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This thesis examines the application of three methods of so-called four-dimensional data

assimilation to dynamical models where there exists a timescale separation between vor-

tical motion and (relatively fast) inertia-gravity waves. Using a highly simplified dynam-

ical model which admits one nonlinear vortical mode and one inertia-gravity wave, we

evaluate the relative strengths and weaknesses of linearization-based and ensemble-based

sequential assimilation (i.e. two varieties of the Kalman filter), and four-dimensional

variational assimilation (4DVAR).

The first part of this study is concerned with balanced flow, or flow where vortical

motion dominates and inertial/gravitational motion is “slaved” to the dominant flow.

The goal of assimilation in this context is to recover the true balanced state, without the

excitation of spurious inertia-gravity waves. It is shown that the excitation of spurious

waves becomes more difficult to control as the nonlinearity of the assimilation system is

increased, for example by decreasing observation frequency. If not enough components

of the true state are observed or observations are infrequent relative to the nonlinearity

of the model, the explicit evolution of error covariances using a tangent-linear model

can easily become quite inaccurate, which results in a highly unstable assimilation cycle

wherein spurious waves are excited and not controlled. Both ensemble-based and implicit

variational covariance models offer improvements, but these are themselves limited by

error due to sampling and non-Gaussianity of the ensemble and by the tendency to settle
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into local minima of a non-quadratic cost function.

The analysis is then extended to dynamical regimes where the inertia-gravity wave

becomes more important to the evolution of the system as a whole, either by increasing

its magnitude, decreasing the timescale separation, or increasing the coupling between

fast and slow modes. It is found that recovery of either mode from observations that

contain both timescales benefits from the four-dimensional estimation of error statistics.

The ability to extract both modes from observations which contain both timescales of

motion depends both on the estimated fast-slow covariances, as well as the estimated

error variance ascribed to the gravity wave. Recovery of a non-negligible inertia-gravity

wave is found to be possible with the Kalman filter, and more so if an ensemble is used

to estimate covariances, but extremely difficult for variational assimilation.

It is also found that accuracy of the assimilation for the different regimes of bal-

ance/imbalance can be weakened considerably as systematic model error is added and

increased. Some typical modifications designed to counter systematic error are shown to

alleviate some of these problems, but also increase the excitation of spurious imbalance.
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MIX [(2.58), black] and FIL [(2.57), gray] observations, and OI with MIX

observations (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xxii



6.1 (A) Average analysis errors (as in previous figures), changing the timescale

separation parameter in the forecast model, εf. (B) The same, but chang-

ing the parameter bf which is estimated by the forecast model. In both

experiments, a 50-member EnKF is used. . . . . . . . . . . . . . . . . . . 153

6.2 EnKF reference example, comparing zero model error [ME0, (A)], and

model error scenarios ME1 (B) and ME2 (C), for MIX observations (2.58),

with ∆tobs = 4 and a 10-member ensemble. In all figures, the truth (black)

is compared to the analysis ensemble (gray) and ensemble mean (red). . . 157

6.3 As in figure 6.2 (B), but with (A) ensemble inflation with inflation factor

β = 1.5, (B) stochastic forcing with σm = 0.02, and (C) application of the

bias estimation algorithm [(6.4)-(6.8)] and α = 0.2. . . . . . . . . . . . . 159

6.4 Average EnKF slow [(2.59), left] and fast [(2.60), right] errors for the three

model error scenarios and a balanced truth, versus (A) inflation factor β,

(B) standard deviation σm in the stochastic forcing matrix, and (C) the

bias estimation parameter α. . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5 As in figure 6.4, but for a true state with free gravity wave Ĩt = 1.5. . . . 163
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Chapter 1

Introduction

1.1 Balance, Imbalance, and the Data Assimilation

Problem

1.1.1 Balance Dynamics and the Slow Manifold

Atmospheric and oceanic data assimilation is the problem of estimating the most likely

state of a very complex system, given physical theory on the one hand and a set of

observations on the other. Physical theory exists in the form of models, which give

estimates of the state in space and time. Observations can be ground-based, space-

based, or in-situ, and also involve a variety of spatial and temporal scales and levels

of complexity. Both the state estimate and observations are typically large fields, and

involve many dissimilar variables. While the abundance of observations of the atmosphere

and oceans is increasing, and models are improving, the significant improvements made

in both weather forecasts and climatological analyses in recent years are in fact largely

due to improved methods of data assimilation [Rabier, 2005]. Data assimilation has two

general purposes: (1) to “fill in the blanks” between observations, with the objective of

finding a more complete climatological picture, and (2) to improve forecasts of processes

1
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which have finite predictability, by providing more accurate initial conditions. More than

just inserting measurements into models, data assimilation algorithms are designed to

use observed and modeled information of a given variable at a certain location and time

to inform our estimates of other variables at other points in space and time, based on the

physical relationships which connect them. At the heart of the data assimilation problem

lies the exploitation of physical relationships, which are interpreted statistically in the

form of multi-dimensional probability distribution functions.

Dynamical relationships are modeled in terms of motions or waves, which correspond

to different physical restoring mechanisms [e.g., Kalnay, 2003, chapter 2]. Although these

different wave types are not completely independent, they can be approximated as such

in many meteorological and climatological applications, thereby making the problem

more tractable. We can thus think of flow in terms of sound waves, which result from

compression of the air; gravitational oscillations, which result from the gravitational

restoring force; inertial oscillations, which result from the Coriolis force; slower vortical

modes, which correspond to the conservation of potential vorticity; and Rossby modes,

which result from the variation of the Coriolis parameter (f) with latitude.

Sound waves have very fast phase speeds relative to, and tend to have a negligible

effect on, the motion of climatological and meteorological interest in the atmosphere

and ocean. External gravitational oscillations have phase speeds cgw ∼
√

gH, where

H is a typical fluid depth (in the ocean) or density scale height (in the atmosphere)

and g the acceleration due to gravity. Internal gravitational oscillations (resulting from

stratification) have phase speeds cgw ∼ NH, where H is a typical vertical length scale

and N the buoyancy or Brunt-Väisälä frequency, associated with the reduced gravity

of a stratified fluid. For H ∼ 10 km and N ∼ 10−2 s−1, the phase speed of external

gravity waves is on the order of about 300 m/s and that of internal waves is about

100 m/s. Inertial oscillations have phase speeds ci ∼ fL, where L represents a typical

horizontal lengthscale. For horizontal lengthscales L ∼ 1000 km and at midlatitudes
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(where f ∼ 10−4s−1), the inertial phase speed is on the order of 102 m/s.

Now consider large-scale flow with characteristic horizontal velocity U and horizontal

lengthscale L � a, where a is the radius of the Earth. Since the scale of these motions is

small relative to the curvature of the earth, we can, for the sake of argument, approximate

f as constant, in which case Rossby waves are filtered from the physical model, leaving

inertial and gravitational oscillations, as well as largely-nondivergent, vortical flow that

is approximately parallel to pressure surfaces. This vortical motion actually results from

the nonlinear advection of velocity in the governing equations, and can be understood

in terms of the conservation of a quantity called the potential vorticity, which can be

interpreted as the circulation per volume, or the absolute vorticity of a fluid volume

(that is, its intrinsic vorticity plus the Coriolis vorticity, f) divided by its depth.

Inertial and gravitational oscillations are well-separated in timescale from such vor-

tical modes if the ratio of the flow speed U relative to the phase speeds of inertial and

gravitational waves, or

ε ≡ U(
c2
gw + c2

i

)1/2
=

U

(gH + f 2L2)1/2
, (1.1)

is small. ε can also be written as

ε ≡ Ro B√
1 + B2

, (1.2)

where Ro ≡ U/fL is the Rossby number and B ≡ fL/
√

gH is the rotational Froude

number. Ro measures the vorticity of the flow relative to the earth’s rotation, or the

ratio between the inertial timescale (τ1 = f−1) and the advective timescale (τ2 = L/U).

Likewise, B measures the importance of the Coriolis force relative to the gravitational

restoring force. The smallness of these numbers indicates a timescale separation between

different normal modes [Saujani and Shepherd, 2006]. In regimes where B ∼ 1 and

Ro � 1, for example, inertial and gravitational oscillations are mixed (and we talk about

inertia-gravity waves), but separated in timescale from large-scale advective flow.
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The coexistence of scale-separated and therefore approximately independent modes of

motion leads to the concept of balance dynamics. Balanced models are simplifications of

the governing equations which filter out modes or degrees of freedom which are assumed

to have a negligible impact on the temporal and spatial scales of interest. A simple

example of a balanced model is incompressible flow, which filters out sound waves.

In meteorological and climatological applications, “balance” generally refers to the

dominance of vortical motion over inertia-gravity waves. This is because ε is small in the

extratropical atmosphere, where the gravity and inertial timescales are a few hours or

less, while the vortical or advective timescale is on the order of days. The midlatitude

troposphere and lower stratosphere are “balanced” in the sense that the flow prefers

slow, vortical motion over inertia-gravity waves, which carry comparatively little energy.

Weather systems and large-scale climate variations consist of Rossby and vortical modes,

varying on timescales of days to weeks. Inertia-gravity waves, excited by topography

and frontal systems, have timescales of hours and propagate away with little influence

on the large-scale flow, eventually breaking in the upper stratosphere and mesosphere.

Figure 1.1 shows a sample weather map, generated from Environment Canada’s Global

Environment Multi-scale (GEM) Model. The solid lines are contours of geopotential

height of the 500 hPa pressure surface, and the colour contours are absolute vorticity.

The flagged arrows indicate wind strength and direction, and it is evident that wind is

primarily parallel to the large-scale contours of height of the pressure surface. Note also

that absolute vorticity maxima coincide with “troughs” in the pressure surface. Both

features are indicative of balanced motion.

This preponderance of slow motion in the midlatitude troposphere and stratosphere

allows us to simplify our understanding of the governing dynamics, by approximating

flow on a quasi-invariant submanifold in phase space, on which gravity waves are entirely

“slaved” to rotational motion [Leith, 1979]. The so-called slow manifold is defined by a

system’s slow variables, while the fast variables are functions of the slow variables, given
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Figure 1.1: Example of pressure and wind over North America on 27 June, 2007, from

Environment Canada’s GEM model. The solid lines are contours of geopotential height of

the 500 hPa pressure surface, the colour shading represents absolute vorticity, and arrows

represent horizontal wind. Published by Environment Canada, and available from the

institution’s website, http://www.weatheroffice.gc.ca.
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by a set of relations of the form

f = U (s; ε) , (1.3)

where f represents the fast variables and s the slow variables. For example, under so-

called geostrophic balance, the Coriolis force is assumed to dominate all other acceleration

terms, such that the Coriolis and pressure forces balance and horizontal flow aligns with

lines of constant pressure, p. Geostrophic wind is given by

u = − 1

ρf

∂p

∂y
(1.4)

v =
1

ρf

∂p

∂x
(1.5)

and can thus be thought of as slaved to pressure. Subsequently, wind can be inferred

from pressure contours in weather maps.

There are two ways to model flow on the slow manifold. One way is to prognostically

model only the “master” variables which evolve on the slow timescale, and find the

“slaved” fast variables diagnostically via the slaving relations (1.3). Alternatively, it

is possible to integrate the full equations, but initialize the state on the approximate

slow manifold, such that the flow evolves without inertia-gravity waves. The latter has

been shown to be preferable, because the truncated equations yield inaccurate forecasts.

The slow manifold has since been shown to be asymptotic instead of invariant [Lorenz,

1986, Warn, 1997, Wirosoetisno and Shepherd, 2000], meaning that initialization cannot

actually converge to an exact manifold, and states initialized on the slow manifold will

eventually develop unbalanced motion.

The picture changes in the mesosphere, where the timescale separation remains, but

the motion is primarily unbalanced, i.e. gravity waves are prevalent [Koshyk et al., 1999].

These gravity waves are generated in the troposphere and propagate upward, increasing

in amplitude in the rarified air, eventually breaking and depositing their energy and

momentum in the stratosphere, mesosphere, and thermosphere. This is illustrated in
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figure 1.2, which shows the modeled zonal velocity field at three pressure levels, from

the SKYHI GCM, after Koshyk et al. [1999]. At 9.22 mb (the middle stratosphere), u

is dominated by large scales. Small-scale structure increases as we move into the upper

stratosphere (1.50 mb), with small scales dominating at 0.13 mb (the lower mesosphere).

From model studies it is estimated that roughly 50% of total variance in the mesosphere

comes from gravity waves [Polavarapu et al., 2005]. It is important to account for their

presence, as the breaking of these gravity waves plays an important role in the overall

dynamical picture of the middle atmosphere [Shepherd, 2000].

The balance picture also changes in the tropics, where the Coriolis parameter goes

to zero, and the timescale separation between inertia-gravity waves and vortical modes

accordingly decreases. The tropics also give rise to special equatorial waves, including

mixed Rossby-gravity waves, as well as equatorially-trapped Kelvin waves.

1.1.2 Balance Dynamics in Data Assimilation

In the language of data assimilation, physical motion becomes statistical, which is nec-

essary because both forecasts and observations have errors. The information given by

observations and models is formulated in terms of probability distribution functions (pdfs)

and relationships between variables and gridpoints are encompassed in joint distributions.

If these pdfs are Gaussian, they can be fully characterized by their first and second mo-

ments, or the mean and variance. Likewise, multi-dimensional Gaussian pdfs can be

characterized by covariances.

The probability of variable x at point A having a certain value, for example, is not

independent of the probability of the variable y at point B having a certain value. The co-

variance between these points is cxAyB
= 〈xAyB〉 = ρxAyB

〈(xA − 〈xA〉)2〉1/2〈(yB − 〈yB〉)2〉1/2,

where ρxAyB
is the statistical correlation between the two points and/or variables, and

〈·〉 represents the expected value. In the same way, the errors associated with different

variables and gridpoints can be related to one another in terms of error covariances. An
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Figure 1.2: Snapshots of the zonal velocity field from the SKYHI model, at three different

model levels. After Koshyk et al. [1999].
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assimilation algorithm uses an error covariance model in order to spread information

in time and space. This is where balances become important. For example, if the mo-

tion connecting two variables is an inertia-gravity wave, the covariance between the two

points (and its evolution in time) will be different than if the motion is vortical. If the

true state is balanced, information about one quantity (e.g. wind) can be extracted from

an observation of another quantity (e.g. temperature) if the slaving relationship which

defines the balance (1.3) is captured within the covariance model.

Thus knowledge of physical motion implies knowledge of joint probabilities, which

is used for the interpretation of observations. Likewise, information from observations

corrects physical models, and hence the estimation of dynamical relationships. Four-

dimensional (4D) data assimilation takes advantage of this duality by cycling information

between observations and models, to produce estimates of multivariate, spatial, and

temporal error statistics which are consistent with both. As the name implies, 4D data

assimilation spreads observational information in both space and time, whereas (more

traditional) 3D assimilation spreads information only in space.

1.2 Challenges

It has already been shown that the problem of deriving multivariate error statistics is

not entirely solved by the four-dimensionalization of data assimilation, and while several

studies in recent years have demonstrated the advantages of 4D over 3D data assimilation

[e.g. Rabier, 2005, Bishop et al., 2001, Lorenc and Rawlins, 2005], it has also been shown

that the performance of 4D schemes in realistic settings is not always better than 3D

assimilation [e.g. Houtekamer et al. 2005]. It is thus imperative to understand specific

reasons why 4D schemes might either flourish or only offer minimal improvement in

specific physical contexts, and to understand how multivariate covariance models are

developed, given practical limitations such as nonlinearity and model error. In this
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U(s;ε)
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baa

i

Figure 1.3: Schematic diagram of data assimilation on the slow manifold. The black line

indicates the slaving relationship which defines the hypothetical manifold, and line D the

data manifold. Point b represents the background state estimate, prior to assimilation.

Point a represents the fit between observations and the background estimate. Point c

represents the balanced state which is also part of the data manifold. Point i represents

a hypothetical “initialized” state , wherein gravity waves are removed (using a balance

approximation), following the insertion of the observation.

study, we address the development of multivariate error covariances from the perspective

of balance dynamics and different regimes of timescale overlap.

1.2.1 Data Assimilation for Balanced States

For data assimilation in the midlatitude troposphere, where vortical motions dominate

and gravity waves can be considered negligible, a problem arises when observations are

inserted into models. Because observation errors project onto all degrees of freedom,

including the fastest ones, the insertion of observations can destroy the dynamical balance

between mass and velocity fields, causing the excitation of spurious, unrealistic inertia-

gravity waves in the forecast. This is illustrated in figure 1.3, a schematic diagram of
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the slow manifold adapted from Leith [1979] and Daley and Puri [1980]. The nonlinear

balance relationship which defines the hypothetical slow manifold (1.3) is shown by the

black curve. Suppose that a perfect observation of a single variable (say, height of a

pressure surface) is made. The line D represents the data manifold, or all points in

the model space along which the observed variable is invariant. Let point b be the

initial background state (prior to assimilation), which is close to the slow manifold.

The background state is adjusted to fit the observation, say, by allowing an adjustment

only on the slow variables. The resulting analysis state, denoted by the point a, fits

the observation but is clearly farther from the slow manifold than the prior estimate.

In practical terms, this means that spurious inertia-gravity waves are excited by the

insertion of the observation.

Spurious inertia-gravity waves are undesirable in numerical forecasting, for several

reasons. They greatly increase the distance between the estimated state, and subsequent

forecasts, and the truth. In fact, the world’s first numerical weather forecast, made by

hand by L. F. Richardson in 1922 [Kalnay, 2003, chapter 1; Richardson, 1922] had huge

errors, not because of Richardson’s calculation, but because the initial conditions lead

to contamination of the forecast by large spurious inertia-gravity waves. The problem

is illustrated in figure 1.4, from Williamson and Temperton [1981]. The solid line shows

the evolution of surface pressure in a model integration, starting from an initial state

which is an assimilated analysis state, such as point a in figure 1.3. The huge variation

in the pressure forecast is due to the unphysically large, spurious inertia-gravity wave

which ensues from the initial conditions. Such spurious gravity waves also increase the

distance between the forecast and subsequent observations (of the balanced true state);

hence, subsequent observations can be rejected by the assimilation algorithm. Moreover,

if the modeled state adjusts back to a balanced state (either by the dissipation of gravity

waves or because the gravity waves propagate away), the observational information which

projected onto the slaved fast variables is lost [e.g. Daley 1991, chapter 6].
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Figure 1.4: Evolution of surface pressure over a 24-hour forecast period, starting from

unbalanced initial conditions (solid line) and balanced initial conditions (dashed line).

After Williamson and Temperton [1981].

Instead, balance-aware data assimilation should compute a state which is a fit between

the background estimate and the observations, and which is balanced. For the perfect-

observation example in figure 1.3, this state would be given by the point c, the intersection

of U(s; ε) and D. Traditionally, the optimal balanced state is approximated with a so-

called initialization step, wherein some approximation is made to remove spurious fast

motion and project the assimilated state onto the slow manifold, following the insertion

of observations. The dashed line in figure 1.4 shows the evolution of surface pressure if

the initial state is initialized with a balance approximation; now, surface pressure shows

the slow, realistic evolution of the state. Note also that, even though the ultimate change

in surface pressure over the 24-hour period is similar for the two curves, instantaneous

rates of change are quite different throughout. Thus the small change in the initial

conditions which happens during the initialzation step greatly improves the accuracy and

physicality of the ensuing forecast. However, depending on how well balance is estimated,
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this approximate projection of the analysis onto the slow manifold could also result in

an analysis that is farther from both the data manifold and the original background

estimate, say, point i on the diagram in figure 1.3. The problem thus becomes one of

incorporating the balance requirement into the computation of the optimal fit between

the observations and the background estimate.

Dynamical balances are, in fact, frequently incorporated into the formulation of the

error covariance models used in data assimilation, both in order to prevent the excitation

of spurious inertia-gravity waves and (since balance relationships imply error correlations)

to make the data assimilation multivariate. It has long been recognized that observations

should, in theory, contain information about balance, which can then be incorporated

into the assimilation in the form of covariance fields [Bergman, 1979, Daley and Puri,

1980]. In principle, the flow-dependent forecast error statistics developed within 4D

assimilation should do exactly this: observed information about balance between variable

fields informs the covariance model, which in turn causes observations to be assimilated

in a balanced way. However, as we shall see in subsequent chapters, this is not always

the case in the presence of realistic limitations, including nonlinearity of the model and

the balance relationship.

1.2.2 Data Assimilation for Unbalanced States

The extension of models and observations (and, therefore, data assimilation) into the

middle atmosphere and tropics gives rise to two new but related issues: capturing error

statistics for states where the motion is predominantly unbalanced (such as the meso-

sphere), and/or where there is unclear timescale separation between vortical motion and

inertia-gravity waves. In the middle atmosphere, where observations are sparse, the

ability to extract one field from observations of another is very important for accurate

simulation of features which impact climate but are difficult to simulate [e.g. Polavarapu

et al. 2005]. Recovery of one field from observations of another is also difficult in the
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tropics, where the weakness of the Coriolis force reduces statistical coupling between

mass and wind fields [Žagar et al., 2004a]. For example, if a balance relation of the form

(1.3) is employed to recover the wind field from density/height observations, the process

of assimilation will smooth over the (non-negligble) inertia-gravity waves present in the

true state [Burgers et al., 2002]. In both contexts, the data assimilation problem is about

the interpretation of observational information in terms of the correct type of motion

when different motions are possible.

1.3 Overview

In this thesis we use a simplified dynamical model to address the derivation of multivariate

error covariances from the perspective of balance dynamics, in three contexts: a balanced

truth, an unbalanced truth, and a truth with no clear balance relation. Our model of

choice has a chaotic slow mode coupled to an oscillatory fast mode, and can be initialized

such that evolution of the fast variables is slaved to that of the slow variables. Analytical

reasoning and numerical experiments will approach each of these problems from three

angles, corresponding to the three most basic 4D methods: the Extended Kalman Filter

(EKF), which uses a tangent-linear model to estimate the evolution of error covariances;

the Ensemble Kalman Filter (EnKF), which uses an ensemble of states to estimate the

same; and four-dimensional variational assimilation (4DVAR), which minimizes a cost

function to optimize the fit between the modeled and observed states.

In comparing these three basic methods to 3D data assimilation, we seek to answer

the following questions: (1) Can 4D data assimilation develop statistical models which

are representative of the true dynamics? Specifically, (2) can 4D methods capture slaving

of fast variables to slow variables? Alternatively, (3) can 4D methods capture the coex-

istence of vortical motion and a comparatively fast wave? (4) How sensitive is this result

to the parameters which govern balance / imbalance and the parameters which govern
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each assimilation scheme? Finally, (5) what are the caveats and suggestions, given by

idealized experiments, for realistic assimilation?

Simplified models, which isolate certain physical phenomena, are a useful tool for un-

derstanding how a given data assimilation algorithm works in a specific physical context.

Models with only a few variables make the data assimilation system easy to understand

analytically, and have enabled much insight into the details of specific algorithms. For

example, Miller et al. [1994] used the well-known 3-component Lorenz [1963] model to

show how 4D data assimilation becomes more difficult in the context of highly nonlinear

dynamics, and Evensen [1994] used the same model to show that ensemble-based co-

variance modeling can potentially alleviate this problem. Anderson and Anderson [1999]

used the same model and the related Lorenz [1980] model to show how a non-Gaussian

ensemble filter (appendix B) can potentially alleviate new, ensemble-related issues, as

well as the balance problem (though their results with regards to balance were largely

speculative and limited to a few examples). In a simple model there is also no commit-

ment to operational constraints, nor is there any investment in the results coming out in

favour of one particular assimilation method.

The main focus of this work is on the EKF and EnKF, which are used as a proxy for

the more general practical issue of linearization-based versus ensemble-based covariance

modeling. Linearization-based dynamic covariance models lead to an unstable assimila-

tion system in nonlinear systems, but this instability can be controlled if observations

are frequent and accurate enough [Miller et al., 1994]. Because the EnKF preserves the

effect of higher-order moments on the estimated error covariance evolution, Verlaan and

Heemink [2001] proposed that the difference between the EnKF and EKF analyses gives

a measure of the overall nonlinearity of the entire data assimilation system. Here we

propose that the existence of a nonlinear balance relationship of the form (1.3) further

increases the nonlinearity of the assimilation system, in the sense that it makes assump-

tions of linearity and Gaussianity, on which all three of the basic algorithms are built,
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more precarious. It can be shown that assimilation for both balanced and unbalanced

states requires accurate representation of the balance relationship within the covariance

model. This adds an additional degree of nonlinearity to the assimilation problem which

can then be assessed in terms of the difference between the EKF and EnKF. Of course,

this paradigm is not completely airtight, since the EnKF incurs sampling error at finite

ensemble sizes and also (as will be shown in chapter 2) assumes Gaussian error statis-

tics and hence linear error evolution. We shall also see that, in terms of balance and

imbalance, the EnKF incurs new problems related to its Monte Carlo nature.

The EKF/EnKF comparison is then extended to 4DVAR, which has more or less

become the practical implementation of linearization-based covariance modeling, but is

also a fundamentally different approach to the same. As we shall see, the problem

of balanced data assimilation changes in the context of 4DVAR. Comparisons of the

Kalman filters to 4DVAR are therefore added for completeness and to build a more solid

connection to practical data assimilation. To give 4DVAR as much attention as the

Kalman filters would, however, be beyond the scope of the present study, and we thus

restrict the analysis to simple numerical comparisons.

The model and assimilation schemes are outlined in chapter 2. In chapter 3 the basic

algorithms are compared for a single chaotic timescale. In chapter 4, the comparison is

extended to cases where there exists a separation of timescales between relatively fast

and slow motions. In chapter 5 we consider the twin problems of cases where there is

significant energy in the free fast wave, and cases where the timescale separation between

slow and fast modes is unclear. The majority of the analysis of chapter 4 (but without

4DVAR) can be found in Neef et al. [2006], and the analysis of chapter 5 (again without

4DVAR) has been submitted for publication [Neef et al., 2007].

The guiding principle in the numerical experiments is to understand how a given

assimilation scheme develops multivariate error covariances which reflect the true dy-

namics, and where these are improvements over 3D assimilation. It will be shown that
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the three assimilation methods return very different results, despite the fact that all

are designed to compute the best fit between observations and a background estimate.

Analytical reasoning and numerical results together verify the expectation that, since

observations tell us about balances and balances help us to understand observations, the

four-dimensionalization of covariance models is extremely useful if done right.

Several challenges will also be brought to light, and it will be shown that, ultimately,

the shortcomings of all three schemes are due to the breakdown of assumptions of linearity

and Gaussianity. It is arguable that the effects of nonlinearity in data assimilation may

simply be viewed as model error, which can plausibly be accounted for with extra terms.

This, and the effects of model error, will be investigated in chapter 6.
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Chapter 2

Methodology

Data assimilation is the interaction of three components: a model, a set of observations,

and the assimilation algorithm. We will refer to the combination of these as the data

assimilation system. All three components can range from very simple to very complex,

and the success or failure of the full assimilation system depends on the behavior of each

component relative to the other two. It is not surprising —and will be shown again

in this study— that the outcome of a data assimilation experiment tend s to be more

complicated than the sum of its parts. This is why data assimilation studies often begin

with low-order models and experiments where the “true state” is simulated, and hence

known. Such simulations are attractive because they allow us to isolate specific dynamical

phenomena, clearly understand the behavior of a given algorithm in that context, and

test the sensitivity of the results to individual assimilation parameters.

To study data assimilation in the context of balanced dynamics, imbalance, and the

loss of a balance relationship, we would like a model that admits both a slow mode and

a gravity wave mode, allows for initialization on a slow manifold, and is nevertheless

simple enough that the assimilated analysis can be easily interpreted in terms of the

balanced and unbalanced components of the system. The model should also be physical

in the sense that the timescale separation and slow manifold initialization are related to

19
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the real governing equations of geophysical fluid dynamics. The model should also be

nonlinear, since it is nonlinearity that causes different assimilation methods to produce

different results. All of these properties are offered in the model of Lorenz [1986], as

modified by Wirosoetisno and Shepherd [2000]. Hereafter we will refer to this model

as the “extended” Lorenz 1986 model, or exL86. The model equations and its physical

properties are outlined in §2.1, and its derivation is reviewed in appendix A.

There is a wide range of data assimilation algorithms that fall under the heading of

“four-dimensional,” and the relative virtues and pitfalls of each proposed method are

often difficult to disentangle from the details of the specific study within which each is

proposed. Instead of evaluating one specific algorithm relative to another, we rather

want to understand how a given type of assimilation method handles each of the physical

contexts described in the introduction, so as to provide a framework for understanding

the results of more complex studies. Because the EKF, EnKF and 4DVAR comprise the

most basic implementations of 4D assimilation, they will be the focus of this study. Some

extension to other algorithms is offered in appendix B.

In order to isolate the effects of assimilation parameters and balance/gravity-wave

parameters on the analysis, we begin with so-called identical twin experiments, where

the truth and forecast states are evolved with the same “perfect” model, which is also

used to generate observations. This has two benefits: (1) the true error statistics for

both the observations and the forecasts are known exactly, and (2) the forecast error at

observation times comes entirely from accumulated analysis error, allowing us to isolate

the relative (dis)advantages of each method. Model error is briefly considered in chapter

6.
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2.1 The Extended (1986) Lorenz Model

2.1.1 Basic Equations

The exL86 model is described by the following four equations:

dφ

dt
= w′ + bz′ (2.1)

dw′

dt
= −C

2
sin 2(φ + εbx)− b

ε (1 + b2)
x (2.2)

dx

dt
=

bw′ − z′

ε
(2.3)

dz′

dt
=

x

ε (1 + b2)
. (2.4)

This system is derived by expansion of the nondimensionalized shallow water equations

into a resonant wave triad [Lorenz, 1980], which yields a system that admits three wave

number components of three degrees of freedom each, for a total of nine degrees of

freedom. This is followed by a truncation of two of the three components, in which the

gravity wave solutions are eliminated by setting the amplitude coefficients associated with

divergence and geostrophic imbalance, and their time derivatives, to zero [Lorenz, 1986].

This yields a five-equation system consisting of two geostrophic components and one

component which exhibits both vortical motion and an inertia-gravity wave. Following

the extension of Wirosoetisno and Shepherd [2000, below], this yields the above system,

which (when C is time dependent) has two normal modes: a slow vortical mode, and

a nearly-linear fast mode with frequency ε−1, where ε � 1. The full derivation of the

model in the form [(2.1)-(2.4)] spans four papers [Lorenz 1980, Lorenz 1986, Bokhove

and Shepherd 1996, Wirosoetisno and Shepherd 2000], each with different notation. A

summary derivation, using the notation of this thesis, is given in appendix A.

The four variables in (2.1)-(2.4) represent spectral coefficients. φ is related to the

phase between the two coefficients of vorticity for the two truncated (or geostrophic)

components in the original triad expansion. w′ represents the amplitude of vorticity, z′

the geopotential height, and x the divergence of the third (nongeostrophic) component.
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The parameter b, which couples the fast and slow normal modes, corresponds to the

rotational Froude number of this third triad component, and ε, in terms of the parameters

of the system, is related to b and the Rossby number of this triad component by (1.2).

The fast wave is thus indeed an inertia-gravity wave, with a timescale relative to the

vortical mode proportional to the smallness of ε. For brevity, we will henceforth simply

refer to it as a gravity wave.

The extension of Wirosoetisno and Shepherd [2000] was to give the parameter C

an artificial time dependence C = a0 + a1 cos(γt), in order to mimic the presence of

additional vortical modes and to ensure that the model’s slow mode is chaotic. Except

where denoted otherwise (in chapter 6), we will set a0 = 1, a1 = 0.8, and γ = 0.92, as

in Wirosoetisno and Shepherd [2000]. This results in a leading Lyapunov exponent of

about λ1 ' 0.15.

The system can be transformed into normal modes by defining w ≡ w′ + bz′ and

z ≡ z′−bw′, which physically correspond to potential vorticity and geostrophic imbalance,

respectively. This is done to make the interpretation of the data assimilation experiments

more straightforward. The resulting system in normal-mode form is given by

dφ

dt
= w (2.5)

dw

dt
= −C

2
sin (2φ + 2εbx) (2.6)

dx

dt
= −z

ε
(2.7)

dz

dt
=

x

ε
+

bC

2
sin (2φ + 2εbx), (2.8)

and will be used throughout this thesis. Now (2.5)-(2.6) define the dynamics of the

slow vortical mode and (2.7)-(2.8) that of the fast mode, and their coupling via ε and

b becomes clear. This system is qualitatively similar to an elastic pendulum, or the

“swinging spring,” system studied by Lynch [2002]; (2.5)-(2.6) can be thought of as the

slow evolution of the pendulum position, and (2.7)-(2.8) as the elastic spring oscillation.

It can be shown that a swinging spring can be initialized such that the extension of the
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spring is entirely a function of the pendulum position. Likewise, the exL86 model can be

initialized such that the fast variables, x and z, are slaved to the evolution of the slow

variables, φ and w.

2.1.2 Slow Manifold Initialization

The lowest order approximation to a slow manifold in the exL86 system is found by

setting x = z = 0 and evolving only φ and w. For ε = 0 or b = 0, this manifold is exact,

and results in the single-timescale system

dφ

dt
= w (2.9)

dw

dt
= −C

2
sin 2φ. (2.10)

Keeping the time dependence of C, this system is analogous to a chaotic pendulum,

and corresponds physically to the quasigeostrophic equations [Cushman-Roisin, 1994,

chapter 15] in that the fast solution is filtered out of the equations. The system also has

some qualitative similarity to the Lorenz [1963] model. To connect this model to similar

low-order model studies and to establish how nonlinearity of the slow mode affects data

assimilation, experiments with this model are performed in chapter 3.

Higher-order balances can be derived by assuming that x and z are slaved to the

slow variables according to slaving relations of the form (1.3), expanding each of the

slaving relations in ε, and substituting them into the system [(2.5)-(2.8)]. To second

order (n = 2), the resulting slaving relations are given by

x = Ux(φ; ε) = − ε

2
Cb sin 2φ + O(ε3) (2.11)

z = Uz(φ,w; ε) = ε2(Cbw cos 2φ +
C ′

2
b sin 2φ) + O(ε3), (2.12)

where C ′ is the time derivative of C [cf. appendix A]. If a state is initialized using slaving

relations to some order in ε, it will evolve with a free gravity wave of amplitude εν+1,

where ν is the order of initialization. In this study we will keep ν = 2 throughout. For



24 Chapter 2. Methodology

ε = 10−1, for example, a balanced state will then have a residual free gravity wave of

magnitude O (10−3).

If the fast variables also contain a free gravity wave (in addition to the slaved com-

ponents), the full state x = (φ, w, x, z)T can be written as

x = f(y) + g, (2.13)

where

f(y) =



φ

w

Ux(φ; ε)

Uz(φ, w; ε)


(2.14)

is the nonlinear mapping from the slow manifold state y = (φ,w)T to the full model

state, and

g =



0

0

x̃

z̃


(2.15)

represents the free gravity wave, with

x̃ = x− Ux(φ; ε) (2.16)

z̃ = z − Uz(φ,w; ε). (2.17)

The full fast mode (including its slaved component) can also be written in terms of

action-angle variables [I, θ], where

I =
√

x2 + z2 (2.18)

θ = tan−1
(x

z

)
. (2.19)
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Referring to (2.11)-(2.12) as the balanced components of the fast mode, we define “imbal-

ance” as the magnitude of the free gravity wave Ĩ ≡
√

(x− Ux)
2 + (z − Uz)

2 =
√

x̃2 + z̃2.

Wirosoetisno and Shepherd [2000] showed that the rate at which Ĩ2 grows is approxi-

mately given by exp (−2.2/ε), and so is exponentially slow as ε → 0. The corresponding

second Lyapunov exponent, which measures chaotic drift of the fast mode, also decays

with decreasing ε [Wirosoetisno and Shepherd, 2000].

An example illustrating the slow manifold initialization of the exL86 model is shown

in figure 2.1, which shows the four model variables for two example trajectories, both run

from the same initial slow-variable state, (φ,w)T = (−6.617,−0.449)T, with ε = 10−1

and b = 0.71. Both states are initialized with (2.11)-(2.12), and a free gravity wave of

magnitude Ĩ = 1.5 is then added to one run (shown in gray). In φ and w, the two states

are indistinguishable. This shows that the coupling between the balanced and unbalanced

modes is quite weak. It can be seen that the slow mode has a characteristic timescale

of about 6 time units. For the balance-initialized solution (in black), the unbalanced

components of x and z have magnitudes ε3, and are thus not visible in the figure. For

the unbalanced solution, the slaved components of x and z are overshadowed by the free

gravity wave.

Returning again to the balance transformation (2.14), it is important to note that

f(y) contains the slaving relations defined to some order in ε, and is thus not invertible.

Chapters 4 and 5 will show that the nonlinearity of f is important for data assimilation,

because of linearity approximations made in modeling the evolution of error covariances.

The relative importance of the nonlinear terms in f depends on the size of ε and b.

The slaving relationships become more nonlinear for increasing ε, where the separation

between slow and fast variables becomes concomitantly less well defined. For increasing

b (corresponding to motion which is more inertial and less gravitational), the projection

of the slow mode onto the fast mode increases, and the slaving relations become more

nonlinear while the timescale separation between the two modes stays the same.
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Figure 2.1: Two sample trajectories for the exL86 model, resulting from the same initial

slow manifold state. The black curves in each figure represent a run initialized using

[(2.11)-(2.12)], and the gray curves a run initialized with Ĩ = 1.5. In the top panels, the

gray curves are essentially coincident with the black curves.
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It is important to mention that a free gravity wave in this model neither propagates

away nor interacts with other fast waves. This study therefore does not address the

effects of adjustment from an unbalanced to a balanced state, such as would happen

when gravity waves, excited either by physical mechanisms or data insertion, propagate

out of the assimilation region [Daley, 1991, Žagar et al., 2004b]. Instead, our focus is

on (1) the excitation of spurious gravity waves due to the assimilation cycle, and (2) the

effect of true gravity waves on the recovery of the full model state from observations of

the partial state.

The fact that the exL86 model is conservative does not pose a great difficulty, since

the intention here is to use it to study assimilation algorithms in the context of the

free atmosphere gravity wave / initialization problem, rather than dissipative processes.

As pointed out by Lorenz [1986] and Wirosoetisno and Shepherd [2000], dissipation of

gravity waves is not the cause of the existence of a slow manifold (rather, it is a matter

of the stability of the slow mode). Therefore models such as this one can be quite

representative of realistic balance dynamics. Another reason for using a conservative

model is that representing dissipation —especially in a low-order model— requires some

form of parameterization, which further complicates the assimilation process and yet

would be completely arbitrary.

2.2 4D Data Assimilation

2.2.1 The Data Assimilation Problem

In data assimilation, we seek a state which is the best fit between a background or forecast

estimate xb, and a set of observations, given the probability distribution functions (pdfs)

of the background estimate and observations, and employing basic estimation theory.

The background or prior pdf of the state, pB (x), represents the distribution of pos-

sible values of the state, given all prior modeled and observed information, and has an



28 Chapter 2. Methodology

expected value 〈pB (x)〉 = xb. At some point in time, the background estimate is in-

formed by a vector of observations z, which is associated with a pdf pR (z|x), or the

conditional pdf of the observations, given the state estimate. Bayes’ theorem states that

the conditional posterior pdf of the state, given the new observations and the prior pdf,

is given by

pa (x|z) =
pR (z|x) pB (x)

p (z)
. (2.20)

p (z) is the prior pdf of the observation vector, which acts as a normalizing factor and

guarantees that the probability of all possible states x is unity. It is given by

p (z) =

∫
pR (z|x′) pB (x′) dx′ (2.21)

[e.g. Anderson and Anderson, 1999, Kalnay, 2003].

The simplest way to model the background and observation pdfs is as Gaussian (or

normal) distributions,

pB (x) =
1

(2π)n/2 |B|1/2
exp

[
−1

2

(
xb − x

)T
B−1

(
xb − x

)]
(2.22)

pR (z|x) =
1

(2π)m/2 |R|1/2
exp

[
−1

2
[z−H (x)]T R−1 [z−H (x)]

]
, (2.23)

where R and B are called the observation and background error covariance matricies

(respectively), n and m are the dimensions of the state and observation vector (respec-

tively), and H represents a function which maps the state to the space of observations.

The error covariance matricies are defined as

B = 〈
(
x− xb

) (
x− xb

)T〉 (2.24)

R = 〈[z−H(x)] [z−H(x)]T〉. (2.25)

Recall from the introduction that error covariances represent not just error amplitudes,

but also correlations.

The state which we seek, called the analysis, is the most probable state of the joint

pdf (2.20). Within the assumption of Gaussian distributions, there are two ways to
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compute this state. The first way is to compute the estimate x which minimizes the

mean of the square error, called the least-squares or variance-minimizing estimator. This

state can be written as a linear combination of the background state and the observation

vector, or rather

xa = xf + Kd, (2.26)

where d = z − H(xf) is the observation increment, also called the innovation. The

observation increment is multiplied by a matrix of weights K, and to solve the problem

we seek the optimum weights which give the analysis xa that has the smallest possible

posterior error variance. It can be shown [e.g. Kalnay, 2003, chapter 8], that for mutually-

uncorrelated observation- and background errors with zero mean values, the gain matrix

K = BHT(HBHT + R)−1 (2.27)

minimizes 〈(x− xa)T (x− xa)〉, such that xa is the best linear unbiased estimator (BLUE).

For Gaussian prior pdfs, xa given by (2.26) is then the conditional mean of the posterior

pdf (2.20). Note that K includes the linearized observation operator H, which maps the

innovation from the observation space to the model space.

The interpretation of K is easiest if one imagines a one-dimensional state with back-

ground variance σ2, and a single observation of the same variable (such that H = 1) with

observation error variance σ2
obs. In that case,

K =
σ2

σ2 + σ2
obs

. (2.28)

It can be seen that K weights the increments by the background error variance, normal-

ized by the total error variance. If σ2 � σ2
obs, observations are very accurate relative to

the background and are hence given maximum weight, with K → 1. If the opposite is

true, K→ 0 and the observation is given no weight.

An alternative way of computing the analysis is to seek the state which has the

maximum probability according to the posterior pdf (2.20), or its mode. For a Gaussian
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distribution, this state is of course equal to the variance-minimizing estimate, which is

the mean of (2.20). Assuming Gaussian distributions, the log likelihood of the state,

given (2.20), is

L = −1

2

(
x− xb

)T
B−1

(
x− xb

)
− 1

2
(z−H (x))T R−1 (z−H (x)) . (2.29)

We seek the state that maximizes L, which is akin to minimizing the scalar cost function

J (x) =
1

2

(
x− xb

)T
B−1

(
x− xb

)
+

1

2
[z−H (x)]T R−1 [z−H (x)] . (2.30)

J measures the misfit between the analysis and the background state, normalized by

the background error covariance matrix, and the analysis and the observation vector,

normalized by the observation error covariance matrix. Thus the maximum likelihood

estimate is the state x which minimizes J .

The two solutions given by the minimum variance estimate and the maximum like-

lihood estimate lead to two types of data assimilation. The solution resulting from the

minimization of J over three-dimensional space is called 3D variational data assimilation,

or 3DVAR. The minimum variance estimate given by (2.26) with the optimal gain matrix

(2.32) is called Optimal Interpolation, or OI [Bergman 1979]. As just shown, 3DVAR

and OI return the same estimate, given Gaussian pdfs and given the same specification

of covariance matrices, but differ in general. The historical differentiation between the

two methods is related to approximations used to solve for xa using (2.26)-(2.32) versus

using (2.29), for practical applications where z ∼ O (105) and x ∼ O (108).

Given a series of observations made in time, forecast states xf can now be generated

by integrating a model forward until the time at which an observation is made. The

model evolution can be written as

xf
k+1 = Mk (xa

k) + qk, (2.31)

where Mk represents the forward evolution of the truth, qk represents model error, xa
k

represents the analysis made at time k, and xf
k+1 is the forecast based on that analysis.
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This forecast then becomes the background estimate when an observation is made, and

can be updated according to either 3DVAR or OI. (Henceforth we will use the term

“forecast” to mean the background state when there is a cycling of analysis step and

model integrations, and “background” otherwise.) This update step is called the analysis

step, for obvious reasons. Following the analysis step, the analysis state xa
k is evolved

forward to the next observation time, using (2.31).

The analysis is thus cycled with the forward model evolution (2.31) to produce a

series of forecasts and analyses that are intended to sequentially come closer to the true

state. OI and 3DVAR are called three-dimensional assimilation algorithms because the

error covariance matrix B is defined in space (spectral or physical) and over the model

variables, but is static in time.

Different methods exist for estimating this matrix, a common one being the “NMC

method” [Parrish and Derber, 1992], wherein error magnitudes are estimated from differ-

ences between forecasts made from different initial times. Error magnitudes are, of course,

only one piece of the puzzle; a full covariance model also requires some assumption about

covariance structures, or correlations. Spatial covariances in OI are typically assumed

to be homogeneous, or dependent only on the relative displacement between two points

(rather than the locations of the points themselves), and spatial correlations are typically

assumed to be spatially isotropic functions which decay with distance (e.g. Daley 1991).

In 4D data assimilation the estimation of covariance structure and amplitudes is ex-

tended to the time dimension, by modeling not just the evolution of the state in time, but

also the evolution of the pdf (2.22). If (2.22) is Gaussian, only the evolution of its mean

and variance needs to be modeled. There are two ways to do this: sequentially, by evolv-

ing the covariance matrix explicitly and updating it at analysis times, or variationally,

by minimizing the cost function over a time window.
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2.2.2 Extended Kalman Filter

The Kalman filter can be thought of as the four-dimensional extension of OI. In the full

Kalman filter [Kalman, 1960, Kalman and Bucy, 1961, Miller et al., 1994], B is replaced

with the time dependent forecast error covariance matrix Pf
k, which is developed by

evolving error covariances forward in time using the forecast model (2.31). At analysis

times, Pf
k is updated to reflect the reduction of error, and the information gleaned about

physical correlations, by the observations. For nonlinear models (and/or nonlinear ob-

servation operators), both of these steps depend on higher order moments of the forecast

error pdf, and require a closure approximation to be made. The most basic ways to do

this for nonlinear models are the Extended Kalman Filter (EKF) and Ensemble Kalman

Filter (EnKF).

Algorithm

The EKF algorithm [Ghil et al., 1981, Cohn and Parrish, 1999, Miller et al., 1994, Nerger

et al., 2005] is as follows. The minimum-variance analysis step at timestep k is

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)

−1. (2.32)

xa
k = xf

k + Kk

[
zk −Hk(x

f
k)

]
. (2.33)

The resulting analysis error covariance matrix Pa
k is then computed, and follows from

application of the expectation operator to the analysis (2.33):

Pa
k = 〈(xa

k − 〈xa
k〉) (xa

k − 〈xa
k〉)

T〉 (2.34)

= (In −KkHk)P
f
k(In −KkHk)

T + KkRkK
T
k , (2.35)

where In is the n×n identity matrix. For the optimal gain matrix (2.32), (2.35) reduces

to

Pa
k = (I−KkHk)P

f
k (2.36)

[e.g. Daley, 1991, chapter 4, Kalnay, 2003, chapter 5].
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This error covariance estimate is then evolved forward in time by linearizing the

forecast model about the forecast state at each time. Defining the error vector at time

step k + 1 as

ef
k+1 ≡ xf

k+1 − xt
k+1 (2.37)

(where xt
k+1 is the truth at time step k+1), then substituting (2.31), the forecast error at

time step k can be approximated as a Taylor expansion of the model about the previous

time step:

ef
k+1 = Mk(x

a
k)−Mk(x

t
k) + qk (2.38)

' Mke
a
k + qk. (2.39)

Here Mk = ∂Mk(x
a
k)/∂x is called the tangent-linear model (TLM) about the analysis

state at time step k. The forecast error covariance matrix is then found by multiplying

(2.39) by its transpose and computing the expectation value, which gives

Pf
k+1 = MkP

a
kM

T
k + Qk, (2.40)

where 〈qkq
T
k 〉 ≡ Qk is the estimated covariance matrix of model error. Thus, both

correlations and error magnitudes are evolved in the EKF by cycling information between

the model [via (2.31)] and observations [via (2.33)]. We refer to this cycling as the EKF

covariance model.

The above algorithm still lacks an initial-guess error covariance matrix Pf
0. This

is a somewhat arbitrary component of the algorithm. Since Pf
k will be adjusted from

observational information, it is usually assumed that the EKF will become insensitive to

the initial covariance matrix formulation after a few analysis cycles. However, we will

see in chapters 3-5 that this is not always the case.

Limitations of the EKF

Several practical difficulties make the EKF infeasible for practical implementation [Miller

et al., 1994]. First, the EKF is extremely computationally expensive for realistic systems,
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because it requires one forward evolution of the TLM for each model coordinate, and also

because it involves a matrix inversion at analysis times (2.32). For contemporary practi-

cal systems with state dimension n ∼ 108, these operations are prohibitively expensive.

Formulation of the initial covariance matrix presents a second difficulty, because it re-

quires some sort of initial dynamical assumption about error relationships.

Third, forward evolution of Pf
k by the TLM (2.40) neglects third- and higher order

moments in the forecast error covariance field. The ability of the TLM to estimate the

correct forecast error pdf over the interval of time between two observations depends both

on the accumulated analysis error preceding an observation, and on the nonlinearity

of the model evolution between observations. The repeated addition of observations

and forward evolution of the state estimate can make (2.40) a more viable assumption,

but can also amplify errors in estimated covariances (relative to true error statistics).

The effects of errors in estimated covariances are discussed more explicitly in chapter 3.

Note that underestimation of error variance means that the adjustment of covariances in

(2.36) will also be underestimated, which will result in the eventual rejection of accurate

observations. This phenomenon is referred to as filter divergence. It can be shown that

both underestimation of variances and overestimation of correlations will eventually lead

to filter divergence [Houtekamer and Mitchell, 1998, Hamill et al., 2001]. Fourth, as will

be shown in chapters 4 and 5, the EKF has serious limitations in terms of balance and

gravity waves.

Despite these shortcomings and the unlikelihood of its realistic implementation, the

EKF is still worth examining, because of its theoretical similarity to the EnKF and

4DVAR in the limit of a perfect assimilation system. A second reason to study the

EKF is that it is possible to formulate simplified, more efficient “error subspace” ver-

sions of the EKF [Dee, 1991, Nerger et al., 2005, Hoteit et al., 2005], which could make

implementation of the EKF more feasible in the future.
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2.2.3 Ensemble Kalman Filter

The EnKF was proposed by Evensen [1994] as a solution to the first three of the four

problems listed above for the EKF. In the EnKF, the TLM-estimated evolution of error

covariances (2.40) and the covariance analysis step (2.36) are replaced with a Monte Carlo

estimate, using an ensemble of model states. By abandoning the TLM, the EnKF is able

to preserve some nonlinearity in the evolution of error statistics. The EnKF, while often

referred to as an approximation to the full Kalman filter, is therefore also a nonlinear

extension of the Kalman filter.

Algorithm

Several variants of the standard EnKF exist in the literature [Evensen, 2003]. We will

focus on the basic, perturbed-observation EnKF, as introduced by Evensen [1994] and

modified by Burgers et al. [1998] and Houtekamer and Mitchell [1998], as a first step to

illustrating the EnKF’s balance properties.

In the EnKF, Pf
k is computed from an ensemble of perturbations about a central

forecast, and its evolution is approximated by the evolving ensemble statistics as

Pf
k+1 = 〈

(
xf

i,k+1 − 〈xf
i,k+1〉

) (
xf

i,k+1 − 〈xf
i,k+1〉

)T〉 (2.41)

=
1

N − 1

N∑
i=1

(
xf

i,k+1 − 〈xf
i,k+1〉

) (
xf

i,k+1 − 〈xf
i,k+1〉

)T
, (2.42)

where 〈·〉 now denotes the ensemble average. For the covariance matrix, the normalization

factor in the ensemble average operation is N−1, to account for the fact that the ensemble

mean is not independent of the ensemble members [Bevington and Robinson, 1992]. The

ith member in the ensemble is given by

xf
i,k+1 = Mk

(
xa

i,k

)
+ qi,k, (2.43)

where qi,k represents the model error of the perturbed state.
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At observation times, each ensemble member is adjusted according to

xa
i,k = xf

i,k + Kkdi,k (2.44)

di,k = zk −Hk(x
f
k) (2.45)

zi,k = zk + ri,k. (2.46)

The random perturbations ri,k represent observation error, and are chosen from a normal

distribution with estimated observation error variance σ2
obs. It is important to randomly

perturb the observations, as pointed out by Burgers et al. [1998] and Houtekamer and

Mitchell [1998], who show that bias is otherwise introduced into the assimilation (note

that papers which discuss the EnKF prior to the studies of Burgers et al. [1998] and

Houtekamer and Mitchell [1998] actually present a faulty algorithm).

The EnKF analysis is then simply the ensemble mean:

xa
k = 〈xa

i,k〉, (2.47)

with analysis error covariance matrix

Pa
k =

1

N − 1

N∑
i=1

(
xa

i,k − 〈xa
i,k〉

) (
xa

i,k − 〈xa
i,k〉

)T
. (2.48)

Between observation times, we choose the analysis state to be the forecast based on

the mean analysis at the last observation time —as opposed to the mean forecast, which

tends to lack the full variability of the nonlinear model evolution. The distinction isn’t

always made clear in published descriptions of the EnKF algorithm, since the two would

be equal for a linear model.

Advantages of the EnKF

By evolving the ensemble, the EnKF preserves nonlinearity in the evolution of forecast

error statistics, though it still retains the assumption that error pdfs are characterizable

by their mean and variance, and that the linear update (2.47) is optimal. Note that



2.2. 4D Data Assimilation 37

as it is conceivable that the BLUE may be an effective estimate even for non-Gaussian

pdfs. We shall see below that this is indeed often the case. The EnKF also eliminates

the cost of developing a TLM or (in contrast to 4DVAR assimilation) an adjoint model.

Instead, each integration of an N -member EnKF requires N model integrations. Another

advantage of the EnKF is that it outputs an analysis ensemble, which can subsequently

be used for ensemble forecasts.

Limitations of the EnKF

The accuracy of the EnKF rests on the assumption that a finite-size forecast ensemble,

and its forward evolution, capture the true error statistics between observation times and

following the analysis step. Since the EnKF analysis is a weakly-nonlinear combination

of model states, it is in theory constrained to the space spanned by the N -member

ensemble. Smallness of the ensemble also limits the amount of information that can

be brought into the assimilation before the problem becomes overdetermined [Lorenc,

2003b]. [If covariances are localized, as is commonly done (e.g. Hamill et al. 2001), this

is no longer the case. In this case, however, the constraint of the assimilating model is

weakened.]

For operational models, a computationally feasible EnKF typically has an ensemble

size which is very small relative to the state dimension, which can be as large as n ∼

O (108). Sampling error in the EnKF scales as N−1/2. However, as pointed out by

Houtekamer and Mitchell [2005], other error sources (such as non-Gaussianity of the

ensemble, observation error, error in the formulation of observation error statistics, etc.)

become more important as ensemble sampling error decreases. Hence, there is typically

a “saturation” ensemble size, beyond which analysis error cannot be reduced by adding

more ensemble members. This is illustrated briefly in chapter 3. Houtekamer and Mitchell

[2005] show that, for a typical NWP global model, errors stop decreasing for more than

about N = 50 ensemble members.
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Because (2.36) is a nonlinear step (nonlinear because Kk contains Pf
k), ensemble

sampling error leads to a biased ensemble distribution of error variances. Hamill et al.

[2001] point out that the probability of underestimating variances is larger than that of

overestimating variances. Ensemble sampling error also gives rise to spurious correlations,

especially where error variances are small, leading to filter divergence. Another weakness

of the EnKF is that forecast ensembles can become non-Gaussian [Lorenc, 2003b], in

which case the mean and covariances estimated from the ensemble may not be good

representations of the system statistics.

The accuracy of a finite-size ensemble, given these limitations, can also be justified

if sufficient information from observations is brought into the data assimilation system.

Other, practical, limitations and complications concerning the EnKF are discussed by

Lorenc [2003b].

2.2.4 Four-dimensional Variational Assimilation (4DVAR)

Algorithm

4DVAR is the time-dependent extension of 3DVAR. In 4DVAR, the scalar cost function is

not evaluated sequentially but rather is minimized over a time window ∆T = [t0, t0 +T ],

and has the form

J (x0) =
1

2

(
x0 − xb

0

)T
B−1

(
x0 − xb

0

)
+

1

2

N∑
i=0

[zi −H (xi)]
T R−1 [zi −H (xi)] . (2.49)

The control vector in the minimization of J is now the state estimate at the beginning of

the assimilation window, x0 = x(t0). The first term of J (x0) describes the misfit between

x0 and a background estimate of the state at the initial time, xb
0 (here we use the term

background instead of forecast to reflect the fact that the update is not sequential in

time). The second term describes the misfit between a series of observation vectors zi

made over the assimilation window, and the state estimate at observation times, which is

given by xk =
∏k

j=1Mj (x0). In effect, 4DVAR solves for the initial condition that results
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in an integrated state which best fits the observations over the time window, subject to

xb
0 and the model. The background matrix B corresponds to Pf

k in the Kalman filter

equations, though we again talk about background error covariances, since B is not

explicitly evolved in time. The control vector could also be a transformed vector for

which the corresponding covariance matrix is simpler to formulate or easier to invert

[e.g. Lorenc 2003a].

Different methods of minimizing J(x0) are possible. Minimization requires computa-

tion of the gradient of J(x0) with respect to x0. The gradient is given by[
∂J

∂x0

]
= B−1

(
x0 − xb

0

)
−

N∑
i=0

M∗
0M

∗
1...M

∗
i H

T
i R−1

i [zi −H(xi)] . (2.50)

M∗ is the adjoint of the TLM, and is usually referred to simply as the adjoint model.

The adjoint model is defined as

〈Mka,b〉 = 〈a,M∗
kb〉 (2.51)

and relates the gradient of J with respect to the state at observation times to the gradient

with respect to the initial state [Errico, 1997]. The minimization of J is eventually cut off

at some threshold (see the comment regarding this in §2.3.3), and the resulting estimate

is then the analysis trajectory over the time window. Here we use the conjugate-gradient

method [Shewchuk, 1994] to perform the minimization.

Advantages of 4DVAR and Connection to the Kalman Filter

4DVAR differs from the EKF for two main reasons. First, 4DVAR integrates the full

model state at each iteration of the cost function minimization. This means that 4DVAR

preserves some nonlinearity in the estimation of flow-dependent covariances, and is thus

similar to the EnKF, even though the details of how the fitting is done are of course quite

different.

A second difference between 4DVAR and both Kalman filters is that the Kalman filter

analysis at each time uses only information from analyses at previous times, whereas a
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4DVAR analysis uses information from both past and future analyses. It is possible to

extend the standard Kalman filter to use both past and future observations, in the so-

called Kalman Smoother [e.g. Ménard and Daley, 1996], by combining a forward Kalman

filter with a backwards-running Kalman filter, then smoothing the combined analysis.

In the limit of linear dynamics and Gaussian errors, the final-time analysis produced by

4DVAR is equivalent to the final-time analysis of a Kalman Smoother which has been

running indefinitely [Ménard and Daley, 1996, Lorenc, 2003a, Fisher et al., 2005], and

Kalman Smoother experiments can be done in order to better understand the implicit

modeling of covariances in 4DVAR [e.g. Lorenc, 2003a, Fisher et al., 2005]. Since the

Kalman Smoother is even more expensive to implement and more complicated than the

EKF, in this study we will limit the analysis to the EKF and EnKF.

Limitations of 4DVAR

The formulation of (2.49) makes the model a strong constraint on the minimization,

meaning that the final minimization iterate has to be a solution admitted by the model.

As in the EKF and EnKF, model error makes the 4DVAR estimate suboptimal. If the

model is not perfect, the minimization of J will not really return the best estimate, i.e.

the maximum of the posterior distribution.

By using the adjoint of the TLM to relate the gradient of the cost function at ob-

servation times to the gradient at the initial time, 4DVAR also assumes linear evolution

of errors. This will be problematic if the assimilation period is longer than the time of

validity of the TLM. A solution is to divide the total assimilation time into windows over

which the TLM and its adjoint are valid approximations, and perform a separate 4DVAR

analysis over each window. This means that each minimization only uses a subset of the

total observation set. Consequently, there is typically an optimal assimilation window

length, where the positive effect of more observations balances out the negative effect of

model nonlinearity and chaotic dynamics. The optimal assimilation window depends on
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the timescales of motion being modeled. This is discussed further in chapters 4 and 5.

2.2.5 Comparison of the Algorithms, Effective Nonlinearity, and

Practical Considerations

All three of the algorithms presented above seek the most likely state of the conditional

pdf (2.20), assuming Gaussian and mutually uncorrelated background and observation

error distributions. In the EKF and EnKF, evolution of the covariance model is explicit,

whereas in 4DVAR, evolution of the covariance model is implicit. The assumption of

Gaussianity implies an assumption of linearity. For a linear model and Guassian errors,

the three methods are equivalent.

In the face of model nonlinearity and non-Gaussianity of error statistics, the results

produced by each method can be quite different. One simple reason for the difference

is that linearizations (of either the model or the observation operator) are made around

different intermediate states. Moreover, the cost function minimization in 4DVAR is

performed over finite time windows, and hence uses different sets of observations. The

EnKF differs fundamentally from the EKF and 4DVAR in that it uses a Monte Carlo

approach to approximate the evolution of covariances, thus trading linearization error

for ensemble sampling error. Lorenc [2003b] therefore argues that, in practice, the EnKF

represents the error distribution less precisely than the TLM-based 4DVAR and EKF

(because of sampling error), but over longer timescales (because of nonlinearity preserved

in the error evolution).

Errors in covariance estimates, even in the case of a perfect model, come from error

in the TLM approximation (EKF and 4DVAR), ensemble sampling error (EnKF), inad-

equate formulation of the initial covariance field (EKF and 4DVAR), inadequate formu-

lation of the initial ensemble (EnKF), and, in all three algorithms, observation sampling

error (meaning the difference between actual and assumed observation error variance,

over a finite number of observations), misspecification of observation error statistics, and
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nonlinearity of the observation operator. Hence, the nonlinearity of the estimated covari-

ance model is actually a complex result of model nonlinearity and all other assimilation

parameters which control the validity of TLM-approximations in the EKF and 4DVAR,

and Gaussianity of errors in all three algorithms.

Since validity of the TLM approximation and Gaussianity of the ensemble both de-

pend on the distance between truth and the background / forecast states, and the likeli-

hood of the EKF and EnKF to diverge or 4DVAR to converge to a local (non-absolute)

cost function minimum, all increase as the time between observations increases. It is pos-

sible to test the time of validity of the TLM, by comparing the difference between two

integrations of the nonlinear model (a reference state and a perturbed state) to the TLM

integration of the perturbation over the time window. If the relative error between the

nonlinearly-evolved perturbation and the tangent-linearly-evolved perturbation is small

over some interval, i.e. if for a perturbation α,

R =
||M (x + α)−M (x)−Mα||

||Mα||
� 1, (2.52)

then the TLM is valid over that interval. Figure 2.2 shows the ratio R in time for a range

of initial perturbations, averaged over 15 realizations of the single-timescale model [(2.9)-

(2.10)]. It can be seen that, for perturbations on the order of the initial perturbations

used in our experiments (δx ∼ 10−0.3) the relative error R ceases to be small by about 3

or 4 time units, and possibly much faster for errors larger than that.

Another source of assimilation error, which will not be addressed here, involves the

time interpolation of observations, which is done when all the observations made in a

certain time window are assumed to be valid at the analysis time [e.g. Houtekamer and

Mitchell, 2005].

Note that, even for nonlinear/non-Gaussian error evolution, the linearity and Gaus-

sianity assumptions made in each algorithm can be justified if the observational informa-

tion is dense enough (in time and space) that small-error approximations are valid.
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Figure 2.2: The TLM-validity ratio R (2.52) in time, for 6 different initial perturbations,

the base-10 logarithm of which is indicated in the figure. Each curve represents an average

over 15 random realizations of the single-timescale model [(2.9)-(2.10)].
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Following Verlaan and Heemink [2001], we use the phrase “nonlinearity of the as-

similation system” to encompass all the factors which control the validity of the linear-

ity/Gaussianity assumptions in each method: frequency and density of observations, the

minimization window (in 4DVAR), and of course the nonlinearity of the model. In chap-

ter 4, it will be shown that nonlinearity of the balance relationship (or curvature of the

balance manifold, as in fig. 1.3) further increases this effective nonlinearity.

The three assimilation methods also differ from one another in computational effi-

ciency. The computational cost of both Kalman filters increases rapidly with the dimen-

sion of the problem, in the EKF because each degree of freedom requires an iteration of

the TLM, and in the EnKF because more ensemble members are required to make the

problem well-posed. Since 4DVAR is iterative, its cost is related mostly to the complex-

ity of the cost function, which does not necessarily increase with state dimension. Thus,

the EKF and EnKF tend to be cheaper for low-order models, but become comparable

to 4DVAR for more complex models. Since the exL86 model has only 4 degrees of free-

dom, the EKF turns out to be the most efficient algorithm, with a 10-member EnKF

requiring about twice as much computational time. Due to the high nonlinearity of the

exL86 model, 4DVAR is roughly 4 times slower, and statistical results shown for 4DVAR

in the next three chapters will therefore typically be averages over smaller numbers of

experiments than EKF/EnKF experiments.

4DVAR has been implemented operationally at ECMWF, Météo France, the UK Met

Office, Japan, and at the Canadian Meteorological Centre [Rabier, 2005]. Use of the

EnKF is still largely in a discussion and testing phase [Houtekamer and Mitchell, 2005,

Lorenc, 2003b], though it was implemented operationally at the Canadian Meteorolog-

ical Centre in 2005 [Houtekamer and Mitchell, 2005]. The EnKF and 4DVAR are cur-

rently considered roughly similar in accuracy and ease of implementation [Lorenc 2003b,

Houtekamer and Mitchell 2005]. Some practical advantages and disadvantages of the

EnKF and 4DVAR are discussed in more detail by Lorenc [2003b].
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2.3 Experiments

2.3.1 Experimental Outline

For reasons stated above, we begin with so-called identical twin experiments, where the

forecast and truth are evolved with the same “perfect” model, and extend the analysis

to the consideration of model error in chapter 6. Twin experiments address only the

unrealizable case where the dynamics are completely understood, but this isolates the

effects of errors in the data assimilation system.

The procedure for each assimilation experiments is as follows. A “truth” is generated

by choosing initial values for the slow variables randomly from 0 ≤ φt ≤ 2π (a uniform

distribution) and wt ∼ N (0, 0.52) (a Gaussian distribution with variance 0.25). The full

state xt is then computed using (2.13), and the free gravity wave component gt which is

added to the truth is given by

x̃t = Ĩt cos θt (2.53)

z̃t = Ĩt sin θt, (2.54)

with a prescribed free gravity wave magnitude Ĩt, and θt chosen randomly from the unit

circle. In chapter 4, the truth will be generated with Ĩt = 0. In chapter 5, the truth will

be generated with Ĩt > 0, with the reference value being Ĩt = 1.5. In all experiments

shown in this study, the system [(2.5)-(2.8)] is integrated using a 4th-order Runge-Kutta

solver with timestep ∆t = 0.01. Unless noted otherwise, the reference values of the

timescale separation and coupling parameters will be ε = 10−1 and b = 0.71.

The initial forecast in each experiment is generated by perturbing the slow component

of the truth:

yf
0 = yt

0 + δy0, (2.55)

where δy0 represents random vectors chosen from normal distributions N (0, σ2
0I2), where

I2 represents the 2× 2 identity matrix. The full forecast state xf
0 is then computed using
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(2.13), with a free gravity wave with magnitude Ĩ f. In most cases (unless indicated

otherwise) we set Ĩ f = 0. In the EKF and EnKF, xf
0 is integrated forward to observation

times. In 4DVAR experiments, xf
0 is integrated to the end of the assimilation period to

form xb(t), the initial-guess background state.

2.3.2 Observations

Observations are generated at time intervals ∆tobs, as

zk = Hxt
k + νk, (2.56)

with observation error realizations chosen as random vectors from normal distributions,

νk ∼ N (0,R), where R = σ2
obsIm and σ2

obs = 0.25 is the prescribed observation error

variance. m represents the number of observed variables. All experiments are run with

the correct estimation of observation error statistics, that is, with R in the assimilation

equations equal to the true observation error covariance matrix. We drop the time

subscript on R, since the observation error covariances do not change in time in these

experiments.

Generally two types of observations are compared: observations of the entire slow

state

zFIL =

 φobs

wobs

 , (2.57)

and observations where the slow w is exchanged for the mixed variable w′ ≡ (w − bz) / (1 + b2):

zMIX =

 φobs

w′obs

 . (2.58)

The former can be thought of as analogous to perfectly-filtered observations which contain

no gravity wave signal, and will hence be abbreviated as FIL (though, of course, φ and

w simply represent slow normal modes, not filtered states). The latter will be referred to
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as “mixed-timescale” observations, and abbreviated as MIX. The variable φ is observed

in both cases to avoid a problem where the EnKF has a tendency to become multimodal,

with groups of ensemble members clustered around harmonics of φt, if the analysis is

unconstrained by observations of φ (see chapter 3).

In either observation case, the observation operator H is linear, and will hereafter

be written as H. Here we also drop the subscript, since the observation operator also

does not change in time in our experiments. Even though the Kalman filter and 4DVAR

equations can easily be genaralized to nonlinear observation operators, the assumptions

of Gaussian errors throughout imply linear observation operators.

2.3.3 Comments on the Implementation of Each Algorithm

Model Error in Kalman Filter Experiments

In all EKF experiments, we set Qk = 0. Likewise, in all EnKF experiments outside

of chapter 6 we set qi,k = 0. This makes the EKF and EnKF analogous to the strong

constraint 4DVAR assimilation outlined in §2.2.4. We note in passing that (2.40) assumes

that ea
k and qk are uncorrelated, which implies that the qk themselves are sequentially

uncorrelated. This can be an extreme assumption, since systematic model errors are

practically unavoidable and result not just from model shortcomings but also from errors

in the data assimilation system [Dee, 2005]. Simulation of these errors will be discussed

in more detail in chapter 6.

Time Windows in 4DVAR

In 4DVAR experiments, separate cost function minimizations are performed for each win-

dow, which will result in discontinuities in the analyses at the boundaries of neighboring

windows. It is possible to smooth over such discontinuities [Daley, 1991, chapter 13],

perhaps by adding continuity as an extra constraint in the minimization. In favour of

simplicity, however, this extra constraint was not investigated.
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It is desirable to use the analysis resulting from the minimization of one time window

as the initial background iterate for the subsequent minimization window, which would

increase continuity and improve the 4DVAR analysis as the assimilation progresses. How-

ever, in this study we do not reinitialize the forecast at each time window. Since the

background error covariance matrix B is based on the background error field at t = 0,

assimilation windows after ∆T1 will have misestimated background error statistics if the

forecasts are not reinitialized, and 4DVAR experiments will therefore have a deteriora-

tion of the covariance model in time. As we shall see in subsequent chapters, letting the

background error covariance model deteriorate in time tells us more about what hap-

pens to 4DVAR, in terms of balance and gravity waves, when the assimilation is made

increasingly flawed.

Cost Function Minimization in 4DVAR

To make 4DVAR computationally feasible for experiments over many realizations, the

conjugate-gradient minimization is forced to cut off when the RMS w-error over the

window drops below some threshold, or when 5 iterations have been performed. Unless

stated otherwise, we place the cutoff threshold at 〈e2
w〉

1/2
∆T = 0.2, where 〈·〉∆T signifies the

average over the time window. In individual 4DVAR examples, the conjugate-gradient

minimization is run out to as many iterations as are needed to illustrate the given point.
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2.3.4 Measures of Assimilation Accuracy

RMS errors by components

The accuracy of each experiment is measured by the RMS true error (truth minus anal-

ysis), divided into the three components:

es,rms = 〈(st − sa)T(st − sa)〉1/2
T (2.59)

eI,rms = 〈(It − Ia)2〉1/2
T (2.60)

eθ,rms = 〈(θt − θa)2〉1/2
T . (2.61)

The brackets 〈·〉T indicate the average over all timesteps of an assimilation period of T

time units. Unless noted otherwise, we set T = 30.

es,rms represents RMS error in the slow mode, which is defined as s = (u, v, w)T.

u =
√

C sin φ and v =
√

C cos φ are variables from the original Lorenz [1986] model

formulation which are of the same scale as w (A). eI,rms is RMS error in the magnitude

of the full fast mode, including both the slaved and free gravity wave components. eθ,rms

is RMS error in the phase of the gravity wave, and will become relevant in chapter 5,

where unbalanced true states are considered.

Numerical results shown, excepting single examples, are averages of the RMS errors

[(2.59)-(2.61)] over N assimilation runs, denoted by the subscripted brackets 〈·〉N . For

EKF and EnKF experiments, true values of the error measures given above will also

be compared to the following approximate quantities which are estimated within the

assimilation cycle:

σ2
s = Cσ2

φ + σ2
w (2.62)

σ2
I = σ2

x + σ2
z . (2.63)

Note that σ2
s and σ2

I to not correspond exactly to the respective error variances, 〈(st − sa)
2〉

and 〈(It − I)
2〉, which are actually complex nonlinear quantities. It was realized after

the experiments were completed that a more accurate comparison between estimated and
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actual errors would be to compare, say, 〈e2
x〉 to σ2

x, or 〈e2
w〉 to σ2

w. We found, however, that

the differences between the quantities and [(2.62)-(2.63)] and [(2.59)-(2.60)] were qualita-

tively similar to the differences between individual estimated and true errors, such that

the results shown in the figures (specifically, figs. 4.3, 4.4, 4.10, 4.11, 5.1, 5.2, 5.8, and

5.9) do not change significantly.



Chapter 3

4D Data Assimilation for a Single

Nonlinear Timescale

Recovery of the full state from partial observations is the crux of the overall data assimi-

lation problem, and will form the basis of the more specific problems of data assimilation

for balanced and unbalanced states in subsequent chapters. In the previous chapter, we

saw that the solution to this problem lies in the development of an accurate covariance

model, which is developed sequentially in the Kalman filter and implicitly in 4DVAR. All

three of the methods presented in the previous chapter assume Gaussianity and therefore

linearity, and can hence return poor estimates if nonlinearity of the data assimilation

system (which is a function of observational coverage, background/forecast error, model

nonlinearity, and, to be neglected until chapter 6, systematic model error) is too high.

To separate the issues of balance and gravity waves from that of dynamical nonlin-

earity and chaos, we first examine the three 4D algorithms and the 3D method OI, for

the single-timescale [(2.9)-(2.10)] system. With only two variables, this system presents a

simple environment in which to establish how each method responds as nonlinearity in the

assimilation system increases, and how the three methods differ in various assimilation

regimes.

51
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3.1 Examples

Using the notation established in chapter 2, the forecast/background error covariance

matrix for the single-timescale model can be written as

Pf,B =

 σ2
φ cφw

cφw σ2
w

 . (3.1)

If only one variable is observed, recovery of the full state (φ, w)T depends upon how well

each scheme can capture the covariance cφw. Three example assimilation experiments in

figure 3.1 illustrate how this is done in the EKF, EnKF, and 4DVAR, for an experiment

where observations of w are assimilated into the single-timescale system every ∆tobs = 6

time units. This means that observations are made roughly once during a typical cycle

of the slow mode, and beyond the time of validity of the TLM (fig. 2.2). The top two

rows of plots compare the true state yt = (φ,w)t to the analysis state ya = (φ,w)a, for

the EKF [column (A)], EnKF [column (B)], and 4DVAR [column (C)]. Analyses of φ are

shown in the first row of plots and analyses of w in the second row of plots. A 10-member

ensemble is used for the EnKF; the ensemble is shown for each variable along with the

ensemble-mean analysis. For the EKF and 4DVAR examples, the initial forecast error

covariance matrix and background error covariance matrix, respectively, are estimated

by a diagonal matrix,

Pf
0 = B = σ2

0I2, (3.2)

thus assuming no initial correlation between φ and w. In 4DVAR, the minimization

is performed over windows of ∆T = 10 time units. Figure 3.1 depicts a case where the

assimilation is successful for all three schemes, though the final analysis is different across

the three cases.

For the EKF and EnKF, good analysis increments in the unobserved variable φ are

made when growth in cφw reflects the rate at which the forecast is diverging from the
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Figure 3.1: Three assimilation experiments, with the same true state and comparing the

three basic algorithms: (A) EKF, (B) a 10-member EnKF, and (C) 4DVAR. Each column

shows the truth (solid) and analysis (gray) for φ (top) and w (center). Plots of w also

show the observations (circles). For the EnKF (B), the ensemble is shown in gray and the

mean by a black dashed line. The bottommost plots in columns (A) and (B) also shows

the estimated covariance between the two model variables, cφw. The bottom plot for

4DVAR (C) shows the reduction of slow mode error (2.59) as a function of minimization

iteration, for the three time windows (black solid: ∆T1, black dashed: ∆T2, gray solid:

∆T3).
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true state, as well as the correlation between errors in φ and w. The bottommost plots in

columns (A) and (B) thus also show the estimated forecast error covariance cφw. In col-

umn (A) it can be seen that the EKF analysis of w (which is observed) is pushed towards

the truth at observation times, and the analysis of φ is only offset by 2π. Preceding the

first observation at t = 6, cφw indeed grows as the forecast and true state diverge, then

decreases sharply when an observation is made. Column (B) shows the analyses of φ and

w if the EnKF is instead used to assimilate the same set of observations. The analyses of

both variables are similar in quality, and growth in cφw reflects the commensurate spread

in the ensemble. Note, however, that the increasing non-Gaussinaity of the ensemble in

time indicates that the assimilation system is becoming increasingly nonlinear as time

progresses, with the forecast of the mean analysis becoming quite different from the mean

forecast.

For 4DVAR, accurate recovery of φ depends on how well the time series of observations

and the adjoint model constrain the cost function minimization. Column (C) shows the

4DVAR analysis for the same state and observations. The bottommost plot in this column

shows the RMS slow mode error (2.59) as a function of the minimization iteration, for

each of the three time windows. The analysis is very close to the truth for the first time

window (∆T1 = [0, 10]), and for this window the cost function minimum is found within

the first iteration. For the other two time windows (where the initial background state is

a very poor estimate of the truth, relative to specified background error covariances), the

minimization settles into states which are farther from the truth, but still comparable to

the corresponding Kalman filter estimates.

Figure 3.1 shows an important property, which will be illustrated in the context of the

full model in subsequent chapters: even though a perfect model and the same random

number realizations were used in each case, the three algorithms give three rather different

analyses. As the assimilation problem is made more difficult, the assumptions made

within each algorithm, and which cause the differences in the analyses, can be made to
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break down. Experiments in the rest of this chapter will test this in a statistical sense

for each method.

3.2 Divergence of the Kalman Filter

In the Kalman filter, the underestimation of analysis errors relative to true errors, and

the consequent rejection of future observations [e.g. column (A) of figure 3.1], is the

phenomenon referred to as filter divergence. Figure 3.1 shows how filter divergence can

result specifically from the four-dimensionalization of the assimilation: because of error in

the estimated covariance evolution, covariances are overreduced in the covariance analysis

steps (2.36) and (2.48), and subsequent estimated error growth is too small.

Hamill et al. [2001] give a nice discussion of how filter divergence happens in the

EnKF, and show that either underestimation of forecast error variances or overestimation

of correlations will lead to underestimation of analysis error variances. Overestimation

of variances means that more weight is given to observations, which results in a greater

adjustment of the covariance matrix towards the correct form in (2.36). If error variances

are underestimated, observations are not given enough weight, resulting in analysis incre-

ments that are too weak in all directions, as well as insufficient adjustment of the forecast

error covariances. Subsequent forecast error variances will then only grow to the size of

the real innovation if the forecast happens to pass through a region of large error growth

[Miller et al., 1994]. If forecast error variances are estimated correctly but correlations

are overestimated, unobserved components of the state vector will be overadjusted during

the analysis step, resulting in a possible breakdown of the TLM approximation.

Why does the Kalman filter tend to underestimate errors, instead of overestimating

them? The reason for this can be understood most simply by considering the expression

for the analysis error covariance matrix (2.36). Pa
k estimated in this way gives the mini-

mum analysis error variances possible, given the forecast and observation error variances.
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It is only correct, however, if Kk is truly the optimal gain. If Kk is not the optimal gain,

the posterior error variance is not really minimized, and hence is larger than what is

estimated by Pa
k [cf. Daley 1991, chapter 4].

A quantitative comparison of the EKF and EnKF is shown in figure 3.2, which shows

average true analysis errors computed immediately following the insertion of each ob-

servation, for the EKF (left panel) and the EnKF (right panel). Average errors are

computed for ∆tobs = 1, 2, 3, 4, 5, 6 and 7, and over 600 experiments for each case, and

the observed variable in all experiments is w. For the EnKF, errors are shown for ensem-

bles of 4 members (the size of the state vector), and 10 members (2.5 times the size of the

state vector). Comparison of the two panels reveals that the performance of the EnKF

is overall similar to the EKF if the forecast ensemble consists of 4 forecasts, though error

is lower in the EKF for ∆tobs = 1 and 2. Here the TLM approximation is valid, with

EKF errors decreasing in time for ∆tobs = 1. Average analysis error in the EnKF is re-

duced when the ensemble size is increased to 10 forecasts, with the greatest reduction for

more frequent observations, where error variances are small and estimated correlations

therefore more critical.

Note that analysis errors grow in time for all cases shown, except for ∆tobs = 1 for

the EKF, and ∆tobs = 1 and 2 for the 10-member EnKF, indicating that divergence

of the Kalman filters will eventually happen for this model for all but the most ideal

cases. Since there is no model error in these experiments and initial error statistics are

estimated correctly, this divergence is entirely due to nonlinearity and sampling error.

Nonlinearity of the assimilation system does not just depend on the observation fre-

quency, but also the configuration of observation variables. This is examined in figures

3.3 for the EKF, and figures 3.4-3.5 for the EnKF. In each figure, three observation sce-

narios are compared: observations of φ only, observations of w only, and observations of

both φ and w, each panel comparing rms true (2.59) and estimated errors (2.62) across

a range of observation intervals. The errors are also compared to average analysis errors
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Figure 3.2: Comparison of the average state error (over 600 runs) immediately following

the analysis steps, comparing the EKF (left) and EnKF (right), for the single-timescale

model. For the EnKF, we also compare ensemble sizes N = 4 (black) and N = 10 (gray).

Observation frequencies shown are: ∆tobs = 1 (x’s), 2 (circles), 3 (+’s), 4 (triangles), 5

(inverted triangles), 6 (squares), and 7 (dots).
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from similar experiments performed using OI, with the diagonal covariance matrix (3.2).

Let us define no-skill levels for each error component as the average difference that we

would find between two randomly chosen states with no data assimilation. For the initial

conditions chosen in these experiments, w oscillates chaotically between about ±1.3 and

has a climatological variance of about σ2
w ' 0.45. u and v oscillate chaotically between

±
√

Cmax and have climatological variances of about σ2
u = σ2

v = 0.6. Therefore the RMS

no-skill error level for the nonlinear slow mode (the average error that we would have for

no observations) is roughly

es,NS =
(
σ2

u + σ2
v + σ2

w

)1/2 ' 1.3. (3.3)

For observations of φ (a), EKF true errors reach the no-skill level for ∆tobs ' 4, and

exceed no-skill errors for observation intervals longer than that. The EKF also underesti-

mates analysis errors for ∆tobs & 2, and exceeds corresponding OI errors. This indicates

that the validity of the TLM-evolution of forecast errors in the EKF breaks down around

∆tobs = 2 in this observation case, leading to overreduction of error variances. What

actually happens in this observation case is this: as error in the estimated covariance

cφw increases, it becomes more likely for the observation of φ to push wa very far from

the truth, sometimes into orbits where w oscillates around a value that is outside of

the initialized range (which is why average errors exceed the no-skill level), even if φa is

pushed closer to the truth. The entire forecast state then deviates much more from the

truth between observations, and the linearization of the TLM around this forecast state

becomes very inaccurate.

If instead only w is observed (b), the average true errors change significantly, re-

maining lower than corresponding OI errors for all ∆tobs, and is actually less than the

predicted errors for ∆tobs > 4. It is to be expected that average slow error should increase

in this observation case, since observations of w contain less information about the slow

mode than observations of φ. The reason why errors nevertheless decrease in the EKF

is because φ is a phase, and slow error saturates: if w is well-observed and has negligible
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Figure 3.3: Comparison of average true errors (thick, black) compared to average esti-

mated errors (thick, gray) for the EKF as a function of the observation interval. Three

observation configurations are compared: (a) observing only φ, (b) observing only w, and

(c) observing both variables. Each case is also compared to corresponding average true

errors for a set of OI experiments (thin, black).

error while φ is not observed, slow mode error saturates around es,rms ' 1.3.

Finally, if the full state is observed (c), the EKF improves overall, but actually be-

comes considerably worse relative OI for ∆tobs & 2. In this case, observational informa-

tion content is high, and the recovery of either variable depends mostly on the variances

σ2
w and σ2

φ. Consequently, the neglect of covariance terms in the OI covariance matrix

only makes a small difference and because variances are small, the difference between the

EKF and OI then becomes more pronounced. This indicates that the relative impact of

noise in estimated correlations is greater if variances are smaller, as argued by Hamill

et al. [2001]. Thus, linearization around the background state remains a problem even

when the information content is high.

Figure 3.4 shows the same set of experiments as figure 3.3, but for the EnKF with a

(large) 15-member ensemble. In figure 3.5, EnKF analysis errors are shown as a function

of ensemble size, while keeping a constant ∆tobs = 4. For observations of φ [fig. 3.4 (a)],

the EnKF tends to overestimate errors for ∆tobs & 2, in contrast to the corresponding
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Figure 3.4: As in figure 3.3, but for the EnKF with 15 ensemble members. For compari-

son, average errors are again compared to average OI errors (thin, black).
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Figure 3.5: Comparison of true average EnKF analysis errors (thick, black) and estimated

average analysis errors (thick, gray) as a function of ensemble size. The observation

configurations being compared are as in previous figures. The thin line in each plot

indicates the corresponding average OI errors.
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EKF case [fig. 3.3 (a)]. Here, ensemble averaging tends to keep the mean analysis of w

closer to the truth than it is in the EKF analysis, and even when ensemble members are

harshly forced to a very far orbit, comparison to the rest of the ensemble in the analysis

step [(2.44)-(2.47)] usually brings a far outlier back at the next observation time. Analysis

increments are consequently more stable and the EnKF yields lower analysis errors than

OI, even for a 3-member ensemble [fig. 3.5 (a)].

For observations of w (b), true errors now increase relative to OI. The reason again

has to do with the fact that the unobserved variable is a phase. Since observations of

w constrain only cos φ, it can happen that some ensemble members take on harmonics

of the true value of φ, but remain a few π-multiples removed from φt. In these cases,

cos φa may be quite close to cos φt — in which case error in w will grow more slowly

than error in φ. Since wf may be very close to observations, analysis increments will

then be small, and the analysis increments for φ will underestimate actual error in φ.

The forecast ensemble can then become multimodal, with groups of ensemble members

clustered around harmonics of the true φ value, and unconstrained by observations.

Consequently, ensemble-estimated statistics become less accurate, leading to average slow

mode error which is actually similar to that in the EKF. Though φ in this model physically

corresponds to potential vorticity, this result has implications for other phases that might

be computed in an assimilation, such as wind direction; if the phase variable is not

observed, the ensemble can easily become multimodal. Comparison to figure 3.5 (b) shows

that errors in this case cannot be greatly improved by increasing ensemble size. Finally,

for observations of both variables (c), the EnKF is consistently —but only slightly—

better than OI, and remains so even for very large ensembles [fig. 3.5 (c)].

Thus, the validity of the TLM approximation, or the representativeness of the ensem-

ble, depends not only on how much of the state is observed, but also on the nature of the

observed variables. The relative value of different observation types also differs for each

particular assimilation method. If the unobserved component is not terribly stable (as
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in the case of φ observations), the EKF can become pathological if ∆tobs is longer than

the period of validity of the TLM approximation. On the other hand, if the unobserved

component of the state is a phase, the EnKF can become multimodal. If very much of

the state is observed (in this case, both variables), then a static covariance model may

be sufficient, or even preferable, to a 4D covariance model.

3.3 Comparison of the Kalman Filters to 4DVAR

The previous section showed that TLM-derived covariances of the EKF are unreliable at

large observation intervals, but still more useful than static covariances as long as insta-

bility (in this case, the state being forced into a far-away orbit in w) can be controlled.

4DVAR can be viewed as one way to control this instability, because the state estimate

is updated using the full model dynamics at each minimization iteration, and because

observational information is carried both forward and backward in time.

Figure 3.6 compares performances of the EKF, 15-member EnKF, OI, and 4DVAR

as a function of observation interval, for observations of φ only (a), w only (b), and both

variables (c). In these experiments the minimization iterations cut off at 5 iterations, with

no cutoff threshold applied. The most striking thing about this figure is that 4DVAR has

much lower assimilation errors than both Kalman filters, for all three observation cases,

at large ∆tobs. Thus the two added components of 4DVAR —that information is carried

in both directions in time and that the model is integrated at each minimization iterate—

lend stability in this nonlinear model experiment. The stability of 4DVAR relative to

the EKF, for increasing observation intervals, has also been noted in a low-order model

context by Fisher et al. [2005]. The accuracy of 4DVAR relative to the EnKF when only

w is observed (b) suggests that 4DVAR also overcomes the non-Gaussianity problems

found in the EnKF at large ∆tobs.

On the other hand, 4DVAR has larger assimilation errors for ∆tobs . 1, especially in
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Figure 3.6: Average true errors (2.59) as a function of observation interval, comparing the

EKF (red), 15-member EnKF (green), 4DVAR (blue) and OI (black). Three observation

configurations are again compared: (a) observing φ only, (b) observing w only, and (c)

observing both variables.

the two cases where only the partial state is observed [(a) and (b)]. This is a consequence

of the minimization cutting off at the maximum 5 iterations. For ∆tobs . 1, the cost

function is more constrained by observations, and the minimization requires more itera-

tions to reach the minimum. Thus, to be computationally feasible in these cases, 4DVAR

is unable to perform as well as the Kalman filters if observations are very frequent.

3.4 Summary

The single-timescale experiments in this chapter highlighted the relative strengths and

weaknesses for each algorithm, and their differences when nonlinearity in the assimilation

system is increased.

Divergence and instability of the EKF (fig. 3.3) at observation intervals which exceed

the timescales over which the TLM is a valid approximation, was also pointed out by

Miller et al. [1994] and Nerger et al. [2005], and will be revisited in more detail in

subsequent chapters. Note that the TLM test (2.52) shows that the validity time for the

TLM is around 5 or 6 time units. Validity time for the TLM is much less in the EKF
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because the EKF also adjusts covariances in (2.34), which exacerbates filter divergence.

In the subsequent two chapters, the TLM will be used to approximate not just nonlinear

dynamics, but also the nonlinear balance relationship, and we shall see that this presents

an additional source of filter instability.

The EnKF suffers from sampling error, but was found to be stable relative to OI

even for small ensemble sizes. However, the ensemble can easily become non-Gaussian

if, for example, the phase variable φ is not observed. Similar examples of ensemble

non-Gaussianity at large ∆tobs are also shown by Anderson and Anderson [1999] in the

context of the Lorenz [1963] 3-component model. In that study, a possible remedy for the

error caused by non-Gaussianity is proposed, in the form of a so-called kernel or particle

filter. This method is visited briefly in appendix B. If another timescale is introduced

into the model, the assumption of Gaussianity must hold for both timescales. Moreover,

the nonlinear balance relationship will have to be captured by the finite ensemble.

4DVAR in these experiments improved upon both problems: it is stable at large ∆tobs,

and does not require an ensemble. On the other hand, its accuracy when observations

are frequent is limited by the minimization iteration cutoff, which is in place to make

the algorithm computationally feasible; we shall see that this property also affects the

assimilation of balanced and unbalanced states.



Chapter 4

Balance and Excitation of Spurious

Gravity Waves

4.1 Balance in the Assimilation Problem

In this chapter the classic problem of spurious excitation of gravity waves is cast into the

context of 4D assimilation. The question we ask is how well the three basic 4D methods,

by naturally evolving error covariances, are able to recover a balanced true state, relative

to 3D assimilation and to each other. It was shown in chapters 2 and 3 that the EKF,

EnKF, and 4DVAR differ in practice, for reasons which are all linked to violation of

assumptions of linearity and Gaussianity. It was found that these assumptions are upheld

best when the observational information content is high, but that this can also create a

regime where 3D assimilation is sufficient. Weakening linearity assumptions, such as by

increasing the time between observations, can significantly weaken the advantages of 4D

data assimilation.

Now consider the presence of two timescales of motion, which are connected by a non-

linear balance relationship. Early studies of 4D assimilation [e.g. Cohn and Parrish, 1999]

assumed that balance would be a natural side-effect of flow-dependent covariance models.

65
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However, later studies show that this is not always the case: while 4D algorithms alleviate

the initialization problem to some extent, they nonetheless develop unphysical correla-

tions which can cause the excitation of spurious unbalanced motion [e.g. Polavarapu

et al., 2000, Houtekamer and Mitchell, 2005, Lea et al., 2006]. It has also been recog-

nized that assumptions of linearity and Gaussianity may not be justified when motions

of different timescales are possible [Lorenc, 2003a].

For the EnKF, for example, Houtekamer and Mitchell [2005] report reasonably bal-

anced analyses in experiments with an operational weather prediction model, but also

find that the final analysis could be improved further by explicitly balancing it. In the

context of 4DVAR, Courtier and Talagrand [1990] used a shallow water model to show

that, since the algorithm uses all degrees of freedom of the problem to minimize the cost

function, it generates as many gravity waves as needed in order to best fit the obser-

vations, unless the cost function minimization is somehow constrained. Though it has

already been shown that balance is not perfectly preserved in a 4D analysis, it remains

to be clarified how well the basic types of 4D assimilation perform relative to one another

(all other factors being equal), and what it takes to retain balance. Since it is the non-

linearity of the assimilation system that makes the three methods return different results

in practice, the ability of each method to capture a nonlinear balance is also likely to be

different.

In this chapter, the exL86 model is used to illustrate and clarify how each of the

three methods capture, or don’t capture, dynamical balance. For the Kalman filters, the

question is whether, and under what conditions, forecast error covariances are evolved

that reflect the dynamical balance in the true state, and to what extent this implies a

balanced state. For 4DVAR, the question is how the adjoint sensitivities computed in

(2.50) constrain the cost function minimization to exclude gravity waves.
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Experiments with a Balanced Truth

Numerical experiments in this section are performed as outlined in §2.3, with the true

state in each experiment generated with zero free gravity wave (Ĩt = 0), and the forecast,

unless noted otherwise, also initialized with Ĩ f = 0. Since the truth is balanced, the

two observation types (2.58) and (2.57) represent a change of variable, but both are

observations of the slow mode.

To measure the degree of imbalance induced by the assimilation system, the unbal-

anced component of the analysis fast mode, Ĩa, is shown in individual example cases. For

experiments which sweep over a given assimilation parameter, we use the total error in

the fast mode (2.60) as a measure of imbalance, for continuity with the experiments of

chapter 5. For a balanced true state, the fast-mode error is

eI,rms = 〈(It − Ia)2〉1/2
T = 〈(It

slav − Ĩa − Ia
slav)

2〉1/2
T , (4.1)

where It,a
slav represents the slaved components of the fast mode for the truth and anal-

ysis states. If the unbalanced component of the fast analysis is large compared to the

slaved component, eI becomes a measure of the spurious imbalance induced by the data

assimilation.

Balance in the exL86 Covariance Matrix

In the exL86 model, the forecast error covariance matrix can be written as

P =



σ2
φ cφw cφx cφz

cφw σ2
w cwx cwz

cφx cwx σ2
x cxz

cφz cwz cxz σ2
z


. (4.2)

Covariances involving x and z can be written in terms of two components: a balanced

component resulting from the slaving relationships [(2.11) - (2.12)], and a free gravity
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wave component. Writing fast-variable errors as

ex = eUx + ex̃ (4.3)

ez = eUz + ez̃, (4.4)

and assuming that the balanced and unbalanced components of the errors are uncorre-

lated, the fast-variable variances become

σ2
x = σ2

Ux
+ σ2

x̃ = σ2
Ux

+
σ2

Ĩ

2
(4.5)

σ2
z = σ2

Uz
+ σ2

z̃ = σ2
Uz

+
σ2

Ĩ

2
. (4.6)

where we have defined the error variance in the magnitude of the free gravity wave as

σ2
Ĩ

= σ2
x̃ + σ2

z̃ , with σ2
x̃ = σ2

z̃ = σ2
Ĩ
/2.

Since the slow mode and the free gravity wave are presumed independent, covariances

between fast and slow variables are functions of the slaving relationship only, for example,

cwz = 〈eweUz〉+ 〈ewez̃〉

= 〈eweUz〉 , (4.7)

and likewise for cφx, cφz, and cwx. Since x̃ and z̃ define a linear wave, cx̃z̃ = 〈ex̃ez̃〉 = 0,

and cxz = 〈eUxeUz〉.

Covariance components involving the slaving relations can be estimated by linearizing

the balance transformation (2.14) about the slow component of the model state. Defining

ef
y = yf−yt as the error vector in terms of the slow variables, the forecast (or background)

error for the full model state can be approximated with a Taylor series expansion of (2.14):

ef
x = xf − xt = Lef

y + nonlinear terms (4.8)

where L = ∂f (y)/∂y |yf is the first derivative of the balance relationship, evaluated

about the slow manifold state at some point in time.

Let us define a balanced error covariance matrix as one where the errors in the fast

variables result from the slaving to the slow variables. Balanced error covariances are
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then found by multiplying (4.8) by its transpose, and computing the expectation value.

Truncating (4.8) at the linear term, the forecast error covariance matrix in terms of the

full model state can then be approximated as

Bf
bal,P

f
bal = 〈ef

x(e
f
x)

T〉

≈ 〈(Lef
y)(Lef

y)T〉 = L〈ef
y(ef

y)T〉LT = LPf
yL

T, (4.9)

where

By,P
f
y = 〈ef

y(ef
y)T〉 (4.10)

is the forecast error covariance matrix in terms of the slow variables. Since (4.9) is

a tangent-linear operation, a covariance matrix that is formulated in this way can be

thought of as tangent to the slow manifold. This approximation will hereafter be referred

to as tangent-linear balance, or TLB, in analogy to the TLM (2.40). As in the TLM, this

approximation neglects higher-order statistical moments in the forecast error distribution.

The balanced covariance matrix implies that the analysis is performed only on the

balanced component of the flow. To see this, consider Kalman filter analysis increments

for the slow variable w and the fast variable z, for two types of observations: (slow) w,

and (mixed-timescale) w′.

For an observation of w, the analysis increments are

δwa = wa − wf = kwwδwobs (4.11)

δza = za − zf = kzwδwobs, (4.12)

where δwobs = wobs − wf is the observation increment. The weights

kww =
σ2

w

σ2
w + σ2

obs

(4.13)

kzw =
cwz

σ2
w + σ2

obs

, (4.14)

are entries in the gain matrix K, computed from (2.32). The observation of w contains

information about the slaved fast mode as well as the slow mode. Therefore the fraction
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of the observation increment added to z in (4.12) is proportional to the balanced term

cwz. If cwz truly captures the covariance between w and z which results from the slaving

relationship, zf is adjusted along a line that is tangent to the slow manifold. However,

this also means that errors in estimated fast-slow covariance terms such as cwz can cause

a misadjustment of fast variables, resulting in the spurious excitation of a free gravity

wave.

The problem changes slightly if the observed variable is the mixed-timescale quantity,

w′. In this case the analysis increments become

δwa = kww′δw′obs
(4.15)

δza = kzw′δw′obs
, (4.16)

with weights

kww′ =
cww′

σ2
w′ + σ2

obs

(4.17)

kzw′ =
czw′

σ2
w′ + σ2

obs

, (4.18)

where

cww′ =
1

1 + b2
〈(ew − bez) ew〉 =

1

1 + b2

(
σ2

w − bcwz

)
(4.19)

czw′ =
1

1 + b2
〈(ew − bez) ez〉 =

1

1 + b2

(
cwz − bσ2

z

)
. (4.20)

Now, fast-slow covariances such as cwz are needed not just to update the fast variables

tangent to the slow manifold, but also to correctly recover information about the slow

mode from observations of the mixed-timescale variable. These terms, if estimated cor-

rectly, will be a small correction to the slow-mode analysis. If fast-slow covariances are

overestimated, however, they could seriously harm the slow-mode analysis. The accu-

racy of fast-variable analysis increments such as (4.16) now also depends on estimated

fast-variable error variances (σ2
z in the above equations, but also σ2

x), which have both

slaved and free gravity wave components.
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Figure 4.1: (a) Trajectories of φ (gray) and x (black) for a balanced example model state,

where x has been multiplied by 10 in order to make its variability more visible. (b) The

term η which governs the evolution of the correlation between φ and x for the same state

(thick, black) compared to the value which is computed by a 15-member EnKF (thick

gray), and an EKF (thin black).
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The balanced covariance formulation (4.9) is often referred to as a strong balance

constraint [Cohn and Parrish 1999, Lorenc 2003a]. However, since the covariances are

evolved and updated, this constraint only holds insofar as both the balance relationship

and the model dynamics can be considered as linear. The nature of balanced covariance

components, and how these are explicitly evolved in the EKF and EnKF, is illustrated

in Figure 4.1. Consider the correlation between errors in φ and x, ρφx = cφx/σφσx. To

examine the correlation independently of the errors themselves, we can approximate the

covariance term cφx from the slaving relation (2.11) as

cφx = 〈eφ
∂Ux

∂φ
eφ〉 (4.21)

= −εCb cos 2φ〈e2
φ〉 = −εCb cos 2φ(σ2

φ). (4.22)

The correlation then becomes

ρφx = −εCb cos 2φ
σφ

σx

≡ ηLIN (φ(t))
σφ

σx

, (4.23)

where

ηLIN(t) = −εCb cos 2φ. (4.24)

We can evaluate the correlations estimated by each filter by comparing the quantity

η = ρφx (σx/σφ) for each filter to the linearized estimate (4.24) based on the true state.

This is done for an example case in figure 4.1. Panel (a) shows φ(t) and x(t) for a

reference state with no free gravity wave (and with ε = 10−1 and b = 0.71), while (b)

shows ηLIN for this state, compared to the values of η which are computed by a 15-member

EnKF, and an EKF, both run with ∆tobs = 2. Comparison of (a) and (b) shows that the

correlation is strongly state-dependent, meaning that a dynamic covariance model is more

useful than a static one. It can be seen, however, that while the EKF and EnKF both

capture the overall variability of η, they can often produce large estimation errors. The

ramifications of this estimation error on assimilation in different regimes are investigated

numerically in the next section.
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Extended Kalman Filter Analyses for Three Cases, ∆ tobs = 2
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Figure 4.2: Three sample assimilation experiments with the EKF: (A) for the single-

timescale model [(2.9)-(2.10)] with observations of φ and w, (B) for the full model [(2.1)-

(2.3)] with observations of φ and w, and (C) for the full model with observations of φ and

w′. The top row of plots shows φ for each case, and the bottom row, w′ (or w for (A)).

Each panel compares the true state (black) to the EKF analysis (gray) and observations

(circles). In each experiment, the observation interval is ∆tobs = 2, and initial conditions

and random error realizations are the same.

4.2 Balance in the Extended Kalman Filter

It was shown in chapter 2 that the EKF tends to misestimate correlations, and conse-

quently overreduce variances, resulting in the rejection of observations. In this section,

the ability of the EKF to preserve balance in the analysis of a balanced true state will

be examined analytically and numerically.
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Figure 4.3: Four example EKF analyses of w′ for: (a) a balanced initial forecast with

observations taken every ∆tobs = 1 time units, (b) a balanced initial forecast with ∆tobs =

6, (c) an unbalanced initial forecast with ∆tobs = 1, and (d) an unbalanced initial forecast

with ∆tobs = 6. The final-time values of the analysis state’s free gravity wave (“imb” in

the figure) are also shown. The bottom third of each panel shows the predicted fast-mode

error variance (σ2
I , gray) compared to the true square fast-mode error (e2

I , black) in time.
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4.2.1 Examples: Balance in the EKF

Figure 4.2 shows analyses of φ and w′ for three sample EKF assimilation experiments,

where the truth is a balanced state. All three experiments start from the same initial

conditions and sample the same set of random numbers. In (A), the single-timescale

model [(2.9)-(2.10)] is used (in which case w′ = w). In (B), the full model is used, and

completely slow observations [FIL, (2.57)] are assimilated. In (C), the full model is used,

but mixed-timescale observations [MIX, (2.58)] are assimilated. The forecasts in (B) and

(C) are balanced at the initial time using (2.11)-(2.12), thus reflecting a case where there

is prior knowledge of the absence of gravity waves. In all four cases shown, the initial

forecast error covariance matrix is estimated by a diagonal matrix,

Pf
0 = σ2

0I4, (4.25)

with the expectation that the series of analysis steps will adjust off-diagonal terms to

more physical values as the assimilation progresses (the criticality of this assumption, in

terms of balance, is explored more thoroughly below).

The slow-mode analyses (that is, of φ and the slow component of w′) are more or less

similar in each column, and largely indistinguishable from the truth. This is relatively

unsurprising, since figure 3.3 showed that ∆tobs = 2 is an adequate observation interval

for observations of both φ and w (at least in the single-timescale model). However, the

experiments in (B) and (C) differ from the single-timescale case in that the assimilation

cycle also induces a spurious gravity wave in w′ in both experiments, indicating projec-

tion of the analysis error onto the fast mode. This spurious projection happens even if

observations are entirely slow (B). Thus we can say that the EKF analysis, even within

the linear regime, does not necessarily return a balanced analysis.

Figure 4.3 shows another set of EKF analyses, now illustrating the effect of observation

frequency. All four panels share the same balanced true state and initial perturbation,

with observations now of only the mixed-timescale variable w′. In (a) and (b), the
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forecasts are balanced at the initial time, (Ĩ f
0 = 0), while in (c) and (d), the forecasts

have an initial imbalance Ĩ f
0 = 1.0. Observations are made frequently (∆tobs = 1) in

(a) and (c), and infrequently (∆tobs = 6) in (b) and (d). The predicted fast-mode error

variance σ2
I is also shown in the lower third of each panel, compared to the true square

error e2
I in the fast mode. The magnitude of the analysis free gravity wave at the end of

the assimilation period is also given in each panel (“imb”).

It can be seen that very frequent observations tend to retain balance in a balanced

initial forecast (a), and can also reduce imbalance in an unbalanced initial forecast (c),

though residual imbalance in both cases exceeds the magnitude of the slaved fast mode in

the true state [which is O(ε)] Nonetheless, balance is partially restored in (c), even though

no balance information is contained in the initial forecast error covariance matrix. If the

time between observations is extended beyond the linear regime (∆tobs = 6), balance

in the initially-balanced forecast deteriorates after two observations (b), and imbalance

is barely reduced for the initially-unbalanced forecast (d). Furthermore, even though

imbalance is not reduced in these cases, estimated fast-mode errors are reduced, and can

often be orders of magnitude larger or smaller than actual error. Estimated fast error

itself also takes on a small fast oscillation in all four cases, which is not fully removed by

the addition of observations.

Though the examples shown in figures 4.2 and 4.3 represent particular realizations,

they suggest three important factors for balance in the EKF. The first is the observation

variable: because the covariance model is dynamic and imperfect, even FIL observations

can project onto the fast manifold. In fact, it will be shown below that the spurious pro-

jection of observational information onto the free gravity wave has greater consequences

when slow observations are assimilated, because these only control the slaved component

of the fast variables [as shown by (4.12)].

The second factor is the strong dependence on observation frequency. Divergence of

the EKF at large observation intervals (demonstrated in chapter 3, e.g. fig. 3.3) here
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has special consequences for balance: First, increasing ∆tobs increases error in the TLM

approximation, and therefore estimated fast-slow covariances. Moreover, if ∆tobs is in-

creased, the drift of the forecast away from the truth is greater, meaning that larger anal-

ysis increments are necessary to return the forecast to the observations. Large analysis

increments amplify errors in estimated error covariances, including the balance relation-

ships captured therein, and hence exacerbate loss of balance.

Third, estimated errors in fig. 4.3 (b) and (d) clearly do not adjust to reflect the

balance relationship as observational information is added. Increasing ∆tobs thus doesn’t

harm just the state estimate, but also the estimated error covariances. It is worth in-

vestigating to what extent the covariance model may be improved by providing it with

an initial knowledge of balance, as in (4.9), and the extent to which this information is

retained as the assimilation progresses.

4.2.2 Slow Versus Mixed-Timescale Observations

Figure 4.4 shows EKF true errors at observation times for ∆tobs = 2, comparing the two

observation configurations, FIL (2.57) and MIX (2.58). Errors are divided into slow-mode

error (2.59) and fast-mode error (2.60). The actual errors (solid lines) are compared to

those estimated by the EKF cycle (dashed lines).

In the slow mode, the EKF on average diverges for both observation types: estimated

errors decrease as the assimilation progresses, while true errors increase. The MIX case

has larger true errors, indicating that a smaller component of the slow mode is observed.

In order to recover the entire slow state, the balanced component of the observed w′

must be correctly mapped to the slow variables. That information is lost in the MIX

case because of the inaccuracy of the EKF covariance model at this observation frequency.

This loss of accuracy can also be seen for FIL, where true fast errors increase in time

while estimated errors are left unchanged, indicating that spurious imbalance induced

by the assimilation cycle is not controlled by the observations. In contrast, when a
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Figure 4.4: Average analysis errors for the EKF, over two types of experiments: observ-

ing the slow state (gray, FIL), and observing the mixed-timescale state (black, MIX).

Errors are split into slow [(2.59), left] and fast [(2.60), right] components. For each case,

the corresponding estimated errors are shown by dashed lines. Observation times are

indicated by circles.
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component of the fast wave is observed (MIX), fast error is reduced in time. Convergence

of the EKF in the fast mode reflects the linearity of the gravity wave, in contrast to

the nonlinear slow mode, where true analysis errors increase in time. Thus, though a

nonlinear balance is difficult to capture in the EKF, initial imbalance can be controlled,

on average, as long as observations are infrequent and include mixed-timescale variables.

4.2.3 Capturing Balance in the EKF Covariance Model: The-

ory

The development of accurate multivariate covariances in the EKF cycle can be seen as

a problem with three components: the initial formulation of the covariance matrix, the

TLM evolution of covariances (2.40), and the update step (2.36) following the insertion

of observations. It is possible to examine where and how balance is lost in the EKF

covariance model, using the balanced-error formulation derived in §4.1 as a guide.

1) Initial-time Covariance Matrix

Instead of specifying an initial-time error covariance matrix using (4.25), i.e. with no

correlations between variables, one might instead model Pf
0 using knowledge of the bal-

ance relationship, as in the TLB transformation (4.9), or some approximation to it. The

accuracy of such an initialization depends on how well the balance relationship is known,

as well as the linearity of the balance relationship. Linearity of the balance relationship

depends on the location of the state in phase space, and the size of the errors themselves;

hence the effectiveness of balance-initializing Pf
0 will differ from case to case. Linearity of

the balance relationship is also controlled by ε and b, becoming more nonlinear as either

parameter is increased.
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2) TLM Evolution of the Covariance Matrix

TLM-evolution of the covariance matrix can further impair the effect of a balance-

initialized covariance matrix, because a covariance matrix initialized using the TLB ap-

proximation does not necessarily remain tangent to the slow manifold as it is evolved in

the TLM (2.40), if either the model or the balance relationship are nonlinear. This can

be shown using the EKF equations. If both the analysis and the true state are balanced

at timestep k, such that

xt
k = f(yt

k) (4.26)

xa
k = f(ya

k), (4.27)

and if model error is zero, then the true error at the next timestep will be given by

ef
x,k+1 = M [f(ya

k)]−M
[
f(yt

k)
]
. (4.28)

If the forecast model evolves a balanced state to produce a balanced state, then

ef
x,k+1 = f(yf

k+1)− f(yt
k+1). (4.29)

Therefore the true error will stay tangent to the slow manifold if the model evolution is

balanced and model error is zero. In contrast, if forecast errors at timestep k are balanced

according to (4.9), then the forecast errors at the next timestep are given by

ef
x,k+1 = MkLke

a
y,k. (4.30)

They remain tangent to the slow manifold only to the extent that

MkLke
a
y,k = Lk+1e

f
y,k+1, (4.31)

that is, only if both Mk and Lk are valid approximations to the full time evolution and

balance relationships.
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3) Analysis Step

For the EKF, use of the TLM is justified if the information brought in from observations

in (2.36) is able to keep the evolving covariance model close to the true error statistics.

Likewise, it is possible that the assimilation of observations can potentially improve the

accuracy of balances represented in the covariance model. On the other hand, too much

error in the computation of the optimal gain can cause the computation of the analysis

error covariance matrix (2.36) to make the covariances less accurate than the estimated

covariances preceding the observation. Thus, the insertion of observations can destroy

the tangent-linearity of estimated covariances.

If the forecast error covariance matrix is balanced, i.e. if Pf
k = LkP

f
y,kL

T
k , then the

gain matrix becomes

Kk = Pf
kH

T
(
HPf

kH
T + R

)−1
(4.32)

= LkP
f
y,kL

T
k HT

(
HLkP

f
y,kL

T
k HT + R

)−1
(4.33)

= LkP
f
y,kG

T
k

(
GkP

f
y,kG

T
k + R

)−1
(4.34)

≡ LkKy,k, (4.35)

where we have defined Ky,k as the gain matrix in terms of the slow variables, and

Gk = HLk as a generalized observation operator, which selects only the slow-manifold

projection of the observed variable. Thus if Pf
k is tangent to the slow manifold, Kk

includes the TLB approximation.

The resulting estimated analysis error covariance matrix is then given by

Pa
k = (I−KkH)LkP

f
y,kL

T
k (4.36)

= Lk(P
f
y,k − L−1

k KkHLkP
f
y,k)L

T
k (4.37)

= Lk(I−Ky,kGk)P
f
y,kL

T
k (4.38)

= LkP
a
y,kL

T
k . (4.39)

Since Pa
k can be written as LkP

a
y,kL

T
k , it is still tangent to the slow manifold. Thus,
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(2.36) remains tangent to the slow manifold to the extent that Lk is a valid approxima-

tion for analysis errors, which means that analysis errors must be small enough for the

linearization to be valid, and Pa
y,k must be accurate.

For a nonlinear model, six conditions must be met in order for balanced errors to stay

balanced:

1. The TLB approximation must be valid at the initial time. Assuming that initial-

time errors are small, this approximation will be valid for small enough ε and b,

but will lose its validity as these parameters increase.

2. The forecast state must be balanced at analysis times. If observations unbalance

the forecast, as in figure 4.3 (a)-(b), this will no longer be a valid assumption.

3. Evolution of the model between observations must be balanced. In the exL86

model, this is true to the order in ε to which the model was initialized.

4. Model error must be zero, or at least project only onto the slow manifold. Since we

are restricting ourselves to perfect model experiments in this chapter, this condition

will be addressed in chapter 6.

5. Mk and Lk must both be valid approximations to the model evolution and balance

relationships at analysis times. This assumption will break down if analysis errors

are too large.

6. Pa
y,k must be an accurate estimate of slow error variances and covariances at analysis

time. Chapter 3 already showed that the slow-mode covariance estimate becomes

inaccurate for ∆tobs longer than about 3, however, just from the slow dynamics

alone.

It is therefore unlikely, for a nonlinear model with a nonlinear balance relationship,

that initialization of Pf
0 tangent to the slow manifold will ensure a balanced analysis.
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Figure 4.5: Average EKF assimilation errors at observation times, for ∆tobs = 2 (circles)

and ∆tobs = 4 (x’s), with observations of the mixed state. Each plot compares average

slow [(2.59), left] and fast [(2.60), right] errors for three formulations of Pf
0: using the

TLB transformation [(4.41), blue], using the VAGUE approximation [(4.40), brown], and

using the diagonal matrix [(4.25), black].

Increasing the nonlinearity of the problem —by increasing time between observations,

changing the observation variable configuration, and changing ε—will affect the extent to

which the initialization of Pf
0 can balance-constrain the analysis. This is now examined

numerically.

4.2.4 Capturing Balance in the EKF Covariance Model: Ex-

periments

Figure 4.5 shows average true analysis errors at observation times, separated into slow-

mode and fast-mode errors, and comparing six sets of experiments, corresponding to

three initializations of Pf
0 and two observation intervals (∆tobs = 2 and 4). In the first

set of experiments (DIAG), Pf
0 is chosen as the diagonal matrix (4.25). This is compared
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to a set of experiments, VAGUE, where it is assumed that the balance relations are not

known, but are guessed to be functions that are proportional to ε, such that the error

covariance matrix is approximated as

Pf
0 = σ2

0



1 0 ε ε2

0 1 0 ε2

ε 0 0 0

ε2 ε2 0 0


. (4.40)

In the third set of experiments (TLB), Pf
0 is initialized as

Pf
0 = L0P

f
y,0L

T
0 , (4.41)

where Pf
y,0 = σ2

0I2.

The difference between the three covariance matrix initializations is greatest for fast-

mode errors, where average errors in the TLB case remain lower than VAGUE and DIAG

over the assimilation period for ∆tobs = 2, and both TLB and VAGUE errors are signifi-

cantly lower than DIAG errors for ∆tobs = 4. When Pf
0 is initialized without correlations

between variables (DIAG), average fast error immediately exceeds the magnitude of the

slaved fast component of the true state [(2.11)-(2.12)], which is O (ε). Though average

fast error decreases in time for ∆tobs = 2, it grows in time for ∆tobs = 4, indicating the

excitation of spurious gravity waves. For TLB and VAGUE, average fast error stays be-

low the magnitude of the slaved fast mode initially, but also grows in time for ∆tobs = 4.

For slow errors, the difference only becomes clear at ∆tobs = 4, where less information is

brought from observations into the estimation of Pf
k. We thus see that balance eventu-

ally deteriorates in the analysis even if the initial covariance field is balance-constrained.

However, this balancing can be preserved in the first few analysis steps, and even an

approximation to the balance relationship, such as (4.40), is an improvement.

The effect of increasing the observation interval is examined in figure 4.6, which com-

pares average true slow and fast errors for the three Pf
0 initializations over a range of
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Figure 4.6: Average EKF assimilation errors over a range of observation intervals, with

MIX observations. Each plot compares average slow [(2.59), left] and fast [(2.60), right]

errors for three formulations of Pf
0: using the TLB transformation [(4.41), blue], using

the VAGUE approximation [(4.40), brown], and using the diagonal matrix [(4.25), black].
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Figure 4.7: Average true analysis error in the fast mode, comparing, as in figure 4.6, three

initializations of Pf
0: using the TLB transformation [(4.41), blue], using the VAGUE

approximation [(4.40), brown], and using the diagonal matrix [(4.25), black].

observation intervals, with MIX observations (2.58). The benefit of balance-initializing

the covariance matrix can be clearly seen for both error measures. Average errors grow

far more with increasing ∆tobs for DIAG than for TLB and VAGUE. At large ∆tobs,

where analysis increments are large, error in estimated covariances is amplified and the

excitation of spurious gravity waves consequently becomes worse. This problem is alle-

viated by the balance-initialization of the covariance matrix in TLB and VAGUE, where

fast errors are lower. Recovery of the slow state also becomes considerably more diffi-

cult with increasing ∆tobs for DIAG, indicating that the slow component of the observed

w′ is not correctly mapped to the slow manifold. Though the constraint contained in

balance-initializing Pf
0 is most effective at large ∆tobs, it might be limited in realistic

implementations, because memory of the EKF will decrease if there is realistic model

error [Nerger et al., 2005].

Figure 4.7 examines the effectiveness of balance-initializing the covariance matrix as a

function of ε, i.e. as the degree of timescale separation changes, again comparing the three
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initializations of Pf
0, (4.41), (4.40), and (4.25). The plot has a logarithmic y-axis, and a

curve corresponding to ε2 is also added, in order to emphasize the asymptotic nature of

the balance relationship. VAGUE and TLB yield lower average fast-mode errors for small

ε, but the initial formulation of Pf
0 no longer makes a difference for ε & 0.3, where the

separation of “fast” and “slow” modes becomes asymptotically less well defined. Thus

it becomes harder to capture slaved fast variables as slaving becomes more fuzzy. This

echoes the result of Žagar et al. [2004a], who found that it is difficult to reproduce the

wind field from height observations in the tropics, because the lack of a clear timescale

separation between different types of waves reduced the covariance between these fields.

4.2.5 Balance Constraint in the EKF Analysis

Instead of balance-constraining only the initial covariance matrix, a balance constraint

can be incorporated into the EKF cycle by performing the analysis step (2.33) in terms

of the state’s projection onto the slow variables only. This is done by projecting the

forecast state, covariance matrix, and gain matrix onto the slow manifold, updating only

the slow variables, and then mapping the analysis back to the full state.

Starting from a mixed-timescale forecast xf
k, the modified algorithm is as follows:

yf
k = Fxf

k (4.42)

Pf
y,k = FPf

kF
T (4.43)

Ky,k = Pf
y,kG

T
k

(
GkP

f
y,kG

T
k + R

)−1
(4.44)

ya
k = yf

k + Ky,k[zk −Hf(yf
k)] (4.45)

xa
k = f (ya

k) . (4.46)

Here

F =

 1 0 0 0

0 1 0 b

 (4.47)
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is a linear mapping which projects both the model state and the forecast error covariance

matrix onto the slow manifold. The gain matrix Ky,k is then computed for the slow

variables only; note that (4.44) uses the TLB transformation to select the slow manifold

projection of the observation error. The analysis is performed on the slow variables (4.45),

and the analysis in terms of the full model state is computed in (4.46) by mapping the

slow state back to a balanced mixed-variable state, using the slaving relations. Since

the slaving relations are used in (4.46), this yields an analysis state which is necessarily

balanced.

Alternatively, one could map only the covariance and gain matrices to the slow man-

ifold (4.43) and (4.44), then update the mixed-timescale state as

xa
k = xf

k + LkKy,k[zk −Hxf
k]. (4.48)

If (4.48) is used instead of (4.46), the modified algorithm becomes similar to the sim-

plified Kalman filter proposed by Dee [1991]. Dee [1991] showed that the Kalman filter

can be made computationally cheaper by evolving only the balanced covariance matrix

(4.43) forward, which requires only as many iterations of the TLM as there are balanced

variables. It is pointed out that such an approximation could be minor in comparison to

other approximations made in the EKF (such as linearity), in which case the modified

algorithm might actually yield a more optimal covariance field, at lower cost. In other

words, this simplification could be “optimal” in the sense that we neglect to explicitly

model information (in this case, slaving) which is difficult to capture by the assimilation

method.

Since Dee [1991] used a linear model with a linear balance relationship, the forward

evolution of balanced error covariances yielded similarly balanced error covariances, and

the simplified algorithm returned acceptable results. For a nonlinear model, however,

(4.48) requires an additional use of the TLB transformation, and will thus be less accurate

than (4.46), even without the simplification added by Dee [1991]. To avoid the additional

complication of evolving only the slow component of covariances, and because the exL86
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model is computationally cheap, we evolve the full covariance matrix Pf
x, and solve

(4.42)-(4.46) at each observation time.

A comparison between these two modified analyses [(4.45)-(4.46) versus (4.48)], is

shown in figure 4.8, which compares average errors at observation times, for the two

balance-constrained filters proposed above: the direct balancing given by (4.45)-(4.46),

or DIR, and the indirect balance update given by (4.48), or IND. These modified analyses

are also compared to the EKF initialized with the TLB transformation (denoted TLB

in the figure), and results for each filter are shown for observation frequencies ∆tobs = 2

and 4.

Both modified schemes, on average, offer an improvement over the TLB-initialized

EKF in terms of fast error, especially for ∆tobs = 4 and as the assimilation progresses

in time. The two balance-constrained experiments also show slightly lower slow errors

for ∆tobs = 2. Since directly balancing the analysis [(4.45)-(4.46)] sets fast error to zero

immediately following insertion of an observation, it yields nearly-zero fast error. This

happens without any noticeable effect on the recovery of the slow mode. Since the indirect

balancing (4.48) uses an additional approximation, it results in a less balanced state than

the direct balancing. However, figure 4.8 suggests that the indirect balancing (which

corresponds to the modified algorithm of Dee [1991]) may be sufficient if observations

are frequent enough, indicating again that the TLB approximation is reasonable as long

as errors are small.

4.3 Balance in the Ensemble Kalman Filter

The single-timescale example in chapter 3 showed that the EnKF is more stable than

the EKF at large observation intervals, in the sense that the state estimate is not pushed

to a far orbit where subsequent observations are rejected. Just as it does not require a

TLM, the EnKF also does not require a TLB approximation to estimate balanced error
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Figure 4.8: As in figure 4.5, but now comparing the TLB-initialized EKF (TLB, black)

to two balance-constrained modifications: either by mapping the analysis increment with

a balanced gain matrix as in (4.48) (IND, blue), or by directly balancing the analysis

via [(4.45)-(4.46)] (DIR, brown). As in figure 4.5, observation frequencies shown are

∆tobs = 2 (circles) and 4 (x’s).
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covariances. The fact that the EnKF is a combination of model states further suggests

that the EnKF analysis might naturally be more balanced, by virtue of the fact that

there is a more physical basis for the covariance model. The averaging nature of the

analysis step in itself also implies a kind of balancing: gravity wave amplitudes should

average to zero if gravity wave phases in the ensemble are random. Nonetheless, as long

as gravity waves are permitted in the ensemble members, a balanced analysis state is not

guaranteed.

4.3.1 Balance in a Monte-Carlo Covariance Model

In the EnKF, covariances between fast and slow variables are approximated by a finite-

size ensemble. While it is sometimes asserted that an ensemble of balanced forecasts will

yield a balanced analysis [e.g. Szunyogh et al. 2005], Pf
k will only be balanced if the

balance is linear, and if Pf
k is computed from an ensemble of balanced forecasts (while a

realistic ensemble will converge to the correct covariance field with an error proportional

to N−1/2).

Whether or not the forward evolution and sequential updating of the ensemble indeed

yields a balanced analysis depends on whether the initial N -member forecast ensemble

sufficiently represents the full statistics of the true system, including balance; whether

the evolution and spreading of the ensemble does not destroy its accuracy; and whether

the ensemble analysis step (2.44) doesn’t unbalance individual ensemble members.

1) Ensemble Representation of Balance

It can be argued that the existence of a balance relation might simplify the EnKF prob-

lem, since a balanced model state has fewer degrees of freedom than an unbalanced state,

and fewer ensemble members will therefore be required to represent the error statistics

of a balanced state—if the forecasts in the ensemble are all balanced. However, the

nonlinear balance relationship itself must be captured.
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Balanced perturbations for the exL86 model can be generated by transforming the

central forecast to normal modes, adding random perturbations to φf and wf, and then

transforming back to mixed variables using (2.14). In realistic applications, this step is

a bit more complicated, but similar: for example, one can randomly perturb stream-

function, and then derive wind, temperature, and pressure perturbations following some

balance assumption [Mitchell et al., 2002]. In lieu of an explicit slow manifold initializa-

tion, one might also integrate the ensemble forward while filtering out fast waves with,

say, a digital filter [Evensen, 1997].

2) Evolution of Ensemble Statistics Between Observation Times

As the forecast ensemble evolves between observation times, imbalance in error covari-

ances will only grow as much as the mean imbalance in the ensemble (as opposed to the

unbounded growth that would happen with the TLM evolution of errors). Eventually,

the ensemble spread will become saturated in the slow mode. However, even then it

could still contain information about the (slaved) fast mode.

3) Ensemble Analysis Step

If individual ensemble members become unbalanced in the analysis step (2.44), the

amount of imbalance remaining in the mean state depends on the magnitude and relative

phases of the fast motion in individual analyses. If the ensemble is too small or there is

not enough phase mixing, some net imbalance will remain in the analysis. Moreover, if

individual ensemble members include spurious imbalance, then the subsequent analysis

can also be expected include spurious imbalance.

4.3.2 Examples: Balance in the EnKF

Figure 4.9 shows EnKF analyses for the same three states and observation sets shown

in figure 4.2: (A) the single-timescale model with observations of w and φ, (B) the full
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Figure 4.9: As in figure 4.2, but for a 10-member EnKF.

model with observations of w and φ, and (C) the full model with observations of w′ and

φ. In these experiments a 10-member ensemble is used, and all ensemble members are

initially balanced. As in the EKF example (fig. 4.2), assimilation causes the analysis to

become unbalanced for both observation types, even though observations are frequent

enough to capture the slow mode. In (B) and (C), the ensemble mean has a smaller

gravity wave than individual ensemble members, showing that at least some balancing

can be achieved by averaging. However, ensemble members do phase-lock to some extent

around a spurious gravity wave, leaving a substantially unbalanced ensemble mean state

in both cases.

Figure 4.10 shows four more EnKF assimilation experiments, now examining the effect

of observation interval, with observations of w′, and all other assimilation parameters as

in the corresponding EKF example (fig. 4.3). Again, the ensemble consists of 10 members

in all four cases. In (a) and (b), the ensemble is balanced initially, while in (c) and (d),

the initial ensemble has random free gravity wave magnitudes and phases (distributed
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Figure 4.10: As in figure 4.3, but for the 10-member EnKF.
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such that the free gravity wave in the ensemble mean is Ĩ f = 1.0). As in the corresponding

EKF example (fig. 4.3), panels (a) and (c) show observations assimilated with ∆tobs = 1,

and panels (b) and (d) show observations assimilated every ∆tobs = 6 time units. (Note

that a linear scale is now shown in all figures.)

The initially-balanced ensemble becomes tightly crowded around the true state, with

very small net imbalance, for frequent observations (a). Ensemble-estimated forecast

error covariances also contain this imbalance. As in the EKF, the initially-unbalanced

ensemble (d) becomes balanced as observations are brought in, although it can also be

seen (by comparing the ensemble to the true state) that spread in the ensemble becomes

less than the true error towards the end of the assimilation period.

Increasing the observation interval, the initially-balanced ensemble (b) diverges sig-

nificantly between observations, becoming clearly non-Gaussian, though forecast error is

large enough that the mean state is still brought close to the truth at observation times.

As in the EKF case, the large analysis increments which occur for ∆tobs = 6 induce

imbalance in individual ensemble members, though there is enough phase-mixing that

ensemble averaging reduces net imbalance substantially. Again, estimated fast errors are

of the same order of magnitude as true fast errors. If observation frequency is reduced to

∆tobs = 6 for an initially-unbalanced ensemble (d), the ensemble does not become bal-

anced, but instead begins to phase-lock. Here, estimated fast errors begin to significantly

underestimate true errors.

We thus see that the EnKF does have the advantage of ensemble averaging to keep

a balanced state, but that this only works to an extent, because the assimilation of

observations also causes phase-locking in an unbalanced ensemble. Moreover, such an

ensemble implies that the true state is unbalanced, with the degree of imbalance in the

truth unknown. We also see that the EnKF’s stability at large ∆tobs has consequences for

balance: because forecast error covariances only reflect as much imbalance as is present

in the ensemble, the analysis does not cause as much imbalance at large ∆tobs as the
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Figure 4.11: Average analysis errors for the EnKF with 50 ensemble members, over two

types of experiments: observing the slow state (gray, FIL), and observing the mixed-

timescale state (black, MIX). Errors are split into slow [(2.59), left] and fast [(2.60),

right] components. For each case, the corresponding estimated errors are shown by

dashed lines. Observation times are indicated by circles.

EKF analysis does, as long as the ensemble itself is balanced. Nonetheless, despite the

very large ensemble size used here, the EnKF can become significantly unbalanced.

4.3.3 Slow Versus Mixed-Timescale Observations

Figure 4.11 shows EnKF average slow and fast-mode errors at observation times, again

comparing actual to estimated errors, and MIX to FIL observations (as in figure 4.4).

To minimize the effect of ensemble sampling error, ensembles of 50 forecasts are used

here, with ∆tobs = 2. Comparison of figures 4.4 and 4.11 shows that the EnKF has

lower errors than the EKF at this observation frequency, in both modes. Moreover, slow

analysis errors decrease in time, with estimated errors similar to actual errors. Fast

errors do grow in time, however, indicating a gradual loss of balance. Note that this
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Figure 4.12: Average EnKF assimilation errors at observation times, for ∆tobs = 2, with

MIX observations. Each plot compares average slow [(2.59), left] and fast [(2.60), right]

errors for different ensemble sizes.

happens for both observation types, whereas fast errors in the EKF decreased in time

for MIX. The similarity of average error for the two observation types indicates that

balanced covariances are captured well enough by the ensemble that the slow component

is extracted correctly from mixed-timescale observations, while minimal spurious gravity

wave noise is excited for slow observations. While balance is lost gradually in the EnKF

even for mixed-timescale observations, the loss of balance at the end of the assimilation

period is still less than after the first EKF analysis increment.

4.3.4 Ensemble Size and Observation Interval

Though the EnKF is stable over long ∆tobs, it is limited by ensemble size. The effect of

decreasing the ensemble size is examined in figure 4.12, which compares average fast and

slow analysis errors at observation times for ∆tobs = 2, at five different ensemble sizes.

Both error measures are reduced by increasing N , but do not decrease significantly for
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Figure 4.13: Average true analysis errors for the EnKF over a range of observation inter-

vals, comparing average slow [(2.59), left] and fast [(2.60), right] errors, with MIX obser-

vations. Seven ensemble sizes (denoted by colors) are compared to the TLB-initialized

EKF (in black).

ensemble sizes beyond 12 members, i.e. three times the dimension of the model. Average

fast errors grow in time for N = 4 and 6, for which the EnKF is computationally similar

to the EKF. However, even at these ensemble sizes the average fast error is lower than

the corresponding EKF error, while average slow-mode errors are still comparable to

EKF slow-mode errors (e.g. MIX in fig. 4.4). Thus the assertion of Lorenc [2003b], that

ensemble-derived error statistics are limited by practically-feasible ensemble sizes but

have the advantage that they are more stable in time than TLM-derived error statistics,

can be extended to the issue of balance: even though the small ensemble has growing im-

balance as the assimilation progresses (indicating filter divergence), growth of imbalance

is relatively small over the assimilation period.

Figure 4.13 examines the effect of observation interval. This figure is analogous to

figure 4.6 for the EKF, but compares ensembles of N = 2, 3, 4, 6, 8, 15 and 50 forecasts
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to the EKF with Pf
0 initialized using the TLB approximation. First, note that fast error

in the EnKF is controlled more by ensemble size than observation interval. For ensembles

larger than 3 members, the advantage of the EnKF becomes clear for ∆tobs ≥ 2. Even for

4 ensemble members, where it is difficult for unbalanced motion to average out completely,

far less net imbalance is induced in individual ensemble members, relative to the EKF.

This implies that a substantial fraction of the EnKF’s success comes from the retention

of nonlinearity in the covariance evolution. Nonetheless, effect of ensemble averaging

can be seen in the clear improvement from N = 6 to N = 12 in figure 4.12 (b). The

combined effect is that fast error in the EnKF is controlled more by ensemble size than

by observation frequency.

For 3 ensemble members, where the slow mode is difficult to capture, less imbalance

is still induced in the EnKF, relative to the EKF, for ∆tobs & 2. However, imbalance

is still quite large for N = 2 and 3 (ensembles smaller than the state dimension). For

∆tobs . 2 and N ≤ n, the EKF returns both the best slow mode analysis and the most

balanced analysis.

It is also interesting to note that EnKF fast errors are slightly larger for ∆tobs . 2

than for 2 . ∆tobs . 4. This is a robust result for different ensemble sizes, and is

explainable: more frequent analysis of the ensemble means that estimated forecast er-

rors (corresponding to the spread of the ensemble) are small, while errors in estimated

correlations (due to the finite ensemble size) have a larger impact. Consequently, indi-

vidual ensemble members and the ensemble-mean become more unbalanced. There thus

seems to be a range of observation intervals which are optimal in terms of computing a

balanced analysis. Lorenc [2003b] points out that the tendency of the EnKF to diverge

for a large observation density could pose serious problems as the abundance of observa-

tions increases. Figure 4.13 suggests that one aspect of this problem could be spurious

imbalance: as observations become more frequent, the tendency of the ensemble to lock

onto a spurious gravity wave increases. An important caveat here is that the model only
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admits one gravity wave frequency, and that this frequency is the same for the truth and

forecast. In chapter 6 it will be shown that ensemble phase-locking becomes much less

likely if the truth and forecast are evolved with models which admit different gravity

wave frequencies.

In summary, we find that the EnKF has one major balance-related advantage over the

EKF, which is stability of estimated covariances over long observation intervals. While

the EnKF also benefits from averaging, this requires a large ensemble and sufficient phase

mixing of the ensemble.

4.4 Balance in 4DVAR

4.4.1 Balance in Variational Assimilation

We now extend the analysis briefly to 4DVAR. We have seen (chapter 3) that 4DVAR

is more stable than the EKF at large ∆tobs, while also bypassing sampling error issues

in the EnKF. Since the practical difference between the EKF and 4DVAR results largely

from nonlinearity of the assimilation system, it can be expected that loss of balance will

also happen differently in 4DVAR.

4.4.2 Examples: Balance in 4DVAR

Figure 4.14 shows three 4DVAR example assimilation experiments, which correspond to

the experiments shown in figures 4.2 and 4.9 and use the same truth, initial forecast,

and observations. As in those figures, the single-timescale model is used in (A), the

gravity wave model with FIL observations in (B), and the gravity wave model with MIX

observations in (C). In analogy to the corresponding EKF experiment, B is estimated as

the diagonal matrix (4.25) in all three cases. The minimization window length is ∆T =

10, which means that two iterative minimizations of the cost function are performed in



4.4. Balance in 4DVAR 101

4DVAR Analyses for Three Cases,  ∆ tobs = 3

−2

0

2

4

(A) 0 GW Model

φ

−2

0

2

4

(B) GW Model + Filtered Obs

φ

−2

0

2

4

(C) GW Model + Mixed Obs

φ

0 10 20
−1.5

−1

−0.5

0

0.5 w

time
0 10 20

−1.5

−1

−0.5

0

0.5 w,

time
0 10 20

−1.5

−1

−0.5

0

0.5 w,

time

Figure 4.14: As in figures 4.2 and 4.9, but for 4DVAR, with ∆T = 10 and 5 minimization

iterations.

each example, over ∆T1 = [0, 10] and ∆T2 = [10, 20]. The minimizations in this example

are run out to five iterations, with no cutoff threshold.

For ∆T1 in this example, the state falls into a local minimum of the cost function

at the second minimization iteration, yielding a slow-mode analysis in (A)-(C) which is

considerably worse than in the corresponding EKF (fig. 4.2) and EnKF (fig. 4.9) analyses.

The difference between the three methods illustrates the point made in chapter 3 that the

overall nonlinearity of each experiment also depends on the assimilation method used.

It was shown in chapter 3 that ∆tobs = 3 is something of a boundary between the linear

and nonlinear assimilation regimes. In this particular case, ∆tobs = 3 presents a very

nonlinear problem for 4DVAR (the cost function has local minima in which the analysis

becomes “trapped”) but not for the EKF. There is also a clear difference between the two

minimization windows: practically no fit to observations is achieved in the first window,

while a somewhat better fit is achieved in the second window, even though the initial

background error over ∆T2 is much larger.



102 Chapter 4. Balance and Excitation of Spurious Gravity Waves

Despite the failure of 4DVAR to capture the slow mode, spurious imbalance in this

example is only induced in (C), with a spurious gravity wave generated in the second

window that is roughly twice as large as the gravity wave induced in the first window.

Interestingly, greater imbalance happens to be induced in the time window where the

slow mode is captured more accurately. This is not entirely an accident: we will see

below that a stronger adjustment of the initial background guess towards observations

frequently results in a greater loss of balance.

The effect of observation frequency and the ability to keep balance in a balanced

background state (or restore balance in an unbalanced background state) is examined in

figures 4.15 and 4.16, which show four experiments that are analogous to figures 4.3 and

4.10, again using the same random number realizations. Figure 4.15 shows the w′ truth

and analyses for (a) a balanced initial background state with frequent observations, (b) a

balanced initial background state with infrequent observations, (c) an unbalanced initial

background state with frequent observations, and (d) an unbalanced initial background

state with infrequent observations. Figure 4.16 shows the RMS error in the fast mode

(2.60) for each of the three assimilation windows and for each case, as a function of

minimization iteration number.

For frequent observations and a balanced initial background (a), 4DVAR yields a

state which is practically indistinguishable from the truth, and almost perfectly balanced.

Fast error in each window remains at O (ε2) throughout the minimization. Extending

the observation interval to ∆tobs = 6 (b) yields a state which is balanced for the first two

time windows (∆T1 and ∆T2), but significantly unbalanced for ∆T3. Note that imbalance

grows with increasing minimization iterations [fig. 4.16 (b)], which means that the net

imbalance in the analysis state would be less if the minimization were cut off earlier. In

contrast, for frequent observations and an unbalanced background state (c), continuing

iterations restore balance in the second and third time windows. Over ∆T1, where the

background estimate is closest to the truth, there is no clear reduction of imbalance.
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Increasing the observation interval to ∆tobs = 6 (d), the unbalanced forecast remains

unbalanced for all three time windows.

As in the EKF and EnKF, spurious imbalance can grow in 4DVAR if observations are

infrequent (b), and can be reduced if observations are frequent (c). However, figure 4.16

points out an interesting difference between 4DVAR and the Kalman filters: spurious

imbalance grows or is decreased, not in time, but with iterations of the minimization [as

in the third window in (b) and (c)]. This is examined more closely in figure 4.17, which

shows another 4DVAR assimilation example, for a special case where the minimization

is allowed to run out to nine iterations. In this example, ∆tobs = 2 and ∆T = 10, with

an assimilation period of T = 30, such that there are five observations in each of the

three windows, and one observation which is shared between neighbouring windows. The

analyses of φ and x are shown in panels (a) and (b), and the RMS slow and fast analysis

errors, for each window, are shown as a function of iteration in panels (c) and (d). In

this example, the background estimate of φ is so far from the truth that practically

no fit to the truth is achieved in ∆T2 = [10, 20] and ∆T3 = [20, 30], even within nine

iterations (c). However, in terms of x (b), imbalance is actually lowest over ∆T2, because

the minimization settles on a slightly more balanced state at the eighth iteration —even

though there is only a very small change in the slow state over these nine iterations. For

∆T1 = [0, 10], where the slow mode fit is best, imbalance starts out low but increases

with subsequent iterations. Note that, for the first few iterations, imbalance increases

most quickly (iteration-wise) in those windows (∆T2 and ∆T3) where the prior estimate

is far from the truth and iteration steps in the slow mode are therefore larger.

This example illustrates an interesting property of 4DVAR: even after the slow-mode

analysis has more or less settled into an analysis state near the minimum of the cost

function, small iterations can increase or decrease imbalance in the analysis. Greater

imbalance is also induced by larger minimization increments. This means that the net

spurious imbalance generated by the 4DVAR analysis depends both on how many iter-
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Figure 4.15: Four example 4DVAR analyses of w′ for: (a) a balanced initial forecast

with observations taken every ∆tobs = 1 time units, (b) a balanced initial forecast with

∆tobs = 6, (c) an unbalanced initial forecast with ∆tobs = 1, and (d) an unbalanced

initial forecast with ∆tobs = 6. The final-time values of the analysis state’s free gravity

wave (“imb” in the figure) are also shown.



4.4. Balance in 4DVAR 105

1 2 3 4
0

0.01

0.02

0.03

iteration

<e
I
>

(a) ∆ tobs = 1

1 2 3 4
0

0.1

0.2

iteration

<e
I
>

(b) ∆ tobs = 6

1 2 3 4
0

0.2

0.4

0.6

0.8

1

iteration

<e
I
>

(c) ∆ tobs = 1

1 2 3 4
0

0.2

0.4

0.6

0.8

1

iteration

<e
I
>

(d) ∆ tobs = 6

4DVAR Fast Mode Error

Figure 4.16: Fast-mode error (2.60) as a function of conjugate-gradient iteration, for the

three assimilation windows in each example shown in figure 4.15: ∆T1 = [0, 10] (black,

solid), ∆T2 = [10, 20] (gray, solid) and ∆T3 = [20, 30] (black, dashed).
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ations are performed, and the distance between the background estimate and the cost

function minimum.

4.4.3 Slow Versus Mixed-Timescale Observations

Having established that recovery of a balanced state is a very different process in 4DVAR

than in the Kalman filters, we now want to see what this difference means for various

assimilation parameters. The difference between slow and mixed-timescale observations is

examined in figure 4.18, which shows average slow and fast analysis errors at observation

times, and is analogous to figures 4.4 and 4.11. The two observation types, FIL (2.57) and

MIX (2.58), are compared for experiments with ∆tobs = 2 and ∆T = 10 (as in fig. 4.17).

In these experiments, the minimization was cut off when the threshold ew,rms = 0.2 was

reached for each time window.

Note first that average 4DVAR fast errors are much lower than in the EKF, and almost

as low as those in the EnKF, which benefits from ensemble averaging. Thus 4DVAR adds

not just stability (as in chapter 3), but also helps to preserve balance. 4DVAR behaves

quite differently from the EKF and EnKF for fast errors, showing smaller average fast

errors for FIL observations, and more spurious imbalance for MIX observations, whereas

the situation was reversed in the Kalman filters. This implies that balance is more or

less preserved by assimilating slow observations in 4DVAR. For MIX, 4DVAR generates

as much imbalance as needed to fit the mixed-timescale observations, with imbalance

increasing depending on how far the initial forecast iterate lies from the cost function

minimum.

While 4DVAR shows a large difference between observation types in fast-mode errors

(like the EKF), errors for MIX and FIL are more or less similar for slow-mode errors (like

the EnKF). Average slow-mode errors in 4DVAR are also similar in magnitude to EnKF

errors (fig. 4.11). This suggests another advantage of the implicit covariance model of

4DVAR, which is that loss of balance does not have as great an impact on the slow-mode



4.4. Balance in 4DVAR 107

0 10 20 30
−10

−5

0

5

10

(a) φ

time
0 10 20 30

−0.5

0

0.5
(b) x

time

2 4 6 8
0

0.5

1

1.5

2

iteration

(c) slow error

2 4 6 8
0

0.5

1

1.5

2

iteration

(d) fast error

4DVAR Example,  ∆ tobs = 2,  ∆ T = 10

Figure 4.17: A 4DVAR assimilation experiment, with ∆tobs = 2 and ∆T = 10. The
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error over successive minimization iterations, for windows ∆T1 (black, solid), ∆T2 (gray,

solid), and ∆T3 (black, dashed). (d) shows the same, but for fast-mode error.



108 Chapter 4. Balance and Excitation of Spurious Gravity Waves

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

<
e s>

50

Slow Error

Observation Time

FIL
MIX

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

Observation Time

<
e I>

50

Fast Error FIL
MIX

4DVAR Average Assimilation Errors at Observation Times
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times are indicated by circles.

analysis in 4DVAR as it does in the EKF.

4.4.4 Balance Constraint in the Background Error Covariance

Matrix

In the experiments shown thus far, B was initialized as a diagonal matrix (4.25) and hence

without any knowledge of balance. Despite this, assimilation experiments in figures 4.14

and 4.18 both showed that 4DVAR induces less imbalance, on average, than the EKF

does with a balance-initialized covariance matrix.

Of course, there is no reason why the background error covariance matrix in 4DVAR

cannot also be constrained according to the linearized balance relationship (4.9). In

addition to providing a balance constraint, balancing of B contracts the search space in

the cost function minimization [Lorenc, 2003a], thereby speeding up convergence of the
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minimization (in realistic models). The same constraint can also be imposed by using

the balance relationship to transform the model variables into mutually uncorrelated

components, such that the background error covariance matrix becomes the identity

matrix [Weaver et al., 2005]. Because B constrains the space of available analyses, this is

considered a strong constraint. Balance can also be made a weak constraint by defining

B with nonzero variance in the unbalanced components of fast variables.

However, even a balanced covariance matrix really only constrains the minimization

insofar as the TLM and adjoint models are accurate. In the EKF, nonlinearity meant

that Pf
k did not stay tangent to the slow manifold. Analogously, we can expect that

a balanced B will not guarantee a balanced analysis when both the model and the

balance relationship are nonlinear. In fact, it has already been shown [Courtier and

Talagrand, 1990, Polavarapu et al., 2000] that 4DVAR can yield an unbalanced analysis

even when balance is enforced as a strong constraint, as long as observations have errors

which project onto inertia-gravity waves. The simplicity of the exL86 model allows us to

illustrate how this happens.

Figure 4.19 examines the impact of balancing B in terms of average errors. It is similar

to figure 4.5, and compares 4DVAR slow and fast average errors at observation times for

three formulations of B: the TLB transformation (4.41), the approximate balance (4.40),

and the diagonal matrix (4.25). In all experiments in this figure, ∆tobs = 2 and ∆T = 10.

Comparison of fast errors for the three cases shows that the different formulations of B

have only a slight effect, with TLB and VAGUE yielding slightly lower average fast errors,

while there is no discernible difference between the slow-mode errors.

It was shown for the EKF that the relative benefit of initializing the covariance ma-

trix increases as the observation interval, and hence the nonlinearity of the assimilation

system, increases. The same is examined for 4DVAR in figure 4.20, which shows average

fast and slow errors as a function of ∆tobs, again comparing the three formulations of

B. As in figure 4.19, there is no clear difference in slow-mode errors for different for-
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Figure 4.19: Average 4DVAR assimilation errors at observation times, for ∆tobs = 2, for

MIX observations. Each plot compares average slow [(2.59), left] and fast [(2.60), right]

errors for three formulations of Pf
0: using the TLB transformation [(4.41), light gray],

using the VAGUE approximation [(4.40), medium gray], and using the diagonal matrix

[(4.25), black].
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mulations of B. In terms of fast errors, the benefit of balance-initializing B decreases

with increasing ∆tobs. This is the opposite of what happens in the EKF (fig. 4.6), where

balance-initialization of Pf
0 is most effective at large ∆tobs. The difference is this: for the

EKF, increasing ∆tobs is more likely to cause instability in the fast analysis, which can be

alleviated if covariances are balance-initialized. In 4DVAR, increasing ∆tobs means that

the minimization is harder to constrain, but 4DVAR does not share the EKF’s gravity

wave instability, because the covariance model is not explicitly evolved and updated.

Even though the adjoint of the TLM is used to find the cost function minimum (2.50),

4DVAR integrates the full model at each minimization iteration. Therefore 4DVAR, like

the EnKF, uses (in part) the actual model dynamics to infer balance. Thus even at

∆tobs = 6, 4DVAR fast errors are on average lower than corresponding EKF errors at

∆tobs = 4 (fig. 4.6).

4.4.5 Assimilation Window

Nonlinearity can also be increased in 4DVAR by increasing the size of the observation

window. If ∆T is too large, the TLM and its adjoint become poor approximations. If

∆T is too small, the state is not fit to enough observations at the same time. Figure

4.21 (A) examines average slow and fast errors as a function of ∆T , for experiments with

∆tobs = 2, mixed-timescale observations, and B formulated with the TLB approximation

(4.41). In these experiments, the minimization cutoff threshold is at ew,rms = 0.2. Here

we find that there is a trade-off between capturing the slow mode and capturing balance:

slow-mode error is lowest for ∆T ∼ 6 or 7, while fast error simply decreases with ∆T .

The optimal time window for the slow mode makes sense, since it corresponds to the

time of validity of the TLM. For windows longer than that, nonlinearity begins to affect

the minimization, and the cost function will cease to be quadratic. This is illustrated in

figure 4.21 (B), which shows slices of the cost function along φ, for a balanced example

state where the truth is given by the initial slow state (φ0, w0)
T = (0.19, 0.21)T. The cost
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Figure 4.21: (A) Average 4DVAR assimilation errors, as a function of the assimilation

window, comparing average slow (black) and fast errors (gray), for experiments with

∆tobs = 2, MIX observations, and B computed with (4.41). (B) Slices of the 4DVAR

cost function along φ, for an example case with ∆tobs = 2, MIX observations, and a

variety of minimization windows ∆T . The true initial state, φ0 = 0.1865, is indicated by

a dashed line.

function displays local minima for all ∆T shown, becoming increasingly jagged as ∆T is

increased. If the estimate settles into a local minimum of the cost function, subsequent

iterations will not bring it closer to the observation. Since less adjustment of the slow

mode means that less spurious imbalance is induced in the fast mode, analyses with long

∆T are more balanced.

4.4.6 Other Balance Constraints in 4DVAR

There are other ways to add a balance constraint to the minimization, such as by adding

a slow manifold projection to the TLM and its adjoint. This was done by Courtier and

Talagrand [1990] using nonlinear normal mode initialization and by Polavarapu et al.

[2000] using a digital filter, and is analogous to the balance constraints added to the

EKF in §4.2.5, though discussing the fine details of this similarity is beyond the scope

of this study. Another way to add a balance constraint is suggested by Courtier and
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Talagrand [1990], who propose adding a penalty term to the cost function minimization,

and then reinitializing each iterate. This issue has been further studied by Thépaut and

Courtier [1991], Polavarapu et al. [2000], and Gauthier and Thépaut [2001], and we refer

to those studies, while noting that even without an extra balance constraint, 4DVAR in

our experiments is still preferable to both the EKF and EnKF in recovering a balanced

state.

4.5 Summary and Discussion

In this chapter, experiments with the exL86 model showed that a perfectly-balanced state

is generally difficult to recover in 4D data assimilation, outside of the ideal case of very

frequent observations.

While 4DVAR and the EnKF will lose balance if too much error accrues in the assim-

ilation, both methods turn out to be significantly more stable than the EKF, in regards

to balance, with 4DVAR yielding the most balanced analyses, especially as observations

become less frequent. The advantages of the EnKF and 4DVAR come from use of the

nonlinear model to infer (some) covariance evolution. Even when pushed to their limits

(i.e. by decreasing ensemble size or observation frequency, or increasing the number of

minimization iterations in 4DVAR) both methods by-and-large are improvements over

the EKF, though the EnKF becomes somewhat worse than the EKF when the ensemble

is smaller than the state dimension.

A few more comments must be made to connect these results to more realistic prob-

lems. The generation of unconstrained imbalance from observations of entirely slow

variables, which is then not controlled because the fast variables are not observed, echoes

a similar result by Lea et al. [2006], who found that spurious inertial oscillations in

an ocean model were induced by the assimilation because the observations (sea surface

height, temperature, and salinity) contained almost no information about that type of
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motion.

For the EKF and 4DVAR in our experiments, balance was improved somewhat by

balance-constraining the initial error covariance matrix, but this generally had no impact

on recovery of the slow mode. Interestingly, Weaver et al. [2005] (again in an ocean

model) found that balance-constraining the initial background error covariance matrix

in 4DVAR significantly decreased errors relative to 3DVAR for all fields, and suggested

that constraining the cost function in a balanced way somehow helps to unleash the full

power of 4DVAR. That study did not discuss the effect of model nonlinearity, however; our

results suggest that, for highly nonlinear contexts, the constraint imposed by a balanced

covariance matrix is small.

Lorenc [2003b] has argued that 4DVAR is practically preferable to the EnKF in terms

of imbalance, because it is possible to balance-constrain the cost function minimization.

The experiments of this chapter, however, showed that nonlinearity limits the effective-

ness of balance constraints in 4DVAR, and that there may be regions in the space of

assimilation parameters where the EnKF returns a more balanced analysis than 4DVAR

(e.g. ∆tobs < 1), without any external constraints.

The improvement of the EKF when a balance constraint was added to the analysis

suggests that a simplified algorithm such as the one suggested by Dee [1991], where bal-

anced covariances are incorporated manually into the assimilation cycle, can yield better

results than the full EKF. This idea has similarity to the use of so-called perturbation

forecast models (PFMs) in place of the TLM, albeit in the context of 4DVAR [Lorenc,

2003a, Rabier, 2005]. PFMs are designed to model the evolution of an approximately

Gaussian pdf for motion at a certain range of scales, while purposely excluding scales

about which little is known. Clever use of PFMs and additional balance constraints could

make it possible to better preserve balance in realistic applications of 4DVAR. The fact

that 4DVAR was an improvement over the EKF even without these additional constraints

is encouraging.
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It was also found that the EnKF is susceptible to a form of filter divergence in terms of

balance, wherein the forecast ensemble is close to the truth, but tightly clustered around

a spurious gravity wave, because the ensemble members have locked phases [e.g. figure

4.9 (B)]. It can be argued that the EnKF will likely be more balanced in practice, where

more than one gravity wave frequency is admitted, and gravity waves can propagate away

or dissipate between observations [e.g. Szunyogh et al. 2005]. However, the results of

Houtekamer and Mitchell [1998] suggest that spurious imbalance in the ensemble mean

analysis is difficult to avoid for realistic ensemble sizes, and for observation intervals at

or near realistic gravity wave timescales, where gravity waves have less time to propagate

away. This leaves the somewhat unfortunate result that more frequent observations could

cause greater imbalance and ensemble phase-locking, as in figure 4.12, though it remains

to be seen whether this is the case for more complex models.

Overall, the experiments of this chapter achieved two purposes: (1) they illustrated

the initialization problem, and its interpretation in sequential/variational assimilation, in

a straightforward and simple environment (finding that 4DVAR preserved balance more,

overall) and (2) they serve as preparation for the next chapter, which deals with physical

cases where the true state is not balanced, and about which much less is understood from

a data assimilation perspective.



Chapter 5

Gravity Waves in the Truth

The experiments in the previous chapter showed that the problems associated with mis-

estimated fast-slow correlations can be alleviated to some extent by adding a balance

constraint to the assimilation, either by balance-constraining the initial covariance ma-

trix, or by adding a slow manifold projection to the analysis step. The EKF in particular

could be made far more useful by adding a balance constraint to the analysis. Such

constraints will no longer be useful, however, if the true state is not balanced. This is

the case in the mesosphere and upper stratosphere, where flows are dominated by gravity

waves [Koshyk et al., 1999], and in the tropics, where the timescale separation between

vortical modes, gravity waves, and equatorial waves becomes unclear [Žagar et al., 2004a].

The issues of an unbalanced truth and/or unclear timescale separation therefore raise

the question of how well 4D assimilation schemes can develop the right covariance repre-

sentation for cases where traditional balance constraints do not represent the full system.

Szunyogh et al. [2005] report a case of an ensemble-based 4D method capturing a real

gravity wave, and suggest that well-formulated 4D covariance models have the potential

to capture gravity waves which are present in the truth but not in the model. For tropical

data assimilation, Žagar et al. [2004a] showed that recovery of the full state from partial

observations requires accurate representation of special tropical wave solutions in the

117
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background covariance model. However, the development in time of accurate covariance

models in either case is not yet well understood.

A related question concerns observations: when the slaving relationship does not rep-

resent the full dynamics, and since different observations project differently onto vortical

and inertia-gravity wave modes, it is not clear which observation types are most useful

for recovery of the full state. Observation frequency is another complicating factor, since

inertia-gravity waves have timescales (hours to the inertial period) which are similar to

or faster than typical data assimilation intervals (usually 6 or 12 hours). It is easy to

see that, if observations are assimilated roughly once in a fast period, it will be diffi-

cult to glean the wave’s magnitude and frequency (unless there is sufficient background

knowledge about the true gravity wave).

Unbalanced Truth Experiments

In the experiments of this chapter, the truth is chosen to contain a free gravity wave with

magnitude Ĩt =
√

x̃2 + z̃2 and frequency ε, while the forecast is initialized with Ĩ f = 0.

In the EKF and 4DVAR experiments, Pf
0 and B are estimated as follows:

Pf
0 = LPf

yL
T + PGW. (5.1)

The first term is the TLB approximation derived in chapter 4, while the second term,

PGW =



0 0 0 0

0 0 0 0

0 0 σ2
x̃ 0

0 0 0 σ2
z̃


(5.2)

represents the free gravity wave component of initial fast variable variances, with

σ2
x̃ = σ2

z̃ =
σ2

Ĩ

2
. (5.3)

In the EnKF, ensemble members are initialized with free gravity wave magnitudes chosen

randomly from Ĩi ∼ N
(
0, σ2

Ĩ,0

)
, and with gravity wave phases θi chosen randomly from a
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uniform distribution between [0, π], such that the initial ensemble mean gravity wave has

zero amplitude. Since initial forecast states are balanced in all experiments, the actual

initial free gravity wave error is equal to the true free gravity wave magnitude, and we

therefore set σ2
Ĩ,0

=
(
Ĩt

)2

in both filters. The sensitivity of assimilation errors to this

formulation is examined below.

The relevant error measures in these cases are the slow mode error (2.59), the fast

error (2.60), and the error in the gravity wave phase (2.61). The no-skill error for the

slow mode in these experiments remains ∼ 1.6, as in (3.3). For fast error, no-skill means

that no gravity wave is forced in the initially-balanced analysis, in which case the average

fast error is

eI = 〈
(
Ĩt + It

slav − Ĩa + Ia
slav

)2

〉1/2 ' Ĩt, (5.4)

where the slaved components of the fast mode in the analysis and truth, It
slav and Ia

slav,

are small compared to Ĩt. For gravity wave phase, the no-skill level is π/2 ' 1.5, the

RMS of random gravity wave phase errors distributed normally between 0 and π.

Fast and Slow Analysis Increments

In chapter 4, it was shown that the fast-slow covariances which result from the balance

relationship are needed in order to correctly recover information about the slow mode

from observations of the mixed-timescale variables, and to prevent the excitation of a

spurious wave in the fast variables. Since only the balanced components of the fast

variables can be gleaned from slow variable observations, the fast mode can now be only

partially recovered in the FIL case. Fast increments in this case have the form (4.12),

which shows that the fast-slow covariances must be captured in order to correctly update

the slaved component of the fast mode.

To capture the free gravity wave from mixed-timescale observations [where fast anal-

ysis increments have the form (4.16)] the unbalanced components of fast-variable er-
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ror variances (σ2
z and σ2

x) must be large enough. For the unbalanced truth case, the

free gravity wave variance components (which obey approximately linear dynamics) will

likely dominate, so that fast variables should, in principle, be easier to capture. In the

presence of a gravity wave, recovery of the slow mode from mixed-timescale observations

involves analysis increments of the form (4.15) and thus again requires accurate modeling

of fast-slow covariances.

5.1 Gravity Waves in the Extended Kalman Filter

5.1.1 Example

Figure 5.1 shows the EKF analysis for an example state with gravity wave parameters

Ĩt = 1.5, ε−1 = 10, and b = 0.71. Observations are assimilated every ∆tobs = 3 time

units, comparing MIX observations (2.58) in column (A) and FIL observations (2.57) in

column (B). The truth and analysis for φ and x are shown in the top panels, and the true

square fast-mode error (e2
I , black) is compared to the filter-estimated fast error variance

(σ2
I , gray) in the bottom panel.

In (A) the slow mode and gravity wave phase are more or less captured by the end

of the assimilation period. However, the x analysis is generally overforced to a gravity

wave magnitude which is too large, and then not sufficiently corrected by subsequent

observations. Because the gravity wave is linear, σ2
I (lower left panel) matches the true

square error over the interval of time prior to the first observation. Nonetheless, the

EKF overreduces estimated fast error variance at observation times, and eventually di-

verges. Since fast mode variance was estimated correctly prior to the first observation,

the overreduction of fast mode variance and the associated filter divergence must (as in

the previous chapter) result from the error in EKF-estimated covariances. Covariance

estimation error can also be seen in the corresponding φ analysis: though φa is pushed

towards observations at every observation time, it deviates more and more from the truth
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Figure 5.1: The true state (black) and EKF analyses (gray) of x(t) and φ(t), for two

experiments with a true gravity wave magnitude of Ĩt = 1.5. Mixed-timescale observa-

tions are assimilated in (A) and slow observations in (B). The lower panel in each column

shows the true square fast error e2
I (black) and the associated error variance estimate σ2

I

(gray).
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between observations —indicating that the tendency of the entire state is estimated less

accurately in the EKF.

Ignoring the free gravity wave (B) improves the analysis of φ, at the cost of accuracy

in x. While it is to be expected that the gravity wave cannot be fully captured in the

FIL case, here the analysis induces an accidental gravity wave, which doesn’t match the

true gravity wave (except in frequency) and which, more importantly, is not controlled by

observations and thus allowed to grow. Since information about the balanced components

[(2.11)-(2.12)] of the fast variables can only be gleaned from observations of the slow state

to the extent that the balance relationship is sufficiently represented by the forecast error

covariance matrix, not observing the fast variables can be quite harmful if the balance

relationship is not captured accurately (as we know is the case in the EKF). This is

essentially the same instability as was identified in chapter 4, but in a different context.

It is an especially salient point in the present context, because observations in physical

situations where gravity waves are large and significant tend to be sparse and irregular

in time [Polavarapu et al., 2005]. We thus see that (1) lack of observed fast variable

information, as in chapter 4, can induce spurious unbalanced motion, and (2) even with

fast variable observations, there is filter divergence in the gravity wave, despite its linear

dynamics.

5.1.2 Observation Type and Interval

The result shown in figure 5.1 is examined more quantitatively in figure 5.2, which shows

actual and estimated errors at observation times, comparing average quantities for FIL

and MIX, divided into slow mode error (2.59), fast-mode error (2.60), and gravity wave

phase error (2.61). Error due to use of the TLM can again be seen in EKF slow mode

errors, which become larger than estimated errors after the first observation. For FIL,

fast errors grow in time and gravity wave phase errors stay at the no-skill level. While it

is to be expected that the gravity wave cannot be fully captured in the FIL case, growth
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Figure 5.2: Actual EKF analysis errors (solid lines) and predicted errors (dashed lines)

at observation times for ∆tobs = 2, with errors divided into the three components [(2.59)-

(2.61)]. Each plot compares FIL observations [(2.57), gray] and MIX observations [(2.58),

black].

of 〈eI〉300 in each filter indicates spurious projection onto the fast mode, as in figure 4.4

for the balanced truth case. Since estimated errors are updated only in proportion to

estimated fast-slow covariances, actual errors in both filters then diverge from estimated

errors. However, both 〈eI〉300 and 〈eθ〉300 on average decrease in time for MIX, indicating

that the fast wave can be captured, though actual fast errors still tend to be larger than

estimated fast errors.

Figure 5.3 examines how the difference between the observation types changes when

the assimilation system is made more nonlinear by increasing ∆tobs. Errors for the

MIX case are also compared to a set of OI experiments (MIX-OI), with mixed-timescale

observations and the same initial covariance matrix (5.1). For MIX, recovery of the

slow mode becomes worse as ∆tobs increases. Recovery of the slow mode is improved

for FIL, but here fast-mode error, due to the spurious projection of the slow mode onto

the fast mode, becomes even larger for ∆tobs > 2. Average fast mode and gravity wave

phase errors grow with ∆tobs for the MIX case, almost to the level of FIL, even though

the gravity wave is partially observed. OI, which involves no incoming cycling from

observations, has lower errors in both the slow and fast modes at large ∆tobs.
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Figure 5.3: Average analysis errors for the EKF, divided into the three components

[(2.59)-(2.61)] and shown for a range of observation intervals. Slow observations [(2.57),

gray] are compared to mixed-timescale observations [(2.58), black]. These experiment

sets are also compared to average OI errors for mixed-timescale observations (blue).

However, the EKF and OI are still on average able to achieve error reduction in

the gravity wave phase for all observation intervals shown, if observations are of mixed-

timescale. This is because the gravity wave is linear, and gravity wave phase is bounded.

For MIX, the EKF also offers some improvement over OI for ∆tobs < 2, particularly when

∆tobs is a multiple of the gravity wave period, TGW = 2πε ' 0.63. An increase in error

is to be expected in that case, since observing a wave once every cycle does not give any

information about the wave amplitude or phase. Since the same peaks do not appear in

the average EKF errors, evolution of covariances in time thus helps overcome the bias

created by poor temporal sampling of a gravity wave.

5.1.3 Formulation of the Initial Covariance Matrix

We might ask whether the problem of capturing two separate modes can be better con-

ditioned by judiciously choosing the initial covariance matrix, as was done in chapter 4.

For Ĩt = 1.5, we found that the induction of the spurious gravity wave from FIL obser-

vations is reduced somewhat by the TLB-initialization of off-diagonal terms in Pf
0 (5.1),
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Figure 5.4: Average slow [(2.59), black] and fast [(2.60), gray] errors for the EKF, as a

function of the gravity wave magnitude standard deviation (σĨ,0) estimated in the initial

covariance matrix. The true initial free gravity wave error is indicated by the vertical

dashed line.

but this result is not plotted since it is essentially similar to the same result found for the

EKF in the balanced truth case (fig. 4.6). Furthermore, the EKF’s recovery of the slow

state from mixed-timescale observations is found not to be sensitive to the initialization

of fast-slow covariances.

It is possible, however, to improve the EKF’s recovery of either mode by changing the

estimated initial variance attributed to the free gravity wave in (5.2)-(5.3). Figure 5.4

shows average slow and fast errors for the EKF as a function of σĨ,0. Both errors decrease

as σĨ,0 increases, but are essentially independent of this quantity once it is sufficiently

large. Gravity wave phase errors are omitted from this figure because they look similar

to the other two measures.

Comparison of estimated and actual fast variable error variances in time for these ex-

periments shows that the EKF usually overreduces forecast error variances in the analysis

step (as in the lower panel of figure 5.1). Since the gravity wave doesn’t grow between
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Figure 5.5: Average EKF analysis errors divided into the three components [(2.59)-

(2.61)], over a range of true gravity wave magnitudes, Ĩt, comparing MIX [(2.58), black]

and FIL [(2.57), gray] observations, and a set of OI experiments (MIX-OI, blue) with

MIX observations and the same initial covariance matrix as EKF.

observations, the overreduced fast error variances continue to underestimate true error

variance, and subsequent observations are not given enough weight. Starting from an

initial fast variable error variance that is much larger than the actual variance delays the

point where fast variable errors become underestimated, by a few observation times. At

the same time, a larger initial free gravity wave error variance means that the adjustment

of this variance will be stronger during the analysis step (2.36). This in turn causes the

estimated variances to be overreduced. As a result, increasing the initial estimate of σĨ,0

tends to reduce errors only to an extent, so that average errors cannot really be decreased

for σĨ,0 > 0.5. Thus, as in the balanced-truth case, the EKF is sensitive to initial formu-

lation of the covariance model, but has a tendency to diverge as the assimilation cycle

winds on.

5.1.4 Effect of Free Gravity Wave Magnitude

The free gravity wave can be made more significant for the evolution of the full system if

its magnitude (Ĩt) is increased. Figure 5.5 examines the effect of increasing free gravity
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wave magnitude for the EKF and the two observation types. The MIX case is again

compared to a corresponding set of OI runs with corresponding covariance matrix and

observations.

For MIX, 〈eI〉 grows with Ĩt because the initial forecast is balanced, and it takes

longer for the assimilation cycle to generate a gravity wave as large as the true gravity

wave. In this case, gravity wave phase errors decrease with increasing gravity wave

magnitude, simply because a larger free gravity wave magnitude means that the ratio

between observation error and the gravity wave signal is decreased. Here the EKF has

slightly lower errors than OI though, since the gravity wave is linear and therefore easier

to capture, the improvement of 〈eθ〉 saturates rather quickly. Interestingly, MIX-OI errors

clearly do increase with the magnitude of the true gravity wave. This indicates a benefit

to the EKF’s covariance model, despite its shortcomings.

For FIL, slow mode errors can be expected to increase with the magnitude of the

free gravity wave, since the influence of the free gravity wave on the evolution of the

slow mode is not captured in this case. However, though fast errors still generally exceed

the no-skill levels for FIL, this does not affect slow mode errors, which show no clear

sensitivity to Ĩt. Even for Ĩt = 3, a free gravity wave that is twice as large as that

shown in the example (fig. 5.1), recovery of the slow mode is still better if observations

of the full slow mode, rather than observations which contain the gravity wave signal,

are assimilated.

5.1.5 Gravity Wave Period

The role of the gravity wave in the evolution of the system can also be changed by chang-

ing the timescale separation parameter ε, or the coupling parameter, b (see next section).

Increasing ε means that the gravity wave becomes slower relative to the slow mode,

while the balanced components of x and z become larger, and the balance relationships

[(2.11)-(2.12)] more nonlinear.
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Figure 5.6: As in figure 5.5, but now showing errors as a function of the period of the

true-state gravity wave.

Figure 5.6 compares average true errors for sets of experiments where ε is increased,

comparing MIX to FIL as a function of the period of the gravity wave (TGW = 2πε), and

again comparing MIX to a set of OI experiments (MIX-OI). For FIL, average slow error

increases with TGW, with errors surpassing the MIX case for TGW greater than about 1

or 1.5. This means that it is harder to ignore the gravity wave as timescales move closer

together. This makes sense, since slow mode analysis increments become larger if the

ignored gravity wave has a larger impact on the evolution of the slow mode. For larger

analysis increments, covariance estimation error is amplified.

One might expect slow errors to decrease with increasing TGW for mixed-timescale

observations, since observations of w′ contain more information about the slow mode at

larger ε. Since slow mode errors for MIX don’t decrease on average, it seems that most of

the error in the MIX case comes from not observing the entire vortical mode, and can’t

be greatly improved by increasing the slaved component of the fast mode. Gravity wave

phase errors, however, do decrease with increasing ε for FIL, reflecting the fact that a

greater component of the fast variables is slaved to the slow mode, and thus informed by

slow observations, as ε increases.

In the MIX case there are also peaks in all three error measures at TGW = 1 and 2,
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Figure 5.7: As in figure 5.6, but now showing errors as a function of the coupling param-

eter, b.

where the gravity wave period is commensurable with ∆tobs = 2. These peaks correspond

to the increased errors for OI in figure 5.3, and though they also appear for the EKF

here, they are larger for OI. This indicates again that the evolution of the covariance

matrix helps to reduce the effect of this bias, because information about the true gravity

wave is taken up and spread forward in time.

5.1.6 Slow-fast Coupling

Figure 5.7 compares the effect of changing b while keeping ε and Ĩt fixed. b also changes

the nonlinearity of the balance relationship and hence the accuracy of estimated correla-

tions [fig. 4.1], but without changing the timescale of the gravity wave. This again means

that the evolution of the slow mode between observations depends more heavily on the

fast variables, while the slaved components of the fast varlables become slightly larger.

b also changes the information content of observations. As b increases, w′ becomes more

gravity wave dominated, while z′ becomes more slow mode dominated. This means that

MIX observations, as defined in (2.58), contain increasingly more information about the

gravity wave, and less about the slow mode.

As in the previous figure, average slow mode error increases for FIL as the gravity
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wave becomes more important for the evolution of the whole system. There is also,

again, an advantage in the EKF relative to OI: though MIX observations contain less

information about the slow mode as b increases, 〈es〉 only clearly increases with b for OI.

It is somewhat surprising that the EKF can achieve this, even though estimated fast-slow

covariances are fairly poor.

Fast mode and gravity wave phase errors both decrease with increasing b in the MIX

case, an obvious result since more information about the gravity wave is contained in the

observations as b increases. Even though the balanced components of fast variables are

increased slightly, they are still of order ε, so about a tenth of the full gravity wave mag-

nitude. Thus, gravity wave magnitude and phase error do not decrease with increasing b

(as they did for increasing ε) in the FIL case.

5.2 Gravity Waves in the Ensemble Kalman Filter

We now turn our attention back to the EnKF, which was shown in chapter 4 to have

more accurate fast-slow covariances, but which also clearly benefitted from averaging to

produce a balanced analysis. For an unbalanced truth, the challenge is instead to capture

both fast and slow motions with accurate amplitudes.

5.2.1 Example

Figure 5.8 shows the analyses from an 8-member EnKF, corresponding to the example

shown in figure 5.1, again comparing MIX and FIL observations.

In the case of mixed-timescale observations (A), the ensemble locks onto the true grav-

ity wave magnitude and phase within a few observations. In contrast to the corresponding

EKF case [fig. 5.1 (A)], EnKF-estimated fast mode variances are also a closer approxi-

mation to the true square error in the fast mode, though this error is still underestimated

somewhat. Changing to FIL observations, the slow mode analysis is improved slightly
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Figure 5.8: The true state (black) and EnKF analyses (dashed line) of x(t) and φ(t), for

two EnKF experiments with a true gravity wave magnitude of Ĩt = 1.5. Mixed-timescale

observations are assimilated in (A) and slow observations in (B). The ensemble in each

case is shown in gray. The lower panel in each column shows the square fast error in

gravity wave magnitude e2
I (black) and the associated error variance estimate σ2

I (gray).
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Figure 5.9: Actual EnKF analysis errors (solid lines) and predicted errors (dashed lines)

at observation times for ∆tobs = 2, with errors divided into the three components [(2.59)-

(2.61)]. Each plot compares FIL observations [(2.57), gray] and MIX observations [(2.58),

black].

while the gravity wave is not captured. Assimilation reduces the initially-present gravity

waves in individual ensemble members, but they do begin to phase-lock somewhat, leaving

a net (spurious) gravity wave. We thus see a possible advantage of ensemble-estimated

covariances, in that both modes can be captured from mixed-timescale observations,

while the spurious gravity wave is reduced (though not eliminated) for slow observations.

5.2.2 Observation Type and Interval

The difference between the two observation configurations is examined in terms of average

errors in figure 5.9, which shows actual and estimated errors at observation times for MIX

and FIL, again divided into the three error components, as in figure 5.2. In this case,

a 50-member EnKF is used, so that the covariance model is as accurate as possible.

There are two clear differences from the EKF case: First, there is less difference between

estimated and true fast error in FIL, indicating, again, less spurious projection onto the

fast mode from slow observations. A new result is that slow mode errors show no clear

difference between the two observation types, indicating that the slow mode is retrieved
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Figure 5.10: Average analysis errors for the EnKF, divided into the three components

[(2.59)-(2.61)], and shown for a range of observation intervals. FIL observations [(2.57),

gray] are compared to MIX observations [(2.58), black] and OI with MIX observations

(blue).

from mixed-timescale observations as though the full slow mode had been observed.

Again casting this result into different regimes of nonlinearity, figure 5.10 compares

the two observation configurations across increasing observation interval, for an EnKF

with 50 ensemble members, again comparing MIX to FIL. For comparison with the

corresponding EKF figure (fig. 5.3), the axes have been kept the same and the set of

MIX-OI experiments is again included. Here the EnKF again shows the stability shown

in chapters 3 and 4: at ∆tobs much larger than what is allowed for the TLM to be a

valid approximation, the EnKF still returns errors that are low relative to OI, for both

observation types. There is also, as in chapter 4, very little uncontrolled projection onto

the gravity wave; fast-mode and gravity wave phase errors remain near the no-skill levels

for FIL, and are significantly lower for MIX. Recovery of the slow mode in the 50-member

EnKF is not as sensitive to the two observation types as in the EKF, though the difference

between FIL and MIX increases with increasing ∆tobs. Again, we see that retrieval of

the slow mode from mixed-timescale observations becomes more difficult as covariance

estimation error increases.
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Figure 5.11: Average true slow [(2.59), black] and fast errors [(2.60), gray] for the EnKF

as a function of ensemble size, N , with Ĩt = 1.5. The average EKF slow and fast

magnitude errors for ∆tobs = 2 are shown by dashed lines.

5.2.3 Ensemble Size and Initial Covariance Model

The ensemble size in the experiments above is, of course, quite large. Average EnKF slow

and fast errors are plotted over a range of ensemble sizes in figure 5.11, for experiments

with ∆tobs = 2 and MIX observations. For comparison, the average EKF slow and fast

errors for ∆tobs = 2 are also shown by dashed lines. Both error measures (as well as

gravity wave phase error, not shown here) stop decreasing for ensembles greater than

about 15 members, with little difference between 10 and 15 ensemble members. For the

slow mode, the EnKF becomes comparable to the EKF at about 6 ensemble members; for

the fast mode, it is about 8. The difference implies that the (almost linear) gravity wave

is slightly more difficult to capture from the MIX observation configuration as defined

by (2.58), and is more sensitive to the accuracy of covariance estimates.

It was also found, though not shown, that estimation error due to sampling becomes

clearer when ∆tobs . 1, with the EnKF diverging slightly more easily here than for

intermediate observation intervals, as in figure 4.13. In this case, to get more accurate
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Figure 5.12: Average true slow mode error [(2.59), black] and fast error [(2.60), gray] for

the EnKF as a function of the gravity wave magnitude standard deviation (σĨ,0) with

which the ensemble is generated. The true initial free gravity wave error is indicated by

a line.

estimated error statistics, the observation interval needs to be increased, which decreases

analysis quality. The EnKF has a tendency to diverge because the ensemble phase-

locks around the wrong gravity wave. Whereas the ensemble spreads naturally between

observation times in the chaotic slow mode, it does not in the nearly-linear gravity wave.

This leads again to the question of whether filter divergence can be alleviated by

changing the initial (pre-assimilation) covariance model. Initial estimated fast variable

variances in the EnKF can be controlled by changing the distribution of free gravity wave

magnitudes in the initial ensemble. This is done in figure 5.12, which shows average slow

and fast errors over a range of σĨ,0, the standard deviation of the distribution from

which the free gravity waves in the initial ensemble are generated, with N = 50. This

figure is suprisingly different from the corresponding EKF experiment (fig. 5.4). Here,

average fast errors are actually lowest for σĨ ∼ 0.5, which is an underestimation of the

initial error in the free gravity wave magnitude (eĨ = Ĩt = 1.5), and tend to increase
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for estimates larger than that. Figure 5.12 actually shows two competing effects: while

increasing σĨ,0 increases the weight applied to observations of the fast mode and thus

tends to reduce gravity wave errors, it increases slow mode errors. The explanation for

this is found in the examination of individual experiments, which show that a strong

analysis increment in the fast variables (due to a wide distribution of free gravity wave

amplitudes in the ensemble) can overreduce the spread of the ensemble in the slow mode,

causing an overreduction of ensemble spread for subsequent observation intervals. This

in turn harms the gravity wave analysis, causing the 〈eI〉 curve in figure 5.12 to increase

again, with an “optimal” σĨ of about 0.5.

It must be mentioned that this result only happens on average, and that increasing σĨ,0

improves the analyses of both modes in some realizations. The main point made by figures

5.4 and 5.12 is that overestimation of error variance for one mode can cause overreduction

of error variances overall, and can therefore be detrimental to the recovery of the other

mode. Furthermore, we find again that the reactions of two different assimilation systems

to similar changes in data assimilation parameters can be quite different. The experiments

of this section suggest that divergence of the EnKF may be quite difficult to prevent for

small ensembles.

5.2.4 Effect of Free Gravity Wave Magnitude

It remains to examine the EnKF with respect to the parameters which define the gravity

wave. The effect of free gravity wave magnitude on the EnKF analysis is examined in

figure 5.13, which compares average analysis errors for MIX and FIL observations, using

a 15-member EnKF.

Like the EKF, the EnKF slow mode analysis shows no sensitivity to the magnitude of

the free gravity wave in slow mode errors. While fast errors stay at the no-skill level for

FIL observations, they are significantly below the no-skill level for MIX, and also lower

than corresponding EKF errors (fig. 5.5). This means that the (large-ensemble) EnKF
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Figure 5.13: Average analysis errors for a 15-member EnKF, divided into the three

components [(2.59)-(2.61)], over a range of true gravity wave magnitudes, Ĩt, comparing

MIX [(2.58), black] and FIL [(2.57), gray] observations, and OI with MIX observations

(blue).

adjusts the ensemble-mean from a zero initial gravity wave to the correct gravity wave

magnitude more easily than does the EKF. As in the EKF, gravity wave phase error

decreases with Ĩt for mixed-timescale observations, again because of a presumably lower

error-to-signal ratio. All in all, figure 5.13 shows that the EnKF in general is better able

to capture either mode when both are observed, though, as implied by figure 5.11, this

still requires a fairly large ensemble.

5.2.5 Gravity Wave Period and Slow-Fast Coupling

Figure 5.14 compares average MIX and FIL analysis errors over a range of gravity wave

periods, for a 15-member EnKF. This figure is similar to the corresponding EKF figure

(fig. 5.14) in that MIX gives lower slow mode errors than FIL as the impact of the gravity

wave on the evolution of the slow mode is increased (by making the gravity waves slower).

The difference between observation types is less pronounced in the EnKF, indicating that

the larger analysis increments, which amplify covariance estimation error, are less critical

here.
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Figure 5.14: As in figure 5.13, but now showing errors as a function of the period of the

true-state gravity wave.
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Figure 5.15: As in figure 5.14, but now showing errors as a function of the coupling

parameter, b.

Figure 5.15 shows average EnKF errors as a function of the coupling parameter, b. The

result is basically similar to the corresponding EKF result (fig. 5.14), with the exception

that there is, again, less difference between slow and mixed-timescale observations in

slow mode errors. The similarity of the EKF and EnKF errors over changing ε and b

means that the effective nonlinearity of the assimilation system doesn’t change as these

parameters change in the presence of a free gravity wave in the truth —though the

effectiveness of flow-dependent covariances clearly does increase.
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5.3 Gravity Waves in 4DVAR

So far we have seen that the EKF and EnKF are both able to disentangle the fast and

slow modes, as long as both are observed and observations are frequent, though even then

the EnKF is better able to capture the free gravity wave. We now compare this result to

4DVAR. 4DVAR was shown in chapter 4 to yield more balanced states, in part because

its implicit covariance model is more stable than that of the Kalman filters over large

∆tobs, but also because the minimization was cut off before too much spurious imbalance

could be induced.

5.3.1 Example

Figure 5.16 (a) shows the 4DVAR analyses of φ and x for the MIX experiment shown in

figures 5.1 (A) and 5.8 (A), with the assimilation period divided into three minimization

windows of size ∆T = 10. The same experiment is repeated in figure 5.17, but now

assimilating slow observations (2.57). Also shown in each figure is the reduction of errors

in the slow mode (b) and fast mode (c) over successive minimization iterations for each

window. The minimization is cut off at nine iterations in this example.

In both cases, convergence of the slow mode analysis happens within three or four

iterations for all three windows. For FIL (fig. 5.17), the free gravity is, of course, not

recovered at all, but neither is there a spurious gravity wave. For MIX (fig. 5.16),

the gravity wave magnitude is underestimated over the first time window, even in nine

iterations. This is the window where the background estimate of φ is closest to the truth

and hence requires the least adjustment. It can be seen [fig. 5.16 (c)] that adjustment of

the fast mode over the iterations is consequently too small in this window. Note that in

chapter 4 larger increments at the minimization iterations meant a greater loss of balance.

Here, conversely, larger increments mean a greater ability to match the amplitude of the

free gravity wave.
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Figure 5.16: (a) The true state (black) and 4DVAR analysis (gray) of x(t) and φ(t), for

a sample case with a true gravity wave magnitude of Ĩt = 1.5. Boundaries between the

three minimization time windows (∆T1 = [0, 10], ∆T2 = [10, 20], and ∆T3 = [20, 30]) are

denoted by dashed lines. (b) Slow mode error as a function of minimization iteration,

for the first time window (black, solid), the second time window (gray, solid), and the

third time window (black, dashed). (c) As in (b), but for fast-mode error. In this case,

mixed-timescale observations (2.58) are assimilated, and ∆tobs = 3.
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Figure 5.17: As in figure 5.16, but assimilating slow observations (2.57).

5.3.2 Observation Type

To compare the effect of observation variable, average errors at observation times for

MIX and FIL are shown in figure 5.18. In these experiments, the minimization is again

cut off at the threshold ew,rms = 0.2. As in the EnKF but in contrast to the EKF, there

is no difference between the two observation configurations in average slow mode errors,

indicating that (for this observation frequency) 4DVAR is able to recover the full slow

mode even from mixed-timescale observations to the same level of accuracy as when slow

observations are assimilated.

Recovery of the free gravity wave for MIX is extremely weak; this is a sign of the

minimization iteration cutoff. A difference can also be seen between the three minimiza-

tion windows; fast errors are decreased most in the second and third time windows, but

not at all for the first time window. This is because the background estimate is clos-

est to the truth in the first time window, and only requires one or two iterations to be

brought below the slow error threshold, whereas more iterations are necessary to fit the

slow mode in the second and third time windows, and these iterations also involve larger

steps —thereby generating larger free gravity waves. Reduction of gravity wave phase
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Figure 5.18: Average 4DVAR analysis errors at observation times for ∆tobs = 2, with

errors divided into the three components [(2.59)-(2.61)]. Each plot compares FIL obser-

vations [(2.57), gray] and MIX observations [(2.58), black].

error is also much weaker in 4DVAR than in the Kalman filters.

Figure 5.19 shows average 4DVAR analysis errors as a function of observation in-

terval, again comparing the two observation configurations to OI with mixed-timescale

observations. We found that, in order to noticeably reduce fast errors below the no-skill

level, 4DVAR had to be run out to at least 3 or 4 minimization iterations. Hence, the

experiments in this figure are performed with 5 conjugate gradient iterations, and no

cutoff threshold. For FIL, the slow mode shows no clear sensitivity to the observation

interval. For MIX, recovery of the slow mode becomes slightly more difficult as ∆tobs

increases. This tells us that the fast-slow covariances implied by the adjoint sensitivity

calculation become worse estimates as nonlinearity in the assimilation increases. How-

ever, the difference between the observation types is still far smaller than in the EKF

(fig. 5.19).

Because 4DVAR has almost no spurious projection of observational information onto

the fast mode in the FIL case, average fast mode and gravity wave phase errors in this

case also barely deviate from the no-skill level. For MIX, recovery of the fast mode

magnitude is also more stable over ∆tobs than in the EKF, and is comparable to the

EnKF for large ∆tobs. However, 4DVAR generally has difficulty finding the phase of
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Figure 5.19: Average analysis errors for 4DVAR, divided into the three components

[(2.59)-(2.61)], and shown for a range of observation intervals. FIL observations [(2.57),

gray] are compared to MIX observations [(2.58), black] and OI with MIX observations

(blue).

the free gravity wave, even though the minimization is run out to enough iterations to

recover the fast mode magnitude. While average gravity wave phase error is less than

the no-skill level for MIX, it is still much larger than in the corresponding EKF (fig. 5.3)

and EnKF (fig. 5.10) cases, and is even larger than average errors for OI.

As shown in the previous two chapters, another way to increase nonlinearity of the

4DVAR analysis is to change the size of the minimization window, ∆T . In figure 5.20,

the three error measures are examined as a function of ∆T . Again, the minimization is

cut off at 5 iterations but with no slow error threshold. As in the balanced truth case

(fig. 4.21), the optimal minimization window for the slow mode (as well as for gravity

wave phase) is around ∆T = 7. However, now having a longer minimization window also

increases fast-mode error. Recall that larger ∆T means that the slow mode analysis is

adjusted less towards the true state, because the cost function becomes nonlinear. While

in chapter 4 this meant less excitation of a spurious gravity wave, here it means that

there is less opportunity to generate a sufficiently large gravity wave in the analysis. As

a result, the ability to capture the gravity wave is closely linked to the ability to capture
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dow, comparing average slow error (black), fast error (gray), and gravity wave phase

error (blue), for experiments with ∆tobs = 2, and MIX observations.

the slow mode.

5.3.3 Effect of Free Gravity Wave Magnitude

So far we have seen that 4DVAR can only capture the full magnitude of the free gravity

wave if roughly twice as many minimization iterations are done as are needed to capture

the slow mode. What about free gravity waves of different magnitudes? Figure 5.21 com-

pares average 4DVAR errors as a function of Ĩt, for experiments where the minimization

algorithm is cut off when ew,rms ≤ 0.2, again comparing MIX to FIL and MIX-OI.

As in the previous figures, the FIL experiments do not at all reduce fast error in

4DVAR, but slow error for FIL also does not increase with Ĩt, as it does in OI. For MIX,

fast mode and gravity wave phase errors are closer to the no-skill level when the gravity

wave amplitude small, but are lowered (relative to the no-skill level) as Ĩt is increased.

Recall that, for larger free gravity waves, the deviation of the slow mode from the truth

is greater, and minimization increments will therefore be larger. Having already seen
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Figure 5.21: Average analysis errors for 4DVAR, divided into the three components

[(2.59)-(2.61)], over a range of true gravity wave magnitudes, Ĩt, comparing MIX [(2.58),

black] and FIL [(2.57), gray] observations, and OI with MIX observations (blue).

that larger minimization increments lead to larger gravity wave generation (both in the

balanced and unbalanced truth cases), it follows that a larger gravity wave is generated

for large Ĩt. Overall reduction from the no-skill level is therefore greatest when Ĩ is large.

Of course, these gravity waves are still too small because the minimization is cut off

when the w-error threshold is passed, and both fast mode and gravity wave phase errors

typically exceed corresponding OI errors.

〈eI〉 and 〈eθ〉 can of course be reduced by allowing the minimization to iterate longer,

but these results are omitted since they don’t really show anything new. As in the EKF

and EnKF, recovery of the slow mode is stable in these experiments, even when the

(largely unrecovered) free gravity wave is large. Experiments with increasing ε and b

showed a similar result — namely that recovery of the fast mode is improved when the

distance between the background estimate and true state is larger — and are thus also

omitted.
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5.4 Discussion

Since observations are far less abundant in the middle atmosphere and the tropics than

they are in the midlatitude troposphere, accurate data assimilation is an even greater

necessity in those regions. The experiments of this chapter show that dynamic error

covariances can be quite beneficial, both in recovering the slow mode when the fast mode

is unobserved, and in recovering both modes from mixed-timescale observations. The

implications for realistic applications are as follows.

The very accurate covariance model of an EnKF with a large ensemble could easily

retrieve both modes. Realistically, ensemble size is of course extremely limited. However,

even with less accurate covariance models, both the EKF and EnKF were found to be

improvements over OI, especially in the task of disentangling the slow and fast modes

from mixed-timescale observations. Moreover, by developing dynamic error covariances,

all three methods are able to overcome the increase in analysis error (in OI) when the

observation interval is a multiple of the gravity wave period. These results suggest that

4D methods will become extremely useful for assimilation in the unbalanced regions of

the middle atmosphere.

Though ε and b control the nonlinearity of the slaving relationship between fast and

slow variables, it was found that increasing either parameter primarily changes the non-

linearity of the assimilation system by increasing the size of analysis increments for ob-

servations which ignore the gravity wave, resulting in greater amplification of error in

estimated correlations. If fast variables are observed, there is little difference between the

EKF and EnKF in these experiments, aside from the peaks at ∆tobs = nTGW. Thus, the

balance parameters don’t necessarily affect the effective nonlinearity of the assimilation

system. This result is encouraging, as it suggests that, as long as the assimilation system

is able to separate the two modes without external balance constraints, it should also be

suitable in the tropics.

4DVAR, which improves upon the EKF’s TLM-based covariance model by not up-
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dating covariances explicitly (as shown in previous chapters), is comparable to the EnKF

in its ability to retrieve the slow mode from mixed-timescale observations. However, it

is, overall, difficult for 4DVAR to retrieve the free gravity wave, unless about twice as

many iterations of the minimization are performed as are necessary to capture the slow

mode. The tendency of 4DVAR to increase the analysis free gravity wave with increasing

minimization iterations has similarity with the results of Tanguay et al. [1995], who found

that 4DVAR recovers scales which are fast relative to the observations as the minimiza-

tion continues. Though that study was concerned mainly with spatial scales, we see a

similar principle here: because the model contains scales not resolved in the observations,

the unobserved scales can in a sense be filled in by continuing the iterations of the mini-

mization. Information is transferred thereby from the spatial scale of the observations to

smaller scales. In our experiments, this greatly increases the cost of 4DVAR experiments

relative to the Kalman filters.

Another interesting difference between 4DVAR and the Kalman filters was found for

the phase of the free gravity wave. Even if enough minimization iterations are done

for 4DVAR to recover the fast mode magnitude, error in the gravity wave phase is still

reduced only slightly —whereas both the EKF and the EnKF found gravity wave phase

quite easily. This could be an advantage of sequential assimilation, though it can also

be argued that the EKF and EnKF are so successful at recovering the phase because

the gravity wave frequency (ε−1) is already known. This is addressed briefly in the next

chapter.
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Chapter 6

Model Error and Bias Correction in

the EnKF

6.1 Introduction

The previous two chapters showed that dynamic error covariance models benefit the

recovery of both balanced and unbalanced states, as long as the assumptions upon which

each assimilation scheme is built are valid. The EnKF in particular performed quite well

without additional balance or gravity wave constraints, as it showed stability and the

ability to recover both modes over large ∆tobs (e.g. fig. 4.13), and was easily adaptable

to unbalanced truth (fig. 5.10) and large-ε (fig. 5.14) cases.

It can be argued, of course, that at least part of the EnKF’s success in these experi-

ments can be attributed to the fact that the ensemble was generated from a perfect model.

Models are always imperfect in the real world, which makes 4D covariance models which

assume a perfect model fundamentally biased —even for frequent observations, clever

initial covariance formulation, a large ensemble, etc. If model bias is not accounted for

within the data assimilation system, the forecast/analysis errors which are estimated by

the assimilation scheme will underestimate true errors, giving too much credence to the

149
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model and not enough to observations. Another caveat for the EnKF results shown here

is that the ensemble sizes required to exceed the accuracy of the EKF (e.g. figs. 4.12 and

5.11) and to control the fast wave (N ' 4−6) were around or above the state dimension.

For an operational model, this is a prohibitively expensive requirement.

There exists a large amount of literature suggesting modifications to and alternative

formulations of the standard 4D assimilation schemes, which are intended to deal with

both the small-ensemble and model error problems. Some of these modifications take the

form of additional terms added to the equations, while others replace the forward evolu-

tion of covariances, or the analysis step (of the state or its covariance estimate), with an

alternative formulation. In 4DVAR, it is possible to add extra terms to the cost function

[Daley, 1991, chapter 13, Courtier and Talagrand, 1990, Fisher et al., 2005], or to the

perturbation forecast model [Lorenc, 2003a], or to make model error parameters part of

the control vector [Lorenc, 2003a]. In the Kalman filter, one can add “forgetting factors”

to the evolution of covariances, which decrease the link between forecast covariances and

the preceding analyses, and thus lessen the model constraint on the assimilation. It is

also possible to adaptively estimate biases, using information from observations. In this

chapter, we address the effect of forgetting factors and adaptive bias estimation.

It is important to note that such modifications need to account not just for errors in

the model and parametrizations of unresolved physics, but also for the cumulative effects

of an imperfect assimilation system, due to nonlinearity, sampling error, and practical

limitations. Following Dee [2005], we refer to the sum of all these effects as the bias.

Because bias consists of so many, largely cumulative effects, it has been pointed

out [Dee, 2005, Ehrendorfer, 2006] that modifications intended to correct bias cannot

be trusted blindly based on a few successful experiments, but must be understood as

fundamentally as possible. Dee [2005] also points out that the large variety of bias sources

means that, while bias-aware assimilation is rather simple in principle, the formulation

of bias models is difficult. In the exL86 model, for example, we have found that bias in
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the EnKF comes not just from model error, but also from the clustering of the ensemble

around the wrong or a spurious gravity wave. If a suggested trick improves the analysis

in one case, it may not necessarily accomplish the same in every other system, and

could, in fact, make things worse. Dee [2005] points out that misspecified bias correction

(modifications to the algorithm which treat the wrong bias source) will exacerbate filter

divergence. Moreover, since modifications and alternative formulations are expensive to

implement operationally, it makes sense to begin the comparison in the realm of low-

order models, where individual phenomena (in our case, balance and imbalance) can be

isolated and understood in a simple and transparent manner.

In this chapter, we focus on the covariance model which required the fewest external

constraints —that of the EnKF— and consider what happens to the analyses of balanced

and unbalanced states when systematic errors are present in the model. We then compare

three modifications to the standard EnKF for both perfect and imperfect implementations

of the exL86 model, and examine how the analyses of the slow and fast modes change

under these additional terms.

6.2 Simulation of Model Error

The first step is to see to what extent the advantages of the EnKF’s covariance model

break down in the presence of model error. First, recall that the eventual divergence of

the EnKF (meaning: ensemble spread becoming less than true analysis error), even for

a perfect model, is almost inevitable (e.g. fig. 4.11). Filter divergence was found in the

experiments of chapter 4, where the ensemble phase-locked around a spurious gravity

wave, and in chapter 5, where the ensemble phase-locked around the wrong gravity wave.

The possibility of obtaining a biased ensemble from a perfect model has also been noted

by Whitaker and Hamill [2002] and Houtekamer et al. [2005]. Addition of model error to

an intrinsically-flawed data assimilation system then implies that the distance between
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the truth and the central forecast will grow faster than the estimated forecast error,

leading to further filter divergence.

6.2.1 Model Error in the Gravity Wave

In all experiments shown so far, forecasts and true states were evolved with the same

model, so that the analyses were always perfect in gravity wave frequency. It can be

argued that this is at least part of the reason why the EKF and EnKF converged rather

easily in gravity wave phase (e.g. fig. 5.8). In the real world, observed gravity wave

frequencies differ from model-resolved frequencies, and both differ from the truth. For

example, fast gravity waves are less likely to be observed than slow gravity waves, simply

because fast waves spend less time in an instrument’s observation region [Alexander

and Barnet, 2006]. Moreover, gravity-wave frequencies are altered by model numerics.

To examine this issue, we consider two sets of experiments in which the perfect model

restriction is removed for the gravity wave parameters, ε and b.

In the first set of experiments, the EnKF with 50 ensemble members is run over a

range of gravity wave frequencies εf assumed by the forecast model, with truths generated

with gravity waves of frequency εt = 10−1 and magnitude Ĩt = 1.5. In the second set of

experiments, the parameter bf in the forecast model is changed, while keeping the true

value constant at bt = 0.71. Column (A) shows the three error measures as a function of

the forecast model gravity wave period, T f
GW = 2φεf, while Column (B) shows analysis

errors over a range of bf. The true values of gravity wave period or coupling parameter

are indicated in each plot.

Column (A) shows that analysis errors associated with the gravity wave shoot to

no-skill levels for any T f
GW 6= T t

GW. That fast error occasionally exceeds 1.5 indicates

the excitation of spuriously large, uncontrolled gravity waves. Failure to capture the

gravity wave also increases slow mode error. Since the gravity wave is not captured at

all in these cases, analysis error also increases when the gravity wave period is a multiple
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Figure 6.1: (A) Average analysis errors (as in previous figures), changing the timescale

separation parameter in the forecast model, εf. (B) The same, but changing the parameter

bf which is estimated by the forecast model. In both experiments, a 50-member EnKF is

used.
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of the observation interval, and we see small peaks at TGW = 1 and 2, as in the OI

experiments in figures 5.3 and 5.6.

A less extreme case of model error is shown in Column (B), where there is still some

skill in estimating gravity wave phase, even for bf = 3. Underestimating this parameter

(bf < 0.71) increases error less than when it is overestimated (bf > 0.71). This results

from the fact that b changes the information content of the observation, from being

purely slow to being mixed. For bf > 0.71, the assimilation is assuming that w′ is more

mixed than it is really, resulting in adjustment of the gravity wave away from its true

amplitude and phase, and not enough adjustment of the slow variables, which suffer from

the misestimated gravity wave. For bf < 0.71, the assimilation is assuming that w′ is less

mixed than it really is, and thus adjusts the slow mode with more information than is

actually contained in the observations, while the gravity wave is not adjusted enough.

This increases slow mode errors slightly, while errors for the gravity wave, which is easier

to capture, stay about the same.

Though these two experiments are highly idealized (since only one type of gravity

wave is admitted in each, truth and forecast), they show that the EnKF’s ease in locking

onto a linear gravity wave phase will be limited by any differences between the resolved

frequencies in observations and model. When the ability to capture a gravity wave is lost,

the analysis of the vortical mode suffers as well. Incidentally, repeating the experiments

of figure 6.1 with the EKF (not shown) shows similar behavior but overall larger average

errors. This suggests that accurate 4D development of forecast error covariances can

nevertheless help to reduce this consequence of model error in resolved gravity wave

parameters.

6.2.2 Model Error in the Slow Mode

A less extreme way to simulate systematic model error in the exL86 model is to give

C(t), which controls the degree of chaos in the slow mode, different time dependencies
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in the forecast model. In the experiments to follow we generate the true state with

Ct(t) = a0 + a1 cos(γt), with a0 = 1, a1 = 0.8, and γ = 0.92, as in previous chapters.

Ensembles will now be generated with C f(t) = af
0 + af

1 cos(γt), under the following three

model error scenarios:

ME0 The reference case of zero model error. Here the forecast is generated with the

same parameters as the truth.

ME1 The forecast has a nonchaotic slow mode. In this case, af
1 = 0, with all other

parameters as in the truth.

ME2 The forecast slow mode has greater variability. Here af
0 = 4, with all other param-

eters as in the truth.

Figure 6.2 illustrates the three model error scenarios for a reference experiment where

the true state is balanced, and MIX observations (2.58) are assimilated every ∆tobs = 4

time units using a 10-member ensemble. Figure 6.2 (A) shows the EnKF analysis for the

perfect model scenario (ME0), while (B) and (C) show the analyses which result from

model error scenarios ME1 and ME2, respectively. All other parameters and random

number realizations are the same. The assimilation window in these and subsequent

examples has been shortened to 15 time units in order to make the analysis of the

gravity wave more visible. RMS slow and fast errors over the assimilation window are

also shown for each experiment.

Some general effects of systematic model error (which have nothing to do with balance

and gravity waves) are illustrated by these examples, and can be seen most clearly by

comparing the φ analyses between the three model error cases. For ME0, the ensemble is

spread more or less evenly about the central analysis, though the spread is tight compared

to the actual error around t = 5. For ME1 and ME2, things look much worse: The ME1

ensemble (B) doesn’t spread enough between observations (reflecting the lack of chaos in

the forecast model) and becomes tightly clustered around a poor estimate, doubling the
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rms slow mode error. The ME2 ensemble spreads too much between observations, and

becomes bimodal —tripling the slow mode error.

In regards to balance, the process of assimilation reduces net imbalance in the ME0

ensemble, though, as in chapter 4, the ensemble still locks onto a small gravity wave

by the end of the assimilation period. Loss of balance and phase-locking effects are far

more egregious for ME1: instead of reducing imbalance, the assimilation of observations

mainly causes more ensemble phase-locking. Imbalance is actually lowest in the ME2

case, but we shall see below that this is a fluke for this particular realization.

These examples show again that the advantages of 4D covariance models, in regards

to balance and gravity waves, can diminish in the presence of model error, as in §6.2.1.

The next three subsections will consider how filter divergence due to systematic error in

the slow mode, and the associated loss of balance or recovery of the true-state gravity

wave, can be controlled by adding extra terms to the EnKF analysis.

6.3 Modifications to the EnKF Analysis

We now examine three simple ways of overcoming bias in the EnKF, which have varying

degrees of complexity: covariance inflation, the addition of white noise to the ensemble,

and an adaptive bias estimation algorithm.

6.3.1 Covariance Inflation / Deflation

Formulation

Anderson and Anderson [1999] suggest that a very simple way to prevent filter divergence

is to simply inflate error covariances, by multiplying ensemble deviations from the mean

by a factor β > 1. This gives the assimilation system less confidence in the forecast

estimate than determined by the assimilation cycle, while preserving the forecast itself.

It can be argued that some form of covariance inflation is always necessary, since the
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Figure 6.2: EnKF reference example, comparing zero model error [ME0, (A)], and model

error scenarios ME1 (B) and ME2 (C), for MIX observations (2.58), with ∆tobs = 4

and a 10-member ensemble. In all figures, the truth (black) is compared to the analysis

ensemble (gray) and ensemble mean (red).
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EnKF has a tendency to underestimate covariances even without systematic model error.

Moreover, it should help to err on the side of overestimation of error variances, since

overestimation can be self-correcting while underestimation of variances leads to filter

divergence. Ensemble inflation has been shown by Whitaker and Hamill [2002] to improve

the EnKF analysis for both a low-order model and an intermediate global circulation

model, even in the absence of model error. Similarly, Hoteit et al. [2005] and Fisher

et al. [2005] found that covariance inflation improved the EKF analysis in perfect model

experiments, as did Anderson and Anderson [1999] with a variant of the EnKF known

as a particle filter (appendix B).

In the EnKF, forecast error covariances can be inflated by multiplying the deviation

of each ensemble member from the mean by β, then adding this term back to the mean:

x̂a
i = 〈xa〉+ β (xa

i − 〈xa〉) , (6.1)

such that the inflated error covariance matrix becomes

P̂a = β2Pa. (6.2)

With ensemble inflation, the covariance between φ and x, for example, becomes

ĉφx = β2ρφxσφσx. (6.3)

Thus the effect of EnKF-estimated multivariate error correlations is amplified if β > 1.

It is conceivable that the EnKF could develop accurate multivariate relationships

while underestimating error magnitudes. Nerger et al. [2005], for example, found that

spatial covariance structures can be well-estimated in the EnKF while amplitudes of

covariances are underestimated. If the EnKF is able to naturally develop correct corre-

lations even when the ensemble spread is small, inflating the ensemble while preserving

correlation structure could be beneficial. On the other hand, inflating covariances can also

amplify undesirable effects, such as error due to non-Gaussianity or sampling. For β < 1,

the ensemble distribution is “deflated” and the effect of estimated error relationships is

then de-amplified.
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Figure 6.3: As in figure 6.2 (B), but with (A) ensemble inflation with inflation factor

β = 1.5, (B) stochastic forcing with σm = 0.02, and (C) application of the bias estimation

algorithm [(6.4)-(6.8)] and α = 0.2.
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Example

An illustration of the effect of ensemble inflation on the recovery of a balanced state is

shown in figure 6.3 (A), where we repeat the ME1 experiment of figure 6.2, but now

with inflation of the ensemble by a factor β = 1.5 after each analysis step. The slow

mode analysis in this case is now better than in the ME1 reference case [fig. 6.2 (B)]:

error is reduced, and the ensemble does not deviate radically from the truth between

observations. Though slow error is not reduced to that of the ME0 case [fig. 6.2 (A)],

ensemble spread around the mean is improved relative to true error. A small reduction of

imbalance can be seen in the analysis of x, where the net spurious gravity wave is slightly

smaller than in figure 6.2 (B). However, the ensemble is still very much unbalanced and

phase-locked.

Quantitative Comparison: Ensemble Inflation

A more quantitative examination of this result is shown in figure 6.4 (A), which shows

average slow and fast analysis errors as a function of the inflation factor, with β ranging

from 0.5 to 3, with ∆tobs = 2 and 10-member ensembles. Average errors are compared

for each model error scenario. The boundary between “inflation” and “deflation” has

been marked with a line at β = 1.

For ME0, ensemble inflation (β > 1) largely increases error in both modes, though

slight inflation (β ∼ 1.1) was found to reduce errors in some experiments (an effect

which is hidden in the average shown in the figure). This indicates that ensemble-

estimated errors are usually appropriate in the perfect-model case, and giving more weight

to observations only occasionally improves things. The ME0 curves look similar to figure

3 of Anderson and Anderson [1999], which showed the same statistics for the Lorenz

[1963] 3-component model, and found an optimal inflation factor of about 1.1 for a

perfect model.

Ensemble inflation does decrease slow mode error for ME1 and ME2, though not
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Figure 6.4: Average EnKF slow [(2.59), left] and fast [(2.60), right] errors for the three

model error scenarios and a balanced truth, versus (A) inflation factor β, (B) standard

deviation σm in the stochastic forcing matrix, and (C) the bias estimation parameter α.
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to that of ME0. Fast errors are only decreased by very heavy inflation (β > 2) for

ME2, and by deflation (β < 1) for ME1 and ME2. Since inflation only corrects un-

derestimated covariance amplitudes, it cannot compensate for the systematically-flawed

fast-slow correlations which come from the biased ensemble. Hence ensemble inflation

primarily increases fast error for ME1, by amplifying the imbalance in individual ensem-

ble members. However, ensemble inflation does decrease fast errors for ME2, for β > 2.

Examination of individual experiments suggests that this happens because strong infla-

tion helps to undo the extreme ensemble phase-locking that happens in the ME2 case.

By and large, however, we can say that ensemble inflation, while useful for overcoming

systematic error in the vortical mode, amplifies the covariance estimation errors which

cause spurious imbalance.

A consequence of this is that deflation (β < 1) decreases fast errors for ME1 and

ME2. This suggests that one solution to balance problems in the EnKF might be simply

to manually reduce the variances associated with fast variables, thereby bringing the

ensemble of fast variables closer to the mean state. This result may have implications for

general cases where spurious correlations arise due to sampling error. Polavarapu et al.

[2005], for example, found that overestimated correlations coupled to large variances

can create unrealistic analysis increments in the mesosphere, from the assimilation of

stratospheric data (with biases growing because of a lack of mesospheric observations).

In such a case, manually deflating covariances could potentially improve the assimilation.

Figure 6.5 (A) shows the same statistics as figure 6.4, but for sets of experiments

where the truth contains a free gravity wave with Ĩt = 1.5, as in chapter 5. The left

column in this figure looks remarkably similar to the left column of figure 6.4. Further,

ensemble inflation now improves the analyses of both modes in both ME1 and ME2.

Recall that slight overestimation of ensemble gravity wave variance improved the fast

mode analysis (fig. 5.12). Here we see the same effect, and since estimated slow mode

errors are also inflated, the slow mode analysis is not made worse by giving more credence
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Figure 6.5: As in figure 6.4, but for a true state with free gravity wave Ĩt = 1.5.

to observations of the fast mode. In summary, ensemble inflation is by-and-large a good

idea, especially when two timescales are present, but can also destroy balance.

6.3.2 Stochastic Model Error Forcing

Formulation

Another way to account for bias is by modeling the qk term in (2.31) as a white noise

process. In the EnKF, this can be done by adding random vectors qi,k ∼ N (0, σ2
m) to

individual ensemble members, and computing Pf
k from the ensemble (2.42) as before.
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Unlike ensemble inflation/deflation, the addition of stochastic terms adds a random

component to estimated correlation structures, which could potentially destroy misesti-

mated correlations and thus prevent observations from either shocking the system into

highly unbalanced states, as in figure 6.2 (B), or causing the phase-locking of the en-

semble around a spurious gravity wave. Too much random forcing can, of course, also

destroy the potentially valuable correlations developed within the assimilation cycle.

Example

In figure 6.3 (B), random terms with standard deviation σm = 0.02 are added to in-

dividual ensemble members in the ME1 reference case. As in the ensemble inflation

experiment [6.3 (A)], the small stochastic perturbations successfully keep the ensemble

from clustering too tightly around the mean in the slow mode, resulting in a more ac-

curate analysis. In x, it can be seen that stochastic forcing also increases imbalance in

individual ensemble members. However, it also causes crucial phase mixing, resulting

in a net analysis which is more balanced, though the spurious gravity wave is still not

eliminated.

Quantitative Comparison: Stochastic Forcing

Figures 6.4 (B) and 6.5 (B) show average slow and fast errors over a range of σm, for the

three model error scenarios, in the context of a balanced truth [fig. 6.4 (B)] and a free

gravity wave truth with Ĩt = 1.5 [fig. 6.5 (B)]. In both figures, the effect of stochastic

forcing is similar to that of ensemble inflation: forcing increases errors slightly for ME0

and improves the recovery of the slow mode for ME1 and ME2, but increases fast errors

for ME0 and ME1, and offers no real improvement for ME2. We thus see again that

the imbalance induced by the filter modification is greater than the effect of the phase

mixing it creates. For the gravity wave truth [fig. 6.5 (B)], on the other hand, stochastic

forcing, like ensemble inflation, decreases all three error measures for ME1 and ME2.
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Here, the additional terms evidently increase phase-mixing, and since the free gravity

wave is active, it can be controlled by observations. We note in passing that the addition

of a diagonal matrix Q (not shown) did not significantly change the results.

These results have similarity to those from the Canadian operational EnKF [Houtekamer

and Mitchell, 2005], where model error realizations which have both balanced and un-

balanced components are added to the ensemble. There, the unbalanced component of

model error is needed to reduce bias in the analyzed temperature field, but has also been

shown to cause imbalance in the ensemble.

More complex ways to account for model error stochastically may be possible. One

particular shortcoming of the above formulation is that one would expect that a forecast

which incorrectly represents the true dynamical balances will have estimation errors that

are smoothly correlated in space and time [Houtekamer and Mitchell 2005, Lorenc 2003a].

Houtekamer and Mitchell [2005] suggest that the random vector qi,k could also be es-

timated by simultaneously running different models, or the same model with different

parameterizations. Model error could also be modeled by giving the random terms the

same structure as is currently used to approximate background error covariances in 3D

assimilation [Houtekamer and Mitchell, 2005, Houtekamer et al., 2005]. Figure 6.4 (B)

suggests that more complex stochastic model error forcing should also include consider-

ation of balance.

6.3.3 Sequential Bias Estimation

Another bias formulation, designed to be more dynamically consistent than inflation or

stochastic forcing, has been suggested by Dee [2005], who proposes a sequential bias

estimation algorithm wherein an estimate of systematic model error, b(t), is updated in

proportion to innovations, in analogy to the Kalman filter equations.
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Formulation

The algorithm of Dee [2005] was originally proposed for the EKF. Here we have adapted

it to the EnKF in the following form:

bi,k = bi,k−1 −Kb
k

[
zi,k −H

(
xf

k,i − bi,k

)]
(6.4)

xa
i,k =

(
xb

i,k − bi,k

)
+ Kk

[
zi,k −H

(
xf

k,i − bi,k

)]
(6.5)

Kk = Pf
kH

T
[
HPf

kH
T + R

]−1
(6.6)

Kb
k = Pb

kH
T

[
HPb

kH
T + HPf

kH
T + R

]−1
(6.7)

xa
k = 〈xa

i,k〉 (6.8)

In this formulation, each ensemble member has a corresponding estimated bias vector

bi,k. Starting from some initial guess, these are updated at observation times according to

the observation increment (6.4), weighted by a special bias-gain matrix, Kb
k. This matrix

is computed from the bias covariance matrix Pb
k, weighted by the total estimated bias,

forecast error, and observation error (6.7). Individual ensemble members are computed

as before, but with the estimated bias removed (6.5). The analysis state is, as in the

regular EnKF, the ensemble mean (6.8).

It remains to define the initial bias estimate bi,k and the bias covariance matrix Pb
k.

Since the process is adaptive, we choose bi,k = 0. Pb
k is difficult to formulate, since it

must account for systematic error resulting from both the model and the data assimilation

system. Here we follow the suggestion of Dee [2005], approximating Pb
k as a fraction of

the forecast error covariance matrix, Pb
k = αPf

k. Since Pf
k contains physically meaningful

error correlations to the extent that the ensemble is representative of true errors, this

seems like a plausible structure.

Example

In figure 6.3 (C), the adaptive bias estimation algorithm [(6.4)-(6.8)] with α = 0.2 is

added to the ME1 reference experiment. With this modification, the spread in the slow
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error reduced slightly, and imbalance in the individual ensemble members is also reduced

from figure 6.2 (B). However, phase-locking of the ensemble about a small spurious gravity

wave remains.

Quantitative Comparison: Adaptive Bias Estimation

Figure 6.4 (C) shows the effect of adaptive bias estimation on average fast and slow anal-

ysis errors for the balanced truth case, and figure 6.5 (C) shows the same for unbalanced

truths, with Ĩt = 1.5. The effect on the slow mode is similar to that of ensemble infla-

tion and stochastic forcing in both cases: slow errors are increased slightly for ME0, and

reduced somewhat for ME1 and ME2. The effect of the three modifications on recovery

of the slow mode in both the balanced-truth and unbalanced-truth cases is about the

same. Fast errors, on the other hand, are decreased slightly for α ' 0.2 in the ME1 and

ME2 cases in both figures, but not for most other values of α. Thus the adaptive bias

algorithm is able to decrease spurious imbalance [fig. 6.4 (C)], but the effect is slight and

evidently very sensitive to the specification of the bias covariance matrix (Pb
k). Recovery

of the true gravity wave [fig. 6.5 (C)] is just as difficult, and gravity wave phase errors

[fig. 6.5 (C)] show no clear decrease at all.

It is telling that the most sophisticated of the three modifications shown does not

offer a greater improvement in the analysis errors. It is plausible that creative changes

to the adaptive algorithm could improve the results, but the fact remains that a more

sophisticated algorithm does not necessarily make for a better algorithm.

6.3.4 Discussion

We have seen that the EnKF’s ability to recover either a balanced state or coexistent fast

and slow modes declines considerably in the presence of model error. Increasing model

error, and thereby both covariance estimation error and the size of analysis increments,

increases the tendency of the EnKF to diverge. Specifically, the ensemble becomes more
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likely to phase-lock about the wrong gravity wave magnitude.

In the presence of model error, the EnKF can benefit from additional terms which

loosen the model constraint. All three of the modifications examined in this chapter

improved the recovery of the slow mode, both in the context of a balanced truth (fig. 6.4)

and in the presence of a true gravity wave (fig. 6.5). A nonzero free gravity wave is

recoverable with ensemble inflation or with the addition of stochastic terms, and possibly

with the adaptive bias estimation algorithm (though the effect in our experiments was

not clear), but balance is easily lost for all three methods. Overall, the improvement

offered by all three modifications was approximately similar. In realistic applications,

it will be important to consider balance when formulating modifications to the analysis,

perhaps by formulating a more physical bias-estimation model, or, more simply, by a

combination of covariance inflation and deflation.



Chapter 7

Conclusions

7.1 Summary and Discussion

4D data assimilation methods combine observations and model integrations to approxi-

mate the statistical error relationships between modeled variables over time and space.

For nonlinear models, the three most basic ways to do this are by evolving covariances

between observations using a tangent-linear model (the EKF), by evolving an ensemble

of states (the EnKF), or by minimizing a cost function (4DVAR). The goal of this study

was to assess whether and how 4D assimilation algorithms are able to capture multi-

variate error relationships in the context of a dynamical model which admits two modes

evolving on very different timescales.

This problem has two components: (1) so-called balanced dynamics, where the free

fast motion is zero and the fast variables are slaved to the slow, and (2) the “unbal-

anced” case where both timescales have significant energy. The former corresponds to

the midlatitude troposphere and lower stratosphere, where motion is primarily vortical

and the effect of gravity waves is negligible, and the latter to the upper stratosphere and

mesosphere, where inertia-gravity waves dominate. The experimental environment was

also extended to regimes where the timescale separation between inertia-gravity waves
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and vortical modes becomes unclear, a context which corresponds roughly to assimilation

in the tropics.

Though the three basic 4D methods represent three different implementations of the

same principle, they are fundamentally different in their treatment of nonlinear and/or

non-Gaussian dynamics, and can therefore return very different analysis states if the

effective nonlinearity of the assimilation system is high. It follows that the three basic

algorithms will also differ in their representation of a nonlinear balance relationship.

The primary question of whether 4D algorithms can develop covariance models which

are representative of a system which admits two timescales and exhibits balance dy-

namics, can be answered as yes — with several important details and some unexpected

consequences, to be summarized below. From the experiments in chapters 3-5, a picture

emerged wherein the accuracy of the estimated covariance model depends on the degree

of nonlinearity preserved in the assimilation system. An overall improvement was found

in going from the EKF to the two algorithms designed to be more nonlinearity-preserving,

the EnKF and 4DVAR, but the improvements also depended on specific physical contexts

and assimilation parameters.

Taking average fast error (2.60) as a measure of the assimilation system’s ability to

capture either a balanced state or free fast motion, figure 7.1 summarizes the relative

accuracy of the EKF, EnKF, and 4DVAR, relative to each other and to basic OI. In (a)

effective nonlinearity is increased by increasing ∆tobs, with Ĩt = 0 (the balanced-truth

case). In (b), relevance of the fast mode is increased by increasing free gravity wave

magnitude, with ∆tobs = 2. In (c), the computational cost of the EnKF is changed by

changing N , with ∆tobs = 2 and Ĩt = 0. In (d), the computational cost of 4DVAR is

changed by changing the number of minimization iterations allowed, with ∆tobs = 2 and

Ĩt = 1.5.

The first component of the problem is capturing slaving when the true state is bal-

anced, summarized in figure 7.1 (a) and (c). It was shown in chapter 4 that the way in
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Figure 7.1: A summary comparison of the three 4D algorithms (EKF, EnKF, and

4DVAR) and OI. Average fast mode error (2.60) is compared while changing four pa-

rameters: (a) increasing the time between observations for a balanced true state, (b)

increasing the magnitude of the true state’s free gravity wave, for ∆tobs = 2, (c) increas-

ing ensemble size for a balanced true state and ∆tobs = 2, and (d) increasing the number

of iterations performed by 4DVAR, for a true state with Ĩt = 1.5 and ∆tobs = 2. In all

four panels, the lines represent averages over 50 experiments, and the observations are of

the mixed-timescale state MIX (2.58).
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which balance is lost for each type of algorithm depends on how error in the estimation of

covariances propagates through the assimilation cycle, and is therefore tied to the prop-

erties which differentiate the assimilation algorithms from one another. Slaving implies

that covariances between fast and slow variables result from the (nonlinear and asymp-

totic) slaving relationship, and are hence difficult to capture in an assimilation cycle that

relies largely on linearizations. Figure 7.1 (a) shows that the EKF becomes unstable

from the increase of covariance estimation error with increasing ∆tobs, while the EnKF

and 4DVAR both preserve balance and clearly surpass OI in accuracy. The EKF error

covariance model becomes inaccurate for two reasons: (1) the linearized approximation

of covariances is often not valid, and (2) the subsequent adjustment of the analysis error

covariances frequently exacerbates covariance estimation error.

The EnKF has two properties which imply a more balanced analysis than that pro-

duced by the EKF cycle: (1) imbalance in the evolution of covariances is limited to the

net imbalance in individual ensemble members, which does not grow during the forecast

step since the evolution is nonlinear; and (2) the analysis state is an ensemble average,

implying that spurious imbalance will average out as long as the ensemble is sufficiently

phase-mixed. Though neither of these properties guarantees a balanced analysis, numer-

ical experiments found that only a relatively small amount of imbalance is induced by

the EnKF cycle, even when ∆tobs is large [fig. 7.1 (a)]. The limiting factor for the EnKF

is, of course, the ensemble size. This is summarized in figure 7.1 (c), which shows aver-

age fast errors (for ∆tobs = 2) for increasing ensemble size to corresponding fast errors

produced by the other three methods. Even though slaving reduces the space of possible

true states to an approximate two-dimensional submanifold, it was found that three or

four ensemble members are required in order to make the EnKF more balance-preserving

than the EKF and 4DVAR. However, considering that EnKF fast errors are still far lower

than OI fast errors even when only two ensemble members are used (an ensemble size at

which the chaotic slow mode is virtually not captured at all, fig. 4.13), the EnKF can be
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considered quite useful with respect to balance dynamics.

The other alternative to the EKF, 4DVAR, also infers covariance information from

the full model evolution, as in the EnKF. Additionally, information in 4DVAR is spread

both ways in time. As a result, far less spurious projection of analysis error onto the

fast mode was found for 4DVAR, and it performs similarly overall to the EnKF [fig. 7.1

(a)]. Recall that the algorithm, as formulated in the present study, was intrinsically

flawed for all but the first time window. Given this handicap, the reluctance of 4DVAR

to deviate from a balanced initial background state, and its general success in capturing

the slow mode (e.g. fig. 4.19), is encouraging. The degree of balance captured in the

4DVAR analysis was found to depend strongly on the number of iterations performed in

the minimization, and the magnitude of the steps taken within the minimization, with

more spurious imbalance generated if increments were large, and/or the minimization

was allowed to iterate longer. This is something of a happy accident, since the number of

minimization iterations performed translates into extra computational cost. If a balanced

analysis state is desired, our results suggest that 4DVAR, run to as many iterations as

are needed to fit the slow motion, will be both the cheapest and most balance-preserving

algorithm.

Though it was found that balance could be retained considerably if the initial-guess

covariance field involved some form of tangent-linear balance transformation, such a

constraint is not exact if either the model or the balance relationship is nonlinear. Alter-

natively, it is also possible to balance-constrain the assimilation externally, for example

by performing the analysis step on the slow manifold and inferring analysis fast variables

diagnostically. Experiments with the EKF (fig. 4.8) showed that such a constraint can

significantly improve the analysis in regimes where balance is otherwise lost, but relies

upon accurate knowledge of the balance relationship. The usefulness of external balance

constraints for 4D assimilation is discouraging, since, after all, one of the goals of 4D

data assimilation is to do without external covariance model constraints. In fact it was
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found that recovery of the slow mode was relatively unaffected by application of balance

constraints. This implies that the overall advantages of 4D data assimilation over 3D

assimilation would remain even if balance is enforced externally. However, we found no

results suggesting that application of an external balance constraint will further improve

4D assimilation relative to 3D.

We mention in passing that Lorenc [2003b] has argued that 4DVAR may also be

further preferable to the EnKF, because the EnKF can incur spurious imbalance from

the localization of error covariances [Hamill et al., 2001, Houtekamer and Mitchell, 2001,

Mitchell et al., 2002, Lorenc, 2003b, Houtekamer and Mitchell, 2005, Houtekamer et al.,

2005]. Localization of covariances is required when the number of ensemble members

is less than the number of observations being assimilated (in which case the problem

becomes ill-posed), and is typically needed to avoid the effect of spurious correlations

where variances are small.

The other side of the balance problem is the recovery of both timescales when the true

state consists of a vortical mode and free unbalanced motion (chapter 5). In this case,

it can be shown that the accurate representation of covariances which result from the

balance relationship is still important, but that the covariance model now also needs to

account for variance ascribed to the free fast motion. Choice of observation variables now

also becomes an issue. If fast variables are not assimilated, only the component which

is slaved to the slow mode can be controlled by observations. In this case, the results

from the balanced-truth case can be carried forward in that fast-slow error covariances

must be modeled accurately in order not to induce spurious, uncontrolled fast motion.

When the gravity wave is unobserved and only slow variables are assimilated, recovery

of the slow mode is compromised and a spurious gravity wave is induced — a familiar

problem for which nonlinearity-preserving algorithms are again needed. Not surprisingly,

the EnKF and 4DVAR are much more able to ignore the gravity wave if no fast variables

are observed [e.g. figs. 5.13 and 5.21].
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If fast variables are observed, the problem becomes one of distinguishing between the

two modes: recovering a chaotic mode while also finding a gravity wave’s magnitude and

phase based on observations which are by-and-large infrequent relative to the period of

the wave. The ability of each method to capture gravity waves of different magnitudes

is summarized in figure 7.1 (b), which shows average fast errors as a function of Ĩt. Here

we see a very different result than the one shown in panel (a): the 15-member EnKF still

has the lowest errors, but it is now followed closely in accuracy by the EKF, not 4DVAR.

Despite its inability to capture fast-slow error covariances, the EKF is quite adept at

capturing the gravity wave, especially its phase, as long as observations are assimilated

which project onto the gravity wave.

The EnKF proved to be even better than the EKF at recovering the gravity wave,

and was quite flexible in various regimes of imbalance and timescale separation, and

stable over large ∆tobs. Of course, this result also hinged on ensemble size, with the

EnKF losing accuracy relative to the EKF for ensembles less than about 8 members

(fig. 5.11), i.e the benefits of the EnKF required ensemble size of more than twice the

state dimension of the model. A weakness of the EnKF was that the lack of chaos in

the fast mode gave ensemble members a tendency to phase-lock onto the wrong gravity

wave. Slight overestimation of ensemble fast variance alleviated this problem, but only

to an extent.

4DVAR, on the other hand, had great difficulty recovering the gravity wave, both in

magnitude and phase, unless the number of cost function minimization iterations was

increased beyond what was necessary to converge in the slow mode. Figure 7.1 (d) shows

the decrease in fast error as a function of minimization iteration, relative to the other

three methods, for Ĩt = 1.5. For the exL86 model, between two and four iterations are

needed to fit the slow mode but, as can be seen in the figure, at least six iterations are

needed in order to surpass the EKF and EnKF in fast mode accuracy.

Sensitivity to the physical parameters ε and b, which govern the balance relationship
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and the free gravity wave, was tested primarily in the Kalman filters. It was found that

increasing either parameter had nearly the same effect on the EKF as on the EnKF.

Even though both parameters control the degree of nonlinearity of the balance relation-

ship, increasing either parameter did not directly influence the ability of each method

to capture balanced covariances. This indicates that changing ε and b primarily changes

the information content of the observations, while the intrinsic nonlinearity of the bal-

ance relationship does not seem to matter. It was also found that observations of both

timescales become more important as the period of the true gravity wave, or the cou-

pling between the two modes, increase. In these limits, the value of time-evolved error

covariances was also found to increase (figs. 5.6-5.7 and 5.14-5.15). The EKF and EnKF

were also found to more easily overcome the error associated with observing at or near

the gravity wave period, because information is spread forward in time.

The majority of the numerical experiments were performed in a perfect model context.

Since a substantial amount of error in 4D data assimilation can come from accumulated

error in the assimilation process, such experiments reveal the practical differences be-

tween assimilation algorithms. Experiments with model error in the slow mode (§6.2.2)

showed that systematic error further exacerbates divergence of the Kalman filter, causing

the EnKF ensemble to tend more strongly towards spurious phase-locking. Experiments

which introduced model error into the model-estimated gravity wave parameters sug-

gested that, ultimately, the ability to capture the fast wave may depend on the accuracy

of the modeled frequencies. Simple tests of bias-estimation modifications to the EnKF

were found to be quite harmful to the analysis if the truth is balanced, but improve the

recovery of both modes if it is unbalanced.
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7.2 Points for Practical Implementation and Future

Research

Out of the above results, it is possible to distill some overall conclusions for assimilation

with operational models and real observations.

• 4DVAR does not require the generation of an ensemble and yet tends to preserve

balance in the context of a balanced truth. As such, 4DVAR could be a useful and

cheaper algorithm for assimilation in cases where balance dynamics dominate.

• For unbalanced true states (roughly speaking, the tropics, middle atmosphere, and

meso- and convective scales), the value of time-evolved error covariances, relative

to static covariances, increases. There are at least two reasons for this: (a) 4D

algorithms can better distinguish between slow and fast modes because the error

covariances associated with slaving are estimated following the flow, and (b) 4D

algorithms can overcome the error associated with observing at or near the periods

of the fast waves, because information is spread forward in time. As operational

model lids are raised and observations become more diverse and abundant, it will

therefore be very important to pursue the development of accurate and efficient 4D

data assimilation.

• Observations which project onto the fast waves are important in unbalanced-truth

applications. This is especially true as parameters which govern the influence of

the estimated fast waves on the estimated slow flow (e.g. the true gravity wave

magnitude, the timescale ratio ε, or the rotational Froude number b) increase.

• Though it is not yet known what practical ensemble sizes are needed to realize the

advantages of the EnKF in the unbalanced regions of the atmosphere, it is possible

that the number might be computationally infeasible. Likewise, it is plausible that
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the observation frequency required to make the EKF (or a lower-order approxima-

tion to it) stable is not achievable. In these cases, 4DVAR would remain as the

only option, yet the ability of 4DVAR to capture a partially-observed fast wave is

questionable. Thus no scheme can presently be pin-pointed as the best choice for

assimilation in the middle atmosphere and tropics. It may be that the best method

to use will depend on individual applications, or that some “hybrid” scheme, which

combines aspects of each method, could be the best choice.

Points which require further research are as follows:

• The gravity wave in the exL86 model neither propagates away nor is dissipated

between observation times. Szunyogh et al. [2005] point out that, realistically,

gravity wave events may not be present in the assimilation domain throughout the

entire observation interval, and thus may not be captured. To address this issue, an

analysis similar to the present study could be carried out with a model that is more

complex than the exL86 model, yet still simple enough to retain the transparency

of this analysis. A model which admits more than one gravity wave frequency,

or more spatial degrees of freedom, would make it possible to address the effects

of, say, geostrophic adjustment, localization of error covariances, observability of a

gravity wave over a spatial observation grid, or propagation of a true gravity wave

in space.

• A rigorous comparison of the balance properties of the EnKF and 4DVAR in both

the balanced-truth and unbalanced-truth contexts could be carried out in a larger

model. In particular, we would like to know whether the inability of 4DVAR to

capture fast waves, and its strong tendency to retain balance, remain as more

degrees of freedom are added to the model. Moreover, it is important to establish,

in terms of operational models, the assimilation parameters (e.g. ensemble size and

minimization iteration cutoff values) at which computational cost for each method
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outweighs its advantages.

• A model in which the fast mode is chaotic (in which case slaving is impossible),

such as the two-timescale model of Lorenz (1995), is another interesting context

for examining assimilation for multiple time scales, and could address problems of

mesoscale and convective-scale assimilation [e.g. Snyder and Zhang, 2003].

• Since the effects of gravity waves in the atmosphere are generally parameterized,

it would be interesting to study the problem of fitting gravity wave parameters,

rather than the fast variables, to gravity wave observations. For the exL86 model,

for example, one could make ε and b part of the analysis vector, then solve for the

optimal gain matrix or minimize the cost function with respect to these parameters.

• Another complication not discussed here might be the effect of time-interpolation

of observations, wherein observations made over a time window are taken as valid

at the central time. Time interpolation of the model state to the observations relies

on the assumption of a balanced short-range forecast [Houtekamer and Mitchell,

2005]. For an unbalanced truth, time-interpolation will likely become more difficult.

• Finally, a more thorough extension to tropical data assimilation, where special wave

solutions arise (due to the change of sign of f at the equator) and complicate the

dynamical picture, is necessary. An example of such a study is that of Žagar et al.

[2004b]. It would be very enlightening to compare the perfomance of the EKF and

EnKF in similar experiments.
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Appendix A

Derivation of the exL86 Model

The following is a summary derivation of the exL86 model, tracing the development

of this simple system through four papers: Lorenz [1980], Lorenz [1986], Bokhove and

Shepherd [1996], and Wirosoetisno and Shepherd [2000].

In Lorenz [1980], the f -plane shallow water equations are nondimensionalized and

then simplified by expanding vorticity, divergence, and height as an interacting resonant

wave triad. This yields a system of nine equations which describe the evolution of the

vorticity, divergence, and height of three interacting waves. These amplitudes are then

transformed into normal modes, corresponding to potential vorticity, divergence, and

geostrophic imbalance. In Lorenz [1986], the latter two variables are eliminated for two

of the three waves, which leaves two geostrophic vorticity modes, and a third wave which

admits both vortical motion and a gravity wave. U and V are the vorticity amplitudes

of the two truncated waves, and W , X, and Z are, respectively, the potential vorticity,

divergence, and geostrophic imbalance of the third wave. The equations which describe
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their evolution are given by:

dU

dT
= −V W + bV Z (A.1)

dV

dT
= UW − bUZ (A.2)

dW

dT
= −UV (A.3)

dX

dT
= −Z (A.4)

dZ

dT
= bUV + X (A.5)

These equations describe a nonlinearly interacting vorticity triad (U , V , and W ), coupled

to an inertia-gravity wave (X and Z). The parameter b is the rotational Froude number of

the third wave, defined as b ≡ fL/
√

gH, where f is the Coriolis parameter, L represents

the horizontal lengthscale of the motion, g is the acceleration due to gravity, and H the

depth of the fluid.

Bokhove and Shepherd [1996] emphasize the timescale separation between the non-

linear vortical mode and the gravity wave by scaling the variable amplitudes U =: εu,

V =: εv, W =: εw, X =: εx, Z =: εz, and scaling time T =: t/ε. The scaled system is

du

dt
= −vw + bvz (A.6)

dv

dt
= uw − buz (A.7)

dw

dt
= −uv (A.8)

dx

dt
= −z

ε
(A.9)

dz

dt
= buv +

x

ε
(A.10)

For ε � 1, x and z vary on a timescale that is fast compared to the evolution of u, v and

w. From the dimensions of the original equations, it can be shown that ε, which defines

the inverse of the ratio between the advective timescale (corresponding to t) and that of

the inertia-gravity wave, is given by ε = Rb/
√

1 + b2, where R = U/fL is the Rossby

number. b measures the importance of vorticity relative to the gravitational restoring
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force, while R measures the importance of rotation relative to the planet’s rotation (and

is thus a non-dimensional measure of amplitude). This means that ε is

ε =
U√

gH + f 2L2
=

U

cIGW

, (A.11)

where cIGW =
√

gH + f 2L2 is the phase speed of the inertia-gravity wave.

This system is further simplified by noting the invariant C2 = u2 + v2, and defining

u =:
√

C cos φ′, v =:
√

C sin φ′, and φ := φ′− εbx. This yields the following four-variable

system:

dφ

dt
= w (A.12)

dw

dt
= −C

2
sin (2φ + 2εbx) (A.13)

dx

dt
= −z

ε
(A.14)

dz

dt
=

x

ε
+

bC

2
sin (2φ + 2εbx). (A.15)

Bokhove and Shepherd [1996] showed that the vortical mode in (A.12)-(A.15) has periodic

solutions for most balanced initial conditions. In order to make the evolution of φ and

w sufficiently chaotic, Wirosoetisno and Shepherd [2000] let C vary in time as C(t) =

k0 + k1 cos γt.

Since observed quantities are not clearly separated into “slow” or “fast” variables, it

makes sense to transform w and z in the above system back to mixed variables, for the

purposes of observations. This is simply done by defining w ≡ w′ + bz′ and z ≡ z′− bw′.

Though the normal-mode system is used in this thesis, the mixed-timescale system is

given here for completeness:

dφ

dt
= w′ + bz′ (A.16)

dw′

dt
= −C

2
sin 2(φ + εbx)− α2b

ε
x (A.17)

dx

dt
=

bw′ − z′

ε
(A.18)

dz′

dt
=

α2x

ε
(A.19)
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where α = (1 + b2)−
1
2 . In this system, φ describes the (geostrophic) vorticity of wave

components 1 and 2, and w′, x, and z′ the (non-geostrophic) vorticity, divergence, and

height, respectively, of wave component 3.

Slaving relations can be derived by postulating slaving of the form

f = U (s; ε) , (A.20)

for each of the fast variables, following Warn et al. [1995]. Now we seek a functional form

for f . This can be done by expanding the slaving relations in ε, as

Ux,z = U (0)
x,z (φ, w) + εU (1)

x,z (φ,w) + ε2U (2)
x,z (φ,w) + . . . , (A.21)

then substituting these expansions into [(A.19)-(A.19)]. Up to O (ε2), this gives the

slaving relations,

x = Ux(φ; ε) = − ε

2
Cb sin 2φ + O(ε3) (A.22)

z = Uz(φ,w; ε) = ε2(Cbw cos 2φ +
C ′

2
b sin 2φ) + O(ε3). (A.23)
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Deterministic Ensemble Filters

The experiments of chapters 3-5 showed that two shortcomings of the EnKF are that (1)

it incurs sampling error for small ensemble sizes, and (2) it assumes a Gaussian forecast

error distribution even though the forecast ensemble may be very non-Gaussian.

One source of sampling error in the EnKF is the perturbation of observations for each

ensemble member (2.46). To prevent this problem, several methods have been proposed

in recent years [Anderson and Anderson, 1999, Tippett, 2002, Whitaker and Hamill, 2002,

Szunyogh et al., 2005] wherein the correct analysis error distribution is computed first

[according to (2.36)], and the ensemble is then generated according to this distribution.

These alternative formulations can be thought of as “deterministic” ensemble filters, in

contrast to the “stochastic” perturbed-observation EnKF [Leeuwenburgh et al., 2005].

The ensemble’s non-Gaussianity, particularly at large ∆tobs, is addressed by Anderson

and Anderson [1999], who suggest a possible remedy in the so-called kernel or partcle

filter, which is based upon the principle that we are seeking not a state, but a pdf of

states, given background and observation pdfs.

In this Appendix, we briefly consider two algorithms which fall into the category of

deterministic filters: the Ensemble Square Root Filter [Whitaker and Hamill, 2002] and

a particle filter [Anderson and Anderson, 1999, Pham, 2001, Xiong et al., 2006].
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B.1 Ensemble Square Root Filter

In a square root filter [Tippett, 2002], one solves for the transform matrix Tk which

satisfies

Zf
kTkT

T
k ZfT

k = Pa
k = (In −KkH)Pf

k, (B.1)

where

Pf
k ≡ Zf

kZ
f
k

T
. (B.2)

The square root of the forecast error covariance matrix is computed from the ensemble as

Zf
k = Xf

k ·(N − 1)−1/2, where Xf
k represents an n×N matrix which contains the ensemble

of deviations from the mean. Because the matrix square root is nonunique, several

methods of solving for Tk exist. If implemented in the same model, these would yield

different analysis ensembles which span the same subspace. Their theoretical equivalence

and practical differences are described in Tippett [2002].

A particularly simple method of computing Tk is given by the Ensemble Square Root

Filter (EnSRF) of Whitaker and Hamill [2002]. Here, observations are assimilated one at

a time, which makes the matrix square root a simple scalar operation. This also lowers

computational cost for more complex systems, where the matrix square root computation

is expensive. As long as observations are uncorrelated with one another (which is certainly

the case for our experiments), this algorithm is equivalent to other variants of the square

root method. (Further discussion on the validity of serial assimilation of observations is

given in Houtekamer and Mitchell [2001] and Bishop et al. [2001].)

Following the notation of Tippett [2002], the EnSRF algorithm is implemented as

follows. For each observation, the matrix Zf
k is multiplied by a transform matrix

Tj,k = In − γk,jVk,jV
T
k,j, (B.3)
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where

Vk,j = HjZ
f
k (B.4)

βk,j =
(
Dk,j +

√
RjDk,j

)−1

(B.5)

Dk,j = HjP
f
kH

T
j + Rj. (B.6)

Here j denotes individual observations, and Rj and Hj represent the error covariance

and observation operator, respectively, for individual observations. Rj, Hj, Dk,j and

Vk,j are actually scalars when observations are serially assimilated, but are written as

matricies for consistency with the general algorithm.

It can be shown that

〈Za
kZ

a
k〉T = (In −KkH)Pf

k = Pa
k. (B.7)

Ensemble members are then updated by adding the updated perturbations

Za
k = Zf

k

m∏
j=1

Tj,k (B.8)

back to the ensemble mean. Then the analysis state is, as before, given by the ensemble

mean.

B.2 Particle or Kernel Filter

In a so-called kernel filter, the joint pdf of background and observation errors, rather

than the covariance matrix, is estimated at observation times. At the analysis time, new

ensemble members are drawn from the conditional posterior pdf

pa (x|z) =
1

N
pR (z|x) pB (x) . (B.9)

The analysis state and error covariance matrix can then be computed by resampling an

ensemble out of the pointwise product (B.9). This requires a model of the observation

and forecast error distribution, with the latter being estimated from the ensemble. Xiong
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Figure B.1: Comparison of average analysis errors between the standard (perturbed-

observation) EnKF, the serial EnSRF, and the PF as a function of observation interval.

As in previous figures, slow errors (2.59) are shown in the left panel, and fast errors (2.60)

in the right panel. Each line represents an average over 50 experiments.

et al. [2006] suggest that one way of approximating the pointwise product is to give each

ensemble member a weight based on the relative probability of its innovation:

pi,k =
pR (di,k)∑N

l=1 pR (dl,k) .
, (B.10)

Ensemble members with probability below a certain level are discarded, and new ones

are generated according to a Gaussian distribution which is fit to the remaining ensemble

members. Methods of this type are generally referred to as kernel or particle filters; using

the specific algorithm of Xiong et al. [2006], we use the term particle filter, or PF.

B.3 Quantitative Comparisons

Figure B.1 shows average slow and fast analysis errors for balanced-truth experiments and

over a range of observation intervals, comparing the EnKF, EnSRF, and PF. 10-member

ensembles are used for all three filters.
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EnSRF errors are similar to the EnKF, but differ in two ways: (a) as observation

interval increases, the EnSRF has more cases of large, spurious gravity waves, reflected

in the large peaks in 〈eI〉 and a larger overall increase in 〈es〉, and (b) the EnSRF returns

the most balanced analyses at smaller ∆tobs, rather than at ∆tobs ∼ 3 (which is the

optimal observation interval in the EnKF).

The PF shows a radically different behavior, in terms of balance, from the other two

methods. Unlike the EnKF and EnSRF, fast errors in the PF are largest for short ∆tobs,

and decrease as the time between observations increases. For ∆tobs . 2 we find that the

PF has a tendency to give most of the weight to one highly unbalanced member of the

ensemble, and less weight to the rest of the ensemble, which has less spurious imbalance.

The extreme loss of balance at frequent observations also causes larger slow mode errors

at these observation intervals. There is thus no point on this plot where the PF yields a

better analysis than the other two methods.

To expand the analysis to unbalanced truth states, figure B.2 compares average En-

SRF and PF analysis errors to EnKF errors over a range of magnitudes of the true gravity

wave, now also comparing average errors in gravity wave phase. Here the performance

of the EnSRF and EnKF is similar overall, though the EnKF on average has lower slow

mode errors. The PF shows significantly higher errors in both modes, though error is

still below the no-skill levels throughout.

B.4 Discussion

The above experiments are provided as a brief exploration of how robust our results

regarding the ensemble-based covariance model are when extended to other ensemble-

based filters. We therefore forego a detailed interpretation of the results, keeping in mind

that thorough, unified formulations of the two algorithms introduced here have not yet

been developed.
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Figure B.2: Comparison of average analysis errors between the standard (perturbed-

observation) EnKF, the serial EnSRF, and the PF, as a function of the true-state gravity

wave magnitude. As in previous figures, slow errors (2.59) are shown in the left panel,

and fast errors (2.60) in the middle and right panels. Each line represents an average

over 50 experiments.

Deterministic filters have been shown in some studies to be less susceptible to filter di-

vergence than the standard EnKF [e.g. Whitaker and Hamill, 2002, Anderson and Ander-

son, 1999], while other studies [e.g. Lawson and Hansen, 2004, Leeuwenburgh et al., 2005]

have argued that deterministic filters break down more easily than stochastic filters as

the nonlinearity of the assimilation system increases. Our results seem to suggest the

latter; by forcing the ensemble to represent the posterior error distribution which is con-

sistent with the minimum-variance estimate, some physicality in the ensemble-estimated

covariance model seems to be lost. As a result, loss of balance in both the EnSRF and

PF is greater, and recovery of the slow mode in the presence of an unbalanced truth

becomes more difficult.

In regards to the PF, Anderson and Anderson [1999] argue that a more accurate

representation of the prior pdf should also yield more balanced analyses, thereby making

the PF preferable in a balance context. In particular, Anderson and Anderson [1999]

perform experiments with the 9-variable Lorenz [1980] model (see appendix A) which
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suggest that this might indeed be the case. Our results, however, have more similarity

with those of van Leeuwen [2003], who shows that in some regimes the PF ensemble

collapses to a single ensemble member, because sampling error accrues too quickly in the

ensemble representation of the prior pdf. The difference between our results and those of

Anderson and Anderson [1999] may be due to nonlinearity and chaos. This is plausible

since the 9-component Lorenz [1980] model and the exL86 model differ primarily in that

the former is integrable (when balanced), while the later is chaotic.
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