”

to

“/data/01/bbyrne/Malt5 output/”,

• the header needs to be removed and “:” and “/” need to be converted to commas.
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– Note that the met-station records are in UTC and the OP-FTIR records in lo-

cal time, so the difference is accounted for by this program (including daylight

savings).

Second, for the data files:

• Raw data are stored in:

/net/deluge/pb 1/projects/TAO/Equipment/spectrometers/bruker/ifs125m/data/.

• Copy the desired files over to

/data/01/bbyrne/dataSourc/new/.

Now, the matlab code “make test shutter.m” can be run. Before running make sure the

adjustments are made to read in the desired met files.

C.2 Subtract shutter raised and lowered spectra

Now you need to run a python code which will subtract the shutter open and closed

spectra.

• “cd” into “/data/01/bbyrne/test OPUS calc”.

• Run “python handler mine 40scan 04res.py” (or for the “opp” files run

“handler min 40scan 04res opp.py”).

These programs will output OPUS files into the same directory, these are the source

on–source off files, and are the files that the retrieval is performed on.

C.3 Copy files to KS-XENA

• Copy the new OPUS files to “KS-XENA” (the OP-FTIR computer).

• Put the “out” files in C:/Malt5/Data Nov2017.

• Put “malt input1.txt” into C:/Malt5/N2O path336m.
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C.4 Run retrieval

• Open Command Prompt and type:

cd C:\Malt5\N2O path336m.

• Run Malt:

Malt5 /L malt para N2O 1 malt input1.txt.
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Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles,

C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., et al. (2017). The modern-era

retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate,

30(14):5419–5454.

Gerbig, C., Lin, J., Wofsy, S., Daube, B., Andrews, A., Stephens, B., Bakwin, P., and

Grainger, C. (2003). Toward constraining regional-scale fluxes of CO2 with atmospheric

observations over a continent: 2. analysis of COBRA data using a receptor-oriented

framework. J. Geophys. Res.-Atmos., 108(D24), doi:10.1029/2003JD003770.

GFZ-SIF (2016). GFZ postdam GOME-2 Solar Induced Fluoresence product.

ftp://ftp.gfz-potsdam.de. Accessed: 2016-03-08.

Gilmanov, T., Soussana, J., Aires, L., Allard, V., Ammann, C., Balzarolo, M., Barcza,

Z., Bernhofer, C., Campbell, C., Cernusca, A., et al. (2007). Partitioning European

grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem

respiration using light response function analysis. Agr. Ecosyst. Environ., 121(1-2):93–

120.

Goody, R. and Yung, Y. (1995). Atmospheric radiation: theoretical basis. Oxford Uni-

versity Press.



BIBLIOGRAPHY 189

Graven, H., Keeling, R., Piper, S., Patra, P., Stephens, B., Wofsy, S., Welp, L., Sweeney,

C., Tans, P., Kelley, J., et al. (2013). Enhanced seasonal exchange of CO2 by northern

ecosystems since 1960. Science, 341(6150):1085–1089, doi:10.1126/science.1239207.

Griffith, D., Deutscher, N., Caldow, C., Kettlewell, G., Riggenbach, M., and Hammer, S.

(2012). A Fourier transform infrared trace gas and isotope analyser for atmospheric

applications. Atmos. Meas. Tech., 5(10):2481–2498.

Griffith, D. W. (1996). Synthetic calibration and quantitative analysis of gas-phase FT-IR

spectra. Appl. Spectrosc., 50(1):59–70.

Griffith, D. W. (2003). Non-linear least squares: High precision quantitative analysis of

gas phase FTIR spectra. 2nd Intl. Conference on Advanced Vibrational Spectroscopy,

Nottingham.

Griffith, D. W., Deutscher, N. M., Velazco, V. A., Wennberg, P. O., Yavin, Y., Aleks,

G. K., Washenfelder, R. a., Toon, G. C., Blavier, J.-F., Murphy, C., Jones, N.,

Kettlewell, G., Connor, B. J., Macatangay, R., Roehl, C., Ryczek, M., Glowacki,

J., Culgan, T., and Bryant, G. (2014a). TCCON data from Darwin (AU), Release

GGG2014R0. doi:10.14291/tccon.ggg2014.darwin01.R0/1149290.
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Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner, P., Zaehle, S., Blessing,

S., Dorigo, W., Gayler, V., Giering, R., et al. (2013). The BETHY/JSBACH carbon

cycle data assimilation system: Experiences and challenges. Journal of Geophysical

Research: Biogeosciences, 118(4):1414–1426.

Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G. (2001). On aggregation

errors in atmospheric transport inversions. J. Geophys. Res.-Atmos., 106(D5):4703–

4715.

Kaminski, T., Scholze, M., and Houweling, S. (2010). Quantifying the benefit of A-

SCOPE data for reducing uncertainties in terrestrial carbon fluxes in CCDAS. Tellus

B: Chemical and Physical Meteorology, 62(5):784–796.

Karion, A., Sweeney, C., Tans, P., and Newberger, T. (2010). AirCore: An innovative

atmospheric sampling system. J. Atmos Ocean Tech., 27(11):1839–1853.

Kawakami, S., Ohyama, H., Arai, K., Okumura, H., Taura, C., Fukamachi, T., and

Sakashita, M. (2014). TCCON data from Saga (JP), Release GGG2014R0. TCCON

data archive, hosted by CaltechDATA.

Keeling, C. D. (1960). The concentration and isotopic abundances of carbon dioxide in

the atmosphere. Tellus, 12(2):200–203.

Keeling, C. D. (1998). Rewards and penalties of monitoring the earth. Annu. Rev. Energ.

Env., 23(1):25–82.

Keeling, C. D., Adams Jr, J. A., Ekdahl Jr, C. A., and Guenther, P. R. (1976a). Atmo-

spheric carbon dioxide variations at the South Pole. Tellus, 28(6):552–564.

Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl Jr, C. A., Guenther, P. R.,

Waterman, L. S., and Chin, J. F. (1976b). Atmospheric carbon dioxide variations at

Mauna Loa observatory, Hawaii. Tellus, 28(6):538–551.

Keeling, C. D., Bacastow, R. B., Carter, A., Piper, S. C., Whorf, T. P., Heimann, M.,

Mook, W. G., and Roeloffzen, H. (1989a). A three-dimensional model of atmospheric

CO2 transport based on observed winds: 1. analysis of observational data. Aspects of

climate variability in the Pacific and the Western Americas, pages 165–236.

Keeling, C. D., Chin, J., and Whorf, T. (1996). Increased activity of northern vegetation

inferred from atmospheric CO2 measurements. Nature, 382(6587):146–149.



BIBLIOGRAPHY 195

Keeling, C. D., Piper, S. C., and Heimann, M. (1989b). A three-dimensional model of

atmospheric CO2 transport based on observed winds: 4. mean annual gradients and

interannual variations. Aspects of climate variability in the Pacific and the Western

Americas, pages 305–363.

Keppel-Aleks, G., Wennberg, P., and Schneider, T. (2011). Sources of variations in total

column carbon dioxide. Atmos. Chem. Phys., 11(8):3581–3593.

Keppel-Aleks, G., Wennberg, P., Washenfelder, R., Wunch, D., Schneider, T., Toon, G.,

Andres, R. J., Blavier, J.-F., Connor, B., Davis, K., et al. (2012). The imprint of surface

fluxes and transport on variations in total column carbon dioxide. Biogeosciences,

9(3):875.

Keppel-Aleks, G., Wolf, A. S., Mu, M., Doney, S. C., Morton, D. C., Kasibhatla, P. S.,

Miller, J. B., Dlugokencky, E. J., and Randerson, J. T. (2014a). Separating the influ-

ence of temperature, drought, and fire on interannual variability in atmospheric CO2.

Global Biogeochem By., 28(11):1295–1310.

Keppel-Aleks, G., Wolf, A. S., Mu, M., Doney, S. C., Morton, D. C., Kasibhatla, P. S.,

Miller, J. B., Dlugokencky, E. J., and Randerson, J. T. (2014b). Separating the influ-

ence of temperature, drought, and fire on interannual variability in atmospheric CO2.

Global Biogeochem. Cy., 28(11):1295–1310.

Kivi, R. and Heikkinen, P. (2016). Fourier transform spectrometer measurements of
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Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P.,

Sickert, S., Wolf, S., and Papale, D. (2016). Predicting carbon dioxide and energy fluxes

across global FLUXNET sites with regression algorithms. Biogeosciences, 13(14):4291–

4313, doi:10.5194/bg-13-4291-2016.

Trumbore, S. (2000). Age of soil organic matter and soil respiration: radiocarbon con-

straints on belowground c dynamics. Ecological Applications, 10(2):399–411.

Van der Tol, C., Berry, J., Campbell, P., and Rascher, U. (2014). Models of fluores-

cence and photosynthesis for interpreting measurements of solar-induced chlorophyll

fluorescence. Journal of Geophysical Research: Biogeosciences, 119(12):2312–2327.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and

Arellano Jr, A. F. (2006). Interannual variability in global biomass burning emissions

from 1997 to 2004. Atmos. Chem. Phys., 6(11):3423–3441.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers,

B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J.,

and Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016. Earth

Syst. Sci. Data, 9(2):697–720, doi:10.5194/essd-9-697-2017.

Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S.,

Miller, J., Sloop, C., Pongetti, T., Rao, P., Wong, C., Hopkins, F. M., Yadav, V.,

Weiss, R. F., Duren, R. M., and Miller, C. E. (2017). Carbon dioxide and methane

measurements from the Los Angeles megacity carbon project – part 1: calibration,

urban enhancements, and uncertainty estimates. Atmos. Chem. Phys., 17(13):8313–

8341, doi:10.5194/acp-17-8313-2017.

Viatte, C., Lauvaux, T., Hedelius, J. K., Parker, H., Chen, J., Jones, T., Franklin, J. E.,

Deng, A. J., Gaudet, B., Verhulst, K., et al. (2017). Methane emissions from dairies

in the Los Angeles Basin. Atmos. Chem. Phys., 17(12):7509–7528.



BIBLIOGRAPHY 211
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