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Introduction 
The stationary wave field, the zonally asymmetric part of the 

climatological mean flow, is an important part of the atmospheric general 
circulation, plays a significant role in the eddy driven zonal mean circulation, 
and is key to understanding climate variability and change on regional 
scales (e.g. Held et al. 2002 and references therein). Stationary wave theory 
has progressed from a focus on the simple linear response to thermal and 
orographic forcing to a quantitative framework that accounts for nonlinear 
stationary wave effects, transient eddy effects, and sensitivity to the zonal 
mean.  

“Stationary wave nonlinearity”, also known as “stationary nonlinearity” 
(SNL) or “nonlinear self-interaction” (e.g. Ting et al. 2001 and references 
therein), which arises primarily through advective terms in the equations of 
motion and becomes more important for larger amplitude stationary waves. 
Classically, linear stationary wave models have diagnosed the importance of 
stationary wave nonlinearity by imposing the stationary wave nonlinearity as 
an external forcing (e.g. Valdes-Hoskins 1991, other refs). But weakly 
nonlinear techniques have also been developed that predict the stationary 
wave nonlinearity as part of a stationary wave calculation (Ringler and Cook 
1997, Ting and Yu 1998, Held et al. 2002). 

Motivation and Method 
Our aim in this study is to improve our dynamical understanding of 

stationary wave nonlinearity and to evaluate the weakly nonlinear stationary 
wave modelling technique of Ting and Yu (1998) and Held et al. (2002). We 
do so in the classical setting of barotropic QG dynamics on the sphere, in 
which we will see that stationary wave nonlinear effects primarily involve 
stationary Rossby wave reflection at critical latitudes (e.g. Nigam and Held 
1983, other refs).  

Models and Wave Activity Analysis 
The barotropic QG equation on the sphere is solved to obtain the linear 

and nonlinear stationary waves using a pseudospectral model (T85 or 1.4° 
resolution) from the NOAA/GFDL Flexible Modelling System; 

The nonlinear equation: 
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damping time scale for zonal mean Zτ = 5 days, for waves Eτ = 5 days in the 
strongly damped (SD) case and Eτ = ∞ in the weakly damped (WD) case. 

The linear equation: 
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where Z and U are prescribed time-independent and longitude-independent 
vorticity and zonal wind fields. Eτ = 5 days in SD case and Eτ = 40 days in WD case. 
The right-hand-side term F* is a prescribed “forcing” that represents the zonally 
asymmetric component of the eddy vorticity flux convergence (from either or both of 

the stationary and transient waves).      
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Takaya-Nakamura (1997) wave activity flux, which for barotropic flow 
linearized about a zonally symmetric basic state reduces to 
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This wave activity flux is parallel to the local group velocity of stationary Rossby 
wave in the WKB limit. 

Results 
 

The zonal mean zonal wind responses to a 2 km high topography in 
strongly / weakly damped cases and the further decomposition according 
to the zonal mean balance equation: 
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Strongly Damped Case 
Nonlinear stationary wave can be reproduced by the linear model with 

prescribed nonlinear zonal mean basic state and zonally asymmetric 
stationary wave nonlinearity.  
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 Stationary wave nonlinearity explains most of the difference between nonlinear 
and classic linear solution; 

 Only stationary wave nonlinearity is responsible for the wave reflection near 
the critical latitude (around 150°E).  

Weakly Damped Case 
A weak damping ( Eτ = 40 days) on waves is necessary in the linear model 

to obtain the linear solution because there would be resonant modes if 
transients were allowed to freely evolve in the linear model. 
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 Stationary wave nonlinearity, transients, zonal mean responses all contribute to 
the difference between nonlinear and classic linear solution; 

 None of the three factors above alone results in wave reflection near the critical 
latitude (around 150°E); 

 The zonally asymmetric stationary wave nonlinearity plus its zonal mean 
component induced zonal mean response leads to significant wave reflection; 

 The zonal mean response to transients, which sharpens the jet, also generates
pronounced wave reflection. 

Summary 
Stationary wave nonlinearity is important in explaining the difference 

between linear and full nonlinear stationary wave responses to topographic 
forcing, although there are relatively smaller but still significant impacts from 
transients and the changes in the zonal mean basic state. Only stationary
wave nonlinearity leads to substantial reflection according to the wave 
activity analysis in the strongly damped case. While the presence of 
transients increases the complexity of mechanism in the weakly damped
case, stationary wave nonlinearity is still essential to the wave reflection. Our 
investigation also reveals that weakly nonlinear techniques work fairly well to 
capture stationary wave nonlinearity (not shown here). 
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¯: time mean, ' : deviation from time mean, 
[ ⋅ ]: zonal mean, *: zonally asymmetric component 


