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ABSTRACT

The German Weather Service (Deutscher Wetterdienst) has recently developed a new operational global
numerical weather prediction model, named GME, based on an almost uniform icosahedral–hexagonal grid. The
GME gridpoint approach avoids the disadvantages of spectral techniques as well as the pole problem in latitude–
longitude grids and provides a data structure extremely well suited to high efficiency on distributed memory
parallel computers. The formulation of the discrete operators for this grid is described and evaluations that
demonstrate their second-order accuracy are provided. These operators are derived for local basis functions that
are orthogonal and conform perfectly to the spherical surface. The local basis functions, unique for each grid
point, are the latitude and longitude of a spherical coordinate system whose equator and zero meridian intersect
at the grid point. The prognostic equations for horizontal velocities, temperature, and surface pressure are solved
using a semi-implicit Eulerian approach and for two moisture fields using a semi-Lagrangian scheme to ensure
monotonicity and positivity. In the vertical direction, finite differences are applied in a hybrid (sigma pressure)
coordinate system to all prognostic variables. The semi-implicit treatment of gravity waves presented here leads
to a 3D Helmholtz equation that is diagonalized into a set of 2D Helmholtz equations that are solved by successive
relaxation. Most of the same physical parameterizations used in the authors’ previous operational regional model,
named EM, are employed in GME. Some results from the verification process for GME are provided and GME
performance statistics on a Cray T3E1200 as well as on the ECMWF Fujitsu VPP5000 systems are summarized.
For the case of the severe Christmas 1999 storm over France and Germany the pronounced sensitivity of the
model with respect to the initial state is discussed. Finally, a test case is shown where it is currently possible,
though not yet operationally practical, to run GME at 15-km resolution on the VPP5000.

1. Introduction

Motivated by trends in numerical methods and high
performance computing architectures the Deutscher
Wetterdienst (DWD) has developed a new operational
global weather forecast model that employs a gridpoint
approach with an almost uniform icosahedral–hexago-
nal grid. On 1 December 1999, this new model replaced
the operational global model (GM), derived from the
spectral model of the European Centre for Medium-
Range Weather Forecasts (ECMWF), and the regional
model (EM) for central Europe. It has been named GME
because it replaced GM and EM.

The gridpoint approach offers several important ad-
vantages relative to spectral methods. One is elimination

Corresponding author address: Detlev Majewski, Deutscher Wet-
terdienst, GB Forschung und Entwicklung, Kaiserleistr. 42, Offenbach
a. M. 63067, Germany.
E-mail: detlev.majewski@dwd.de

of ‘‘spectral ringing’’ in the vicinity of steep gradients.
Another is the ability to ensure positivity in quantities
such as cloud liquid water and turbulent kinetic energy.
The gridpoint approach also avoids the large amount of
global communication required by spectral transform
techniques as well as the large number of arithmetic
operations normally associated with Legendre trans-
forms at high spatial resolution.

A major advantage of the icosahedral–hexagonal grid
is the avoidance of the so-called pole problem that exists
in conventional latitude–longitude grids. The singularities
at the poles lead to a variety of numerical difficulties in-
cluding a severe limitation on the time step size unless
special measures are undertaken. These difficulties simply
vanish for grids not having such singularities.

Icosahedral–hexagonal grids were investigated more
than 30 years ago for their suitability to meteorological
application. Williamson (1968) and Sadourny et al.
(1968) solved the nondivergent barotropic vorticity equa-
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tion with finite-difference methods on such grids. Later,
Cullen (1974) applied a finite-element approach and a
similar grid to solve the shallow water equations. The
conclusion from these initial investigations, however, was
that the discretization error arising from the slight grid
nonuniformities was sufficiently large to render this grid-
point approach inferior to the then-emerging spectral
transform method. In the early 1980s Baumgardner
(1983) and Baumgardner and Frederickson (1985) de-
vised recursively defined spherical barycentric coordi-
nates that provided spherical basis functions from which
a fully second-order-accurate finite-element formulation
could be obtained. Second-order convergence was dem-
onstrated in both the two and infinity norms. Since that
time this finite-element approach has been successfully
applied to modeling planetary mantle convection in
spherical shell geometry (Baumgardner 1985).

In the early 1990s Baumgardner, in collaboration with
a colleague (J. Dukowicz) at Los Alamos National Lab-
oratory, developed a second-order-accurate semi-La-
grangian formulation for the shallow water equations
on the icosahedral–hexagonal grid (Baumgardner 1994).
This formulation utilized basis functions obtained by
constructing a local spherical coordinate system at each
grid point with the grid point located at the coordinate
frame equator. Since these coordinate systems are uti-
lized only in the local neighborhood of a grid point, the
far-removed polar singularities introduce no difficulties.
GME employs this same set of basis functions, which
correspond simply to the longitude and latitude in the
local gridpoint coordinate frame.

Other investigators who have applied an icosahedral–
hexagonal grid in an atmospheric modeling context in-
clude Masuda and Ohnishi (1986), Heikes and Randall
(1995a,b), Stuhne and Peltier (1996, 1999), and Ringler
et al. (2000). Masuda and Ohnishi applied a finite-dif-
ference approach to solve the shallow water equations
in streamfunction/velocity potential form with the finite-
difference operators derived from a line integral method.
Heikes and Randall used an almost identical approach
except that they introduce a ‘twist’ in the grid to make
it symmetrical across the equatorial plane and they em-
ploy a multigrid strategy for solving elliptic equations
for the streamfunction and velocity potential. They also
introduced a scheme for moving the grid points slightly
to reduce the errors in their finite-difference operators.
Ringler et al. extended this 2D model to a full 3D at-
mospheric general circulation model. Stuhne and Peltier
applied a method very close to that of Baumgardner and
Frederickson (1985) for solving the elliptic equations
via a finite-element/multigrid strategy with recursively
defined barycentric basis functions but chose a finite-
difference strategy similar to Baumgardner (1994) for
discretizing first derivative operators. The main differ-
ence in the latter strategy from Baumgardner is their
use of Cartesian coordinates and local basis functions
that lie in a plane tangent to the sphere at each grid

point instead of local spherical coordinates and spherical
basis functions.

None of the more recent formulations that achieve
second-order accuracy (e.g., Baumgardner and Freder-
ickson 1985; Heikes and Randall 1995a,b; Baumgardner
1994; Stuhne and Peltier 1996, 1999) displays the sig-
nificant wavenumber 5 error that plagued the early for-
mulations using the icosahedral–hexagonal grid. There-
fore the low order of the spatial discretizations of the
earlier formulations probably caused the large errors of
the simulations due to a grid–flow interaction.

A first description of the design and implementation
of the GME, including shallow water tests and an eval-
uation of the dynamical core of the model, is given in
Majewski (1998); here we concentrate on the opera-
tional version of the model and tests at high resolutions.

The outline of the paper is as follows: section 2 de-
scribes the basic numerical methods including the grid
generation, formulation of the discrete operators, and
an evaluation of their accuracy. In section 3 the three-
dimensional version of GME, including the physical
parameterization package, is described. Section 4 pro-
vides an overview of the data assimilation scheme, sec-
tion 5 describes the operational implementation at the
DWD, and section 6 presents some results of diagnostics
and verification of the model. Finally, section 7 sum-
marizes the first results of 24-h forecasts of the GME
at mesh sizes between 160 and 15 km.

2. Numerical methods

a. Grid generation

The icosahedral–hexagonal grid, first introduced in
meteorological modeling by Sadourny et al. (1968) and
Williamson (1968), has been gaining increasing interest
in recent years, for example, Masuda and Ohnishi
(1986), Heikes and Randall (1995a,b), Giraldo (1997),
and Thuburn (1997). The approach described here close-
ly follows the work of Baumgardner (1983), who has
applied this grid to the problem of planetary mantle
convection.

To generate the grid, a regular icosahedron (Fig. 1)
is constructed inside the sphere such that 2 of its 12
vertices coincide with the North and South Poles. Five
of the other 10 vertices are spaced at equal longitudinal
intervals of 728 (53608/5) along a latitude circle at
26.5658N, the other 5 along a latitude circle at 26.5658S.

Connecting nearest neighbors among these 12 points
with great circle arcs divides the spherical surface into
20 equal spherical triangles (Fig. 2a). Beginning from
this grid of icosahedral triangles, a new finer grid of
triangles is generated by connecting midpoints of the
spherical triangle sides by an additional set of great
circle arcs (Fig. 2b). This process may be repeated until
a grid of the desired resolution is obtained (Figs. 2c and
2d). This construction procedure yields a grid consisting
of 10 1 2 grid points (nodes) and 20 elementary2 2n ni i
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FIG. 1. Regular icosahedron, which consists of 20 equilateral
triangles.

FIG. 2. Grid generation by successively halving the triangle edges to form new triangles.
Parameter ni is the number of intervals on a major triangle edge.

spherical triangles, where ni is the number of equal in-
tervals into which each side of the original icosahedral
triangles is divided. Each of these 10 1 2 grid points2ni

is surrounded by 6 nearest neighbors except for the orig-
inal 12 icosahedral vertices, which are surrounded by
only 5. We therefore refer to these 12 special points as
pentagonal points. If we place all variables at the ver-
tices of the triangles (Arakawa A grid), the dual mesh

consists exclusively of hexagons except for the 12 pen-
tagons at the pentagonal points.

The number ni is a natural parameter for specifying
the resolution of the grid. It can be shown that there is
a close numerical equivalence between ni and the max-
imum harmonic degree in a spherical harmonic repre-
sentation (Yang 1997). The (minimum) spacing between
grid points is then the length of a side of the original
icosahedral triangles (about 7054 km for the earth) di-
vided by ni. For example, with ni 5 128 we obtain a
spacing between grid points of about 55 km.

The icosahedral–hexagonal grid provides a nearly
uniform coverage of the sphere even though the hex-
agonal cells vary somewhat in their exact shape and size
(Table 1a), especially those close to the pentagons. The
pentagons, however, are perfectly regular. To increase
the available choice of grid resolution, an initial trisec-
tion of the main triangles edges followed by bisections
may be performed. Specifications for these grids are
summarized in Table 1b.

By combining the areas of pairs of the original ad-
jacent icosahedral triangles (Fig. 3), the global grid can
logically also be viewed as comprising 10 rhombuses
or diamonds, each of which has ni 3 ni unique grid
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TABLE 1. Some characteristic quantities of the icosahedral-hex-
agonal grid at different resolutions specified by ni, the number of
intervals on a major triangle edge. Here, N 5 10 1 2 is the number2ni

of grid points, Amin is the minimum area of the hexagons, Amax is the
maximum area of the hexagons, Dav is the average distance between
grid points; Dmin is he minimum distance between grid points, and
Dmax is the maximum distance between grid points. (a) Sides of ico-
sahedral triangles are each bisected q times, i.e., ni 5 2q, where q is
a positive integer. (b) Sides of icosahedral triangles are initially tri-
sected, and then bisected l times, i.e., ni 5 3 * 2l 5 2q, where q 5
1.585 1 l.

(a)
q ni N

Amin

(km2)
Amax

(kg2)
Dav

(km)
Dmin

(km)
Dmax

(km)

4
5
6
7
8
9

16
32
64

128
256
512

2562
10 242
40 962

163 842
655 362

2 261 442

154 109
38 515

9628
2407

602
150

238 061
59 955
15 017

3756
939
235

477.6
239.3
119.8

59.9
30.0
15.0

440.5
220.3
110.1

55.1
27.6
13.8

526.0
263.2
131.6

65.8
32.9
16.5

(b)
q ni N

Amin

(km2)
Amax

(km2)
Dav

(km)
Dmin

(km)
Dmax

(km)

4.6
5.6
6.6
7.6
8.6
9.6

24
48
96

192
384
768

5762
23 042
92 162

368 642
1 474 562
5 898 242

68 477
17 117

4279
1070

267
67

97 683
24 494

6128
1532

383
96

319.0
159.7

79.9
40.0
20.0
10.0

293.7
146.8

73.4
36.7
18.4

9.2

346.9
173.5

86.8
43.4
21.7
10.9

FIG. 3. Logical data layout of the icosahedral–hexagonal grid of
GME consisting of 10 rhombuses (diamonds), 5 containing the North
Pole and 5 the South Pole.

points. The diamonds are indexed as shown in Fig. 3.
Five diamonds share the North Pole and five the South
Pole. The indexing on a diamond is based on the con-
vention that those ni 3 ni grid points that are unique to
each diamond are numbered from 1 to ni in the rows
and columns of the data arrays. The grid points on the
diamonds edges, (0, 1) to (0, ni 1 1) and (0, ni 1 1)
to (ni, ni 1 1), are shared between adjacent diamonds
and their data values must be exchanged at each time
step. The polar points (0, 1) are each shared by five
diamonds. Diamonds 1–5 share the North Pole and di-
amonds 6–10 share the South Pole.

From the computational point of view the icosahe-
dral–hexagonal grid offers the major advantage that no
indirect addressing is required. The data structure is
regular and has the dimensions (0: ni, ni 1 1, 10), that
is, consists of 10 logically square arrays of points. Dis-
crete differential operators have the form of seven-point
stencils, involving the home point and the six nearest
neighbor points. The indices of the neighbor points are
given by fixed offsets from the index of the home point.
These operations can be coded to obtain high efficien-
cies on both vector- and cache-based computer archi-
tectures. Furthermore, the square arrays of points are
readily partitioned in a domain decomposition strategy
for distributed memory parallel architectures.

b. Horizontal finite-difference operators

The derivation of finite-difference operators is not
based on Gauss’s theorem as in Masuda and Ohnishi
(1986) or Heikes and Randall (1995a) but follows a

strategy similar to that of Stuhne and Peltier (1996,
1999). Our approach utilizes local basis functions that
are orthogonal and conform perfectly to the spherical
surface. These basis functions are the longitude and lat-
itude of a locally defined spherical coordinate system
whose equator and zero meridian intersect at the grid
point. We generate such a local spherical coordinate
system at each grid point with coordinates (h, x) and
align the local east direction to coincide with the global
east direction and the local north with the global north
direction. The local spherical coordinate system is spec-
ified by three orthogonal unit vectors [x0, (el)0, (ew)0],
where x0 is the gridpoint location on the unit sphere,
(el)0 is orthogonal to x0 and aligned with the global
east, and (ew)0 is orthogonal to x0 and aligned with the
global north direction (Fig. 4).

The advantages of this local coordinate system are
the following:

R within the local neighborhood of the grid point the
coordinate system is nearly Cartesian; that is, the co-
ordinate singularities are far removed from this grid-
point neighborhood; and

R only two (tangential) velocity components are needed
to describe the horizontal velocities.

However, there is one disadvantage, namely, trans-
formations are required between the local coordinate
systems of neighboring grid points when operators are
applied to vector fields.

The meteorological equations are formulated and
solved in the local spherical system (h, x), where the
horizontal distances (dx, dy) on the earth with radius a
are given by dx 5 a cosx dh and dy 5 adx.
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FIG. 4. Global coordinate system (x, y, z) and local system (h, x)
at a grid point.

Discrete horizontal operators must be derived for this
system. The analytical form of the operators is the usual
form, as given, for example, by Dutton (1976), taking
into account that h 5 x 5 0 at the center node.

DERIVATION OF THE DISCRETE GRADIENT AND

LAPLACE OPERATORS

To obtain a second-order-accurate representation of
the partial differential equations we desire to solve, we
approximate an arbitrary global function c* in the
neighborhood of each grid point by a quadratic poly-
nomial c in the local coordinates (h, x) as

2c(h, x) 5 c 1 a h 1 a x 1 a h 1 a hx0 1 2 3 4

21 a x . (2.1)5

Equation (2.1) may be interpreted as a Taylor series
of the form

2]c ]c 1 ] c
2c (h, x) 5 c 1 h 1 x 1 h0 21 2 1 2 1 2]h ]x 2 ]h

2 2] c 1 ] c
21 hx 1 x . (2.2)

21 2 1 2]h]x 2 ]x

The finite-difference form of the gradient and Laplace
operators for a scalar field c may be written in terms
of a stencil operation involving the values of c at the
center node and the nearest five or six neighbors. (For
simplicity in what follows, we shall let the neighbor
index m range from 1 to 6 also in the case of pentagonal
nodes where it will be understood that the stencil co-
efficients for the nonexistent node are identically zero.)

The gradient operator at each grid point may be ex-
pressed as

6]c
5 G (c 2 c ), or (2.3)O h,m m 0]h m51

6]c
5 G (c 2 c ). (2.4)O x,m m 0]x m51

The coefficients Gh,m, Gx,m(m 5 1, . . . , 6) are associated
with the neighboring nodes and depend only on the
geometric locations of the nodes expressed in terms of
the local coordinates (h, x).

Similar to the approach for the gradient operator, the
Laplacian operator is expressed in terms of the neigh-
boring nodes as

62 2] ]
1 c 5 L (c 2 c ). (2.5)O m m 02 21 2]h ]x m51

To obtain the stencil coefficients Gh,m, Gx,m, and Lm we
apply the quadratic polynomial approximation (2.1). For
the case of the six nearest neighbors, we have six con-
straints for the five coefficients a1, a2, . . . , a5 that spec-
ify the function c in the local neighborhood, namely,

2c (h , x ) 5 c 1 a h 1 a x 1 a hm m m 0 1 m 2 m 3 m

21 a h x 1 a x , (2.6)4 m m 5 m

for m 5 1, . . . , 6. A least squares procedure is used to
solve for the five unknown coefficients from a system
of the form

a 5 b (c 2 c ),j j,m m 0 (2.7)

where j 5 1, . . . , 5, and the summation is over m 5
1, . . . , 6.

Using Eqs. (2.1)–(2.6) the coefficients Gh,m, Gx,m are
then given by

G 5 b and G 5 b ,h,m 1,m x,m 2,m (2.8)

and the coefficients Lm by

L 5 2(b 1 b ),m 3,m 5,m (2.9)

where m 5 1, . . . , 6.
Due to the symmetry of the icosahedral–hexagonal

grid, the coefficients Gh,m, Gx,m, and Lm may be pre-
computed and stored only for diamond 1. The same
gradient coefficients are used to compute the velocity
divergence. Care has to be taken, however, to rotate the
wind components (um, y m) of the surrounding nodes into
the local spherical coordinate system of the central node
before the divergence operator is applied.

c. Interpolation in the icosahedral–hexagonal grid

GME uses semi-Lagrangian advection for water va-
por and cloud water. Semi-Lagrangian methods require
the interpolation of fields from neighboring grid points
to the departure and midpoints of the parcel trajectory.
Our approach involves two types of interpolation, name-
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FIG. 5. A triangle P0, P1, P2 in the local spherical (h, x)
coordinate system.

FIG. 6. The six values used for the biquadratic interpolation of a
function c (h, x) in a triangle.

FIG. 7. The 12 grid points involved in the biquadratic interpolation
in the triangle P0, P1, P2.

ly bilinear and biquadratic. Bilinear interpolation is
used in the calculation of the trajectory itself to derive
the wind components (u, y) at the trajectory midpoint.
Biquadratic interpolation is then applied to find the
prognostic fields at the departure point of the trajectory.
Both methods are performed on grid triangles.

1) BILINEAR INTERPOLATION

Bilinear interpolation of an arbitrary function c(h,
x) at a point P(h, x) uses the values (c0, c1, c2) at the
three grid points (P0, P1, P2) having position vectors
(p0, p1, p2) that are the vertices of the spherical triangle
containing the point as indicated in Fig. 5. To derive
the value c(h, x) at P(h, x) we introduce barycentric
coordinates. Each point within the triangle is uniquely
defined by the vector

p 5 g p 1 g p 1 g p0 0 1 1 2 2

with g 1 g 1 g 5 1, (2.10)0 1 2

where (g 0, g1, g 2) are called the barycentric coordinates
of the point P. To calculate these coordinates the fol-
lowing linear system has to be solved (note that at the
central node P0, h 5 x 5 0):

h 5 g h 1 g h and x 5 g x 1 g x and1 1 2 2 1 1 2 2

g 5 1 2 g 2 g0 1 2 (2.11)

The bilinear interpolation of c(h, x) within the tri-
angle is then obtained by weighting the values of c at
the triangle vertices by the corresponding barycentric
coordinates:

c (h, x) 5 g c (h , x ) 1 g c (h , x )0 0 0 1 1 1

1 g c (h , x ). (2.12)2 2 2

2) BIQUADRATIC INTERPOLATION

The standard biquadratic interpolation formula (Zien-
kiewicz 1979) for a triangle in terms of values at the
triangle vertices and midpoints of the edges (Fig. 6) is
applied to obtain the value of c at an arbitrary point
P(h, x) in the triangle:

c (g , g , g ) 5 g (2g 2 1)c 1 g (2g 2 1)c0 1 2 0 0 0 1 1 1

1 g (2g 2 1)c2 2 2

1 4(g g c 1 g g c 1 g g c ), (2.13)0 1 4 1 2 5 2 0 6

where (g 0, g1, g 2) are again the barycentric coordinates
of the point P. The values of the function c at the
midpoints of the triangle edges, c4, c5, c6, are obtained
by approximating c along these edges with a cubic Her-
mite polynomial using the gradients at the end points,
that is, at the triangle vertices (P0, P1, P2). When the
stencil of the gradient operator is taken into account,
the biquadratic interpolation is based on a stencil that
involves 12 grid points (Fig. 7).

Monotonicity may be enforced by simply demanding
that the interpolated value not be higher or lower than
the values at the three corner points (P0, P1, P2). In the
same way, positive definiteness may be enforced by the
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condition that the interpolated value be greater than or
equal to zero.

If the Courant numbers are restricted to values less
than unity, it is fairly easy to determine which of the
surrounding triangles contains the departure or midpoint
of the trajectory. Without this restriction the search al-
gorithm is more complicated and uses a binary search
procedure to accelerate convergence.

d. Accuracy of the gradient and Laplace operators

Heikes and Randall (1995b) introduced the following
function to test the accuracy of their finite-difference
operators on the icosahedral–hexagonal grid:

2 4b (l, w) 5 a cos (mw) cos(nl),m,n (2.14)

where l is the longitude, w is the latitude, a is the radius
of the earth, and m and n are integers set to 1 or 3. For
different resolutions ni of the grid the analytical solution
xtrue is compared to the finite-difference one xfd, and some
error norms are evaluated. The one norm is defined by

N1
fd true fd true\x 2 x \ 5 A |x 2 x |, (2.15)O1 i i iA i51

where the summation is over all N grid points of the
icosahedral–hexagonal grid, Ai is the area of a particular
hexagon (pentagon), and A is the area of the globe:

N

A 5 A . (2.16)O i
i51

The two norm is defined by
1/2N1

fd true fd true 2\x 2 x \ 5 A (x 2 x ) , (2.17)O2 i i i[ ]A i51

and the infinity norm is defined by
fd true fd true\x 2 x \ 5 max(|x 2 x |, i 5 1, N ). (2.18)` i i

For the gradient operator, the norms of course include
both components in the summations and in the evalu-
ation of the maximum over the grid.

A finite-difference operator is said to be consistent
if the infinity norm converges to zero for decreasing
mesh sizes. Figure 8 summarizes the results for the
GME gradient and Laplace operators. Both operators
satisfy the consistency requirement. Their overall ac-
curacy as characterized by their one and two norms is
second order because the norms drop close to a factor
of 4 when the resolution ni is doubled. The GME op-
erators constructed from the unaltered icosahedral–
hexagonal grid thus display an accuracy similar to that
of the operators derived by Heikes and Randall (1995b,
Fig. 4) on their twisted icosahedral–hexagonal grid
where a special optimization of the gridpoint distri-
bution has been performed. Note that in Fig. 8, we
include results not only for grids constructed with an
initial bisection of the sides of the icosahedral triangles
but an initial trisection as well. We also show results

for grids with ni values up to 768, corresponding to a
horizontal resolution of about 10 km.

It should be noted that the slope of the infinity norm
changed from 22 to 21 for the Laplace operator. This
occurs where errors due to local grid nonuniformity
begin to dominate those due to the inherent inability
of the finite grid to represent the function exactly.
These maximum absolute errors captured by the infin-
ity norm due to grid nonuniformity occur along arcs
corresponding to the sides of the original 20 spherical
triangles. The magnitude of these errors decreases by
a factor of 2 as ni is doubled while the area associated
with such points also decreases by a factor of 2. The
fact that the one and two norms involve an area weight-
ing factor explains why these norms maintain a slope
close to 22 where the infinity norm switches to a slope
of 21.

3. Three-dimensional version of GME

a. Differential form of model equations

The prognostic equations for the three-dimensional
version of the model are expressed in differential form
in terms of a local spherical coordinates (h, x) and a
hybrid (sigma pressure) vertical coordinate j as fol-
lows:

]u ]u
2 (z 1 f )y 1 j̇

]t ]j

1 ] RT ] ]uy5 2 (F 1 K ) 2 (lnp) 1 1 2a ]h a ]h ]t
sub

42 K ¹ u (3.1)4

]y ]y
1 (z 1 f )u 1 j̇

]t ]j

1 ] RT ] ]yy5 2 (F 1 K ) 2 (lnp) 1 1 2a ]x a ]x ]t
sub

42 K ¹ y (3.2)4

]T u ]T y ]T ]T
1 1 1 j̇

]t a ]h a ]x ]j

av L ]Ty 45 1 C 1 2 K ¹ (T 2 T ) (3.3)yc 4 ref1 2c c ]tp p sub

1]p 1 ] ]p ] ]ps 5 2 u 1 y dj (3.4)E 1 2 1 2[ ]]t a ]h ]j ]x ]j0

]q u ]q y ]q ]qy y y y1 1 1 j̇
]t a ]h a ]x ]j

]qy 45 2C 1 2 K ¹ q (3.5)yc 4 y1 2]t
sub
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FIG. 8. Error of the (left) finite-difference gradient and (right) Laplace operators as a function of mesh size for the
test function proposed by Heikes and Randall (1995b) for m 5 1, n 5 1; m 5 3, n 51; m 5 1, n 5 3; and m 5 3,
n 5 3.

]q u ]q y ]q ]q ]qc c c c c1 1 1 j̇ 5 C 1 , (3.6)yc 1 2]t a ]h a ]x ]j ]t
sub

where (u, y) are the zonal (meridional) wind compo-
nents; T is the temperature; ps is the surface pressure;
qy is the specific water vapor content and qc is the spe-
cific cloud liquid water content; t is the time and a is
the mean radius of the earth (a 5 6 371 229 m); z is

the vorticity and f is the Coriolis parameter; is thej̇
vertical velocity in the hybrid system and v is the ver-
tical velocity in the pressure system; a is the density of
air; F is the geopotential and K is the specific kinetic
energy; p is the pressure and Ty is the virtual temper-
ature; Tref is a reference temperature depending only on
height; Ly is the latent heat of condensation; Cyc is the
condensation rate and ( )sub is the subgrid-scale tendency
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due to parameterized processes like radiation, convec-
tion, or turbulence; and K4 is the constant coefficient of
linear fourth-order diffusion.

b. Numerical solution of the three-dimensional
equation set

The shallow water test bed for GME included a semi-
Lagrangian and an Eulerian version of the code. The
semi-Lagrangian version was restricted to Courant num-
bers less than 1. For larger Courant numbers the com-
munication pattern become more complicated (‘‘com-
munication on demand’’), and the extensive code chang-
es required were therefore not implemented in the short
period of time available for the project. In the frame-
work of the shallow water model both schemes produced
very similar results but the Eulerian code was about
20% faster. Therefore, the dry part of the three-dimen-
sional version of GME, that is the prognostic equations
for u, y, T, ps, is solved by the semi-implicit Eulerian
method. Only the two prognostic moisture equations
(qy , qc) use semi-Lagrangian advection (Staniforth and
Côté 1991) in the horizontal direction to ensure mono-
tonicity and positive definiteness. An Arakawa A-grid
staggering (Mesinger 2000) is employed because of the
semi-Lagrangian advection and ease of implementation.
In the vertical, the energy and angular momentum con-
serving finite-difference scheme of Simmons and Bur-
ridge (1981) is applied to all prognostic equations.

The semi-implicit treatment of gravity waves (Robert
1981) leads to a three-dimensional Helmholtz equation
for the second temporal derivative of the divergence of
the horizontal wind field. The eigenvectors of the ver-
tical structure matrix are used to diagonalize this 3D
equation into a set of 2D Helmholtz equations corre-
sponding to the number of layers in the model. A split
semi-implicit scheme (Burridge 1975) is employed to
solve the Helmholtz equations for only the external
mode plus the first four internal ones. Currently, these
five 2D equations are solved by successive overrelax-
ation. About 20 iterations are needed to solve for the
external mode, and only 3–11 for the internal ones. A
slight off-centering of the implicit terms is necessary to
damp the gravity waves and to stabilize the solution.
Part of the subgrid-scale tendencies is also treated im-
plicitly for stability reasons.

c. Physical parameterizations

Unresolved atmospheric processes interact with the
large-scale flow but contain also essential forecast in-
formation (e.g., cloudiness or precipitation), which can-
not be generated by the adiabatic part of the model. The
simulation of such processes in GME is handled by a
set of dedicated parameterization modules. The simu-
lation of diabatic processes in the icosahedral–hexag-
onal grid of GME generally employs the same methods
and procedures applied in other NWP grid schemes.

However, the uniformity of the GME grid avoids un-
necessary physics calculations in overresolved high-lat-
itude zones that commonly occur in grids with polar
singularities (e.g., regular latitude–longitude grids). In
contrast to such grids, where the area represented by
each grid node varies strongly with latitude, the dis-
tinction between resolved and unresolved atmospheric
scales does not depend on the geographical position in
the GME grid because the area of grid nodes varies only
moderately. The following physical phenomena are sim-
ulated by parameterization modules:

R radiative transfer of solar and thermal radiation in
clear and cloudy atmospheres (Ritter and Geleyn
1992) (a full radiation step is performed every 2 h at
all grid points, solar fluxes are computed each time
step taking the actual zenith angle but the atmospheric
transmission from the previous full radiation step is
used);

R grid-scale precipitation scheme including parameterized
cloud microphysics (Doms and Schättler 1997);

R deep and shallow convection based on a mass flux
approach (Tiedtke 1989);

R vertical turbulent fluxes (Müller 1981), based on Louis
(1979) in the Prandtl layer, and a diagnostic level-two
scheme based on Mellor and Yamada (1974) for the
boundary layer and the free atmosphere;

R subgrid-scale orographic effects (Lott and Miller
1997);

R soil model (Jacobsen and Heise 1982); and
R cloudiness derived from specific cloud liquid water

content, relative humidity, convective activity, and
stability.

For computational efficiency, some of the parameteri-
zation schemes (convection, turbulent fluxes, subgrid-
scale orographic effects) are called only every fifth time
step of the model.

With the exception of the subgrid-scale orographic
effects scheme that was adapted from the operational
ECMWF forecast model, the parameterization modules
are nearly identical to those in the previous NWP system
of the DWD, where they underwent extensive testing
and evaluation both in global and limited area model
applications. In the framework of GME, some of the
parameterization schemes required some adjustments of
the free parameters utilizing available validation and
verification data.

d. External parameters

We refer to time-invariant gridpoint properties, such
as mean orographic height, land–sea fraction, roughness
length, and soil type, as external parameters. They are
computed for each grid node area from high-resolution
supplementary data. Table 2 summarizes the datasets
used in the generation of external parameters for GME.

For each icosahedral–hexagonal grid node high-res-
olution raw data values associated with the correspond-
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TABLE 2. Description of datasets used in the generation of external parameters for GME.

Dataset
(Ref.) Source Coverage

Resolu-
tion Projection Derived parameters

GLOBE
(GLOBE Task Team et al. 1998)

NOAA/NGDC Global 300 Regular Height and subgrid scale
orographic parameters

GLCC
(Loveland et al. 2000)

USGS Global ;1 km Goode homolosine Land fraction, roughness
length, root depth, and
plant cover and leaf area
index

CORINE
(http://etc.satellus.se)

ETC/LC Most European countries 250 m Lambert azimuthal Land fraction, roughness
length, root depth, and
plant cover and leaf area
index

DSMW
(FAO 1992)

FAO Global 59 Regular Soil type

CORINE: Coordination of Information on the Environment. DSMW: Digital Soil Map of the World. ETC/LC: European Topic Centre on
Land Cover. FAO: Food and Agricultural Organisation of UNO. GLCC: Global Land and Cover Characterization. GLOBE: Global Land
One-kilometer Base Elevation. NOAA/NGDC: National Oceanic and Atmospheric Administration/National Geophysical Data Center. USGS:
United States Geological Survey.

ing geographical location are combined to form an area
average. At the current operational resolution of 59.9
km, the average grid node area is 3100 km2. For some
parameters processing of the data also includes con-
version from the basic information available, for ex-
ample, soil texture, to the model parameter required, for
example, soil type. In geographical regions where more
than one raw dataset is available for the same external
parameter, a priority rule is applied using quality as-
sessment of the raw datasets. For most grid elements in
Europe land-use-dependent parameters are based on the
Coordination of Information on the Environment
(CORINE) database information, for example, rather
than on the lower-resolution Global Land Cover Char-
acterization (GLCC) dataset.

4. Data assimilation scheme

a. Intermittent 4D data assimilation suite

The data assimilation scheme of the GME is based
on a traditional intermittent 6-hourly analysis–forecast
cycle. Analyses are performed at 0000, 0600, 1200, and
1800 UTC based on all observations valid in a 1.5-h
window around the analysis times. A 6-h forecast of the
GME provides the first guess for the analysis scheme.

Table 3a outlines the salient features of the upper air
analysis. A multivariate optimum interpolation scheme
provides the analysis of the mass (surface pressure and
geopotential) and wind (zonal and meridional wind
components) fields simultaneously. The correlation
functions employed until now are the ones of the former
global spectral model (T106, L19) of the DWD. They
will be replaced by functions properly describing the
error statistics of GME by the end of the year 2001.

The only surface fields analyzed so far are the sea
surface temperature and the snow depth (Table 3b). No
analysis of soil temperatures or water content is per-

formed, but the 6-h first guess fields from GME are
applied.

b. Incremental digital filtering initialization

Initialization schemes are designed to remove noise
from the forecast while introducing acceptably small
changes to the analysis and forecasts. Furthermore, if
the initialization can achieve a better balance between
humidity and dynamic fields, the spinup problem is al-
leviated. For GME we apply the digital filtering ini-
tialization (DFI) of Lynch (1997) that involves a 3-h
adiabatic backward integration and a 3-h diabatic for-
ward one centered around the initial time. The incre-
mental approach employed avoids unwanted smoothing
of the first guess fields due to the DFI in regions without
observations by applying the filter only to the analysis
increments.

5. Operational implementation

a. Daily schedule of analyses and forecasts

Since 1 December 1999 GME has been the opera-
tional global NWP model of the DWD and currently
provides the meteorological database for many follow-
up products and systems. GME and its data assimilation
scheme are implemented on the Cray T3E1200 of the
DWD. The gridded binary (GRIB) code analysis and
forecast data are stored in huge ORACLE data bases on
an SGI Origin cluster.

The operational schedule is structured by data assim-
ilation steps every 6 h, that is, at 0000, 0600, 1200, and
1800 UTC, with a data cutoff between 7 and 12 h. An
early run with a data cutoff of 2 h, 14 min, and forecasts
up to 78 h allows early numerical guidance, and pro-
vides lateral boundary conditions for the nonhydrostatic
regional model (LM; 7-km mesh size, 35 layers) of the
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TABLE 3a. Data assimilation and analysis of atmospheric fields for the GME.

Method: 6-hourly intermittent data assimilation. Analyses at 0000, 0600, 1200, and 1800 UTC.
Main steps: Analysis, initialization, forecast.

Mass and wind Humidity

Method 3D multivariate OI of deviations of obser-
vations from first guess

3D univariate OI in the troposphere below
250 hPa; constant specific humidity in
the stratosphere

Analyzed variables Geopotential height, wind components, sur-
face pressure

Relative humidity

Constraints Geostrophy, quasi nondivergence
First guess 6-hour model forecast
Forecast error correlation Horizontal model: Bessel functions with

length scale of 400 km
Gaussian distribution with radius of

350 km
Vertical model: empirical positive definite functions

Observations Surface data from land stations, ships and buoys, aircraft reports, radiosonde ascents, aircraft
reports; temperature and humidity retrievals from polar-orbiting satellites; air motion winds
from geostationary satellites

Variables:
surface pressure, wind, and geopotential

height and thickness

Temperature and dewpoint, humidity, and
precipitable water

QC Comparison with first guess, comparison with OI analysis
Realization Observations used simultaneously in a large volume (box method) in a 6 1.5 h window.

TABLE 3b. Data assimilation and analysis of surface parameters for the GME.

Sea surface temperature Snow depth

Frequency Daily at 0000 UTC Every 6 h
Method Correction method; previous analysis used

as first guess
Weighted average of observations

Weights given to observations Dependent on distance and on age of ob-
servations

Dependent on horizontal and vertical dis-
placement

Observations SST data from ships and buoys of the last
7 days

Snow depth and snowfall data from
surface station observations

QC Comparison with first guess and with near-
by observations

Plausibility checks; comparison with previ-
ous analysis

Adaption in data-sparse areas Blending with SST analysis from NCEP
data

NOAA snow depth analysis based on sat-
ellite imagery

Ice mask Gridded sea ice analysis based on SSMI
satellite data from NOAA OMB

NCEP: National Centers for Environmental Predictions. SSMI: Special Sensor Microwave Imager. OMB: Oceanic Modeling Branch.

DWD as well as the regional models of 11 other national
meteorological services (see section 5c). The early runs
are based on 0000, 1200, and 1800 UTC analyses and
use 13 3 13 processors. To complete the 78-h forecast
takes about 50 min of wallclock time. The main run
with a data cutoff of 3 h, 30 min, and forecasts up to
174 h is based on 0000 and 1200 UTC analyses. With
15 3 15 processors the whole 174-h forecast takes 1 h,
35 min.

b. Available products

GME data are mostly stored on the icosahedral–hex-
agonal grid (Arakawa A, 163 842 grid points, 31 hybrid
layers). More than 80% (11 GB) of the data of a 174-
h forecast are given in this original spatial representa-
tion. Software is available to extract the GME forecast
at single grid points anywhere on the globe to derive
meteographs. To ease the data visualisation and as an
interface to applications like wave modeling, selected

forecast fields are interpolated horizontally from the ico-
sahedral–hexagonal grid to a regular latitude–longitude
one (0.758 3 0.758). In addition, some multilevel fields
are interpolated vertically from the 31 model layers to
selected pressure levels.

c. GME data as lateral boundary conditions at other
NMS

Forecast data from the early run of GME are sent via
the Internet to other national meteorological services
(NMSs). These data serve as initial and lateral boundary
conditions for regional NWP models, which are based
on either the high-resolution regional model of the
DWD or the nonhydrostatic LM. Only those GME grid
points within the domain of interest of the NMS in
question are transmitted to reduce the amount of data.
In this way real distributed computing is realized, with
GME at the DWD and the regional models at the NMS
running in parallel. Currently, the following 11 NMSs
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FIG. 9. Diagnostic evaluation of a 60-day run of GME initialized on 15 Dec 1999 at 0000 UTC.

are receiving the GME data twice daily based on 0000
and 1200 UTC data out to 48 (78) h at 3-hourly (for
some, even at hourly) intervals:

R Directorate of Hydrography and Navigation (Brazil),
R Instituto Nacional de Meteorologia (Brazil),
R Guangzhou Regional Meteorological Centre (China),
R National Meteorological and Hydrological Service

(Greece),
R Israel Meteorological Service (Israel),
R Regional Service SMR-ARPA (Italy),
R National Meteorological Service, DGCAM (Oman),
R National Meteorological Service, IMGW (Poland),
R National Meteorological and Hydrological Service

(Romania),
R MeteoSwiss (Switzerland), and
R National Meteorological and Hydrological Service

(Vietnam).

Most of the regional models running at the NMSs
have horizontal resolutions between 30 and 7 km; they
are able to add valuable details to the GME forecast
because the local topographical forcing generally mod-
ifies the larger-scale flow being provided by GME.

6. Some results of diagnostics and verification

a. Systematic trends in 60-day forecasts

To detect systematic trends in GME forecasts a 60-
day (51440 h) run was performed at the operational
resolution of 60 km and 31 layers. The forecast was
initialized on 15 December 1999 at 0000 UTC and used

constant sea surface temperature. Global diagnostics
were produced each day to monitor the model evolution.
The results are summarized in Fig. 9. No obvious trends
are visible. The volume average of the kinetic energy
(Fig. 9a) varies slowly within the range of 150–175
m2 s22, while the maximum wind speed (usually found
at the top level, i.e., at 10 hPa) fluctuates on a much
shorter timescale between 80 and 140 m s21. Although
the mass (Fig. 9b) is not formally conserved, the mean
deviation from the initial state never exceeds 0.14 hPa.
The hydrological quantities (Figs. 9c and 9d) seem to
be balanced rather well throughout the 60-day period.
Only a slight tendency is visible to shift the precipitation
from the convective to the grid-scale regime.

b. Verification of precipitation forecasts

The Global Precipitation Climatology Centre (GPCC;
Rudolf et al. 1996) provides an objective analysis of
monthly precipitation. This analysis is based on mea-
surements at about 6000 surface stations over land and
estimated amounts derived from brightness temperature
observations from geostationary satellites over the
oceans. The spatial resolution of the combined product
is 2.58 3 2.58 (Fig. 10b). For February 2000, the daily
precipitation forecasts of GME for the 24-h period 6–
30 h were accumulated to derive a monthly value (Fig.
10a). There is close correspondence between observa-
tion and simulation of the main features such as the
precipitation extremes at the ITCZ and the storm tracks
of both hemispheres. Even the heavy flooding that struck
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FIG. 10. (a) GME precipitation forecasts (forecast period 6–30 h) in mm month21 for Feb 2000.
(b) Monthly precipitation in mm month21 for Feb 2000 based on a combination of gridded results
from surface-based observations and satellite data.

Mozambique in February 2000 was forecast by GME
remarkably well. Regarding the distribution over the
continents, the model is able to simulate the topograph-
ical modification of the precipitation field (e.g., in South
America) in more detail than can be obtained from the
GPCC analysis because of the coarse resolution of the
observing network and analysis grid.

c. Kinetic energy spectra
Based on the horizontal wind components at icosa-

hedral–hexagonal grid points of GME we compute the

kinetic energy spectrum by replacing integrals by sum-
mations over grid nodes. At the operational resolution
ni 5 128 with 163 842 grid points, a triangular trun-
cation of up to T340 is possible. Figure 11 shows the
resulting spectrum of the eddy kinetic energy (after sum-
mation over the zonal index m for m . 0) at 250 hPa
on 25 May 2000 at 0000 UTC. The full spectrum is
shown on the left, the higher end between wavenumbers
150 and 340 is shown to the right. No ‘‘wavenumber 5
problem’’ can be detected in the GME spectrum. For
comparison the spectrum of the ECMWF model (TL319,
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FIG. 11. Eddy kinetic energy spectrum of the GME and the ECMWF model at 250 hPa.

60 layers) is also displayed. Both models show close
agreement up to wavenumber 100, especially the n23

drop of energy in the wavenumber range between n 5
10 to n 5 100. At higher wavenumbers, the GME spec-
trum falls off at a rate close to n25/3, while the ECMWF
one drops off at a much higher rate indicating a stronger
(and more effective) horizontal diffusion of the model.
Integrated over the full spectrum, both models have al-
most the same level of eddy kinetic energy (133.8
m2 s22 for the GME, and 135.8 m2 s22 for the ECMWF
model).

d. Christmas 1999 storm in France and Germany or
‘‘the flap of a butterfly’s wing’’

On 25 December 1999, a strong winter storm with
peak gusts of more than 200 km h21 resulted in wide-
spread damages in France, Belgium, Switzerland, and
Germany, and caused the deaths of more than 80 people.
Afterward, the media blamed the meteorological ser-
vices of the countries hit by the storm for not having
warned the public early enough.

This storm developed from a cyclone that appeared
on 26 December 1999 at 0000 UTC west of Brittany
with a central pressure of about 980 hPa. While moving
rapidly east-northeastward the storm deepened by about
20 hPa in only 6 h. Mean winds of about 50 kt and peak
gusts of more than 90 kt were reported. The translation

speed of the storm center exceeded 50 kt (;90 km h21).
At 1200 UTC the system had reached Frankfurt (Main)
(see Fig. 12a). At the southwestern flank of the cyclone
very stormy winds occurred that caused severe damage
in southern Germany. In the mountainous region of the
Black Forest, large areas of forest were completely de-
stroyed.

The operational GME severely underestimated the
strong development of this system even in the 24-h fore-
cast based on the 25 December 1200 UTC analysis (Fig.
12b). Peak gusts of less than 30 kt were predicted for
southern Germany, and no closed low pressure system
was generated over Germany by the model. What was
the reason for this serious failure?

A first hint can be identified by comparing the 48-h
forecasts of GME based on the early and main runs,
which started at 1200 UTC on 24 December. The early
run (Fig. 12c) has a data cutoff around 2 h, 14 min,
past the analysis time, whereas for the main run (Fig.
12d) the cutoff is 3 h, 30 min. The two forecasts differ
dramatically! The early run shows 48 h in advance a
clear signal of a strong cyclone with peak gusts around
30 m s21 (;60 kt) in southern Germany, while the main
run predicts a remarkably different weather situation,
namely, a well-developed storm over southern England.

The only difference between the early and the main
runs of GME is the initial state, that is, numerical anal-
ysis valid at 1200 UTC on 24 December 1999. There
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FIG. 12. For the Christmas 1999 storm: (a) analysis valid on 26 Dec at 1200 UTC, (b) main forecast run (24-h
forecast starting 25 Dec), (c) early forecast run (48-h forecast starting 24 Dec), and (d) main forecast run (48-h
forecast starting 24 Dec). Mean sea level pressure (hPa, isolines) and maximum wind speed at 10 m (m s21, shading).

FIG. 13. Same as in Fig. 12b but based on a data assimilation with
a reduced observation window.

are small differences between both analyses in the re-
gion of the initial disturbance, a shallow low pressure
system east of North America at 388N, 558W, which
later developed into the Christmas storm. The additional
observations used for the main run, for example, a re-
started radiosonde at Sable Island and some geostation-
ary satellite observations of winds derived from cloud

drift, resulted in a reduction of the speed of the upper-
tropospheric jet by some 6 m s21. This relatively small
difference in the initial state (or ‘‘flap of a butterfly’s
wing’’) caused a serious failure in the forecast 48 h later
(and more than 4000 km to the east) over Germany.
Thus there is reason to believe that the weather situation
was strongly chaotic during this period. A small change
of the initial conditions lead to drastic changes of the
forecast only 48 h later.

This obvious dependence of the forecast quality on
the initial state prompted detailed investigations by the
DWD data assimilation section regarding the optimal
use of all available observations, for example, from
ships, planes, and satellites. Figure 13 shows as an ex-
ample the 24-h forecast of GME, started at 1200 UTC
on 25 December 1999, based on an experimental data
assimilation where the observation window has been
reduced from 63 to 61.5 h around the analysis times
0000, 0600, 1200, and 1800 UTC. This reduction avoids
the ‘‘smearing out’’ of the information in the rapidly
changing flow. With a mesh size of 60 km, GME is of
course not able to simulate the rapid deepening (and
filling) of the storm over France in all the mesoscale
details, but comparison (Fig. 14) between the observed
and simulated temporal evolution of the surface pressure
at Paris (Orly Airport) reveals reasonable correspon-
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FIG. 14. Temporal evolution of the surface pressure at Paris Orly
Airport between 25 Dec 1999 1800 UTC and 26 Dec 1999 1200
UTC. Observed and predicted by the GME and the Lokal-Modell
(LM, 7-km mesh).

FIG. 15. Two-dimensional domain decomposition of a diamond of
GME for 13 3 13 PEs.

FIG. 16. Speedup of GME (60 km, 31 layers) on a Cray T3E1200
for a 24-h real data forecast without postprocessing.

dence. Even the nonhydrostatic high-resolution regional
numerical weather prediction model LM with its 7-km
grid mesh is unable to capture the rapid deepening and
filling.

The reduction of the observation window improved
the forecast quality of GME not only in this case, but
also for the second French storm (28 Dec 1999) and for
the Danish storm (3 Dec 1999) as well. Since May 2000,
this shortened observation window has been adopted
for all operational forecasts.

7. High-resolution tests

a. Parallelization on MPP systems

Since the design of the GME included a domain de-
composition from the beginning, it took only 3 months
to parallelize the program using Message Passing In-
terface (MPI) software for message passing. The code
is written in standard FORTRAN90 and is fully por-
table. For the two dimensional domain decomposition
(Fig. 15) the (ni 1 1)2 grid points of each diamond are
divided among n1 3 n2 processing elements (PEs). Thus
each PE computes the forecast in a subdomain of all
10 diamonds. This approach improves the chance of
achieving a better load balancing for the physical pa-
rameterizations, for example, between day and night,
land and sea, or rain and no rain. For example, on 13
3 13 PEs of a Cray T3E1200 the physical parameter-
izations for a 24-h real data forecast consume between
220 and 298 s of wallclock time; the average time is
267 s. In the current version of GME, each computa-
tional subdomain has a halo of just two rows and col-
umns of grid points that have to be exchanged via MPI
with those PEs that compute the forecast in the neigh-
boring subdomains. There are only seven synchroni-
zation points during one complete forecast step. It
should be noted that good load balancing requires that
all processors have nearly the same workload; thus, the
difference between the mean and the maximum number
of grid points in the computational subdomains should
be small.

b. Performance of the GME on the Cray T3E

The GME has been ported successfully to several
parallel platforms based on vector or reduced instruction
set computing (RISC) processors. However, the effort
devoted to optimizing the GME code for different com-
puter systems has been rather limited so far; thus, there
is substantial potential for further improvement of the
performance of the model.

Figure 16 shows the speedup of the GME (60 km,
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FIG. 17. Cost of the different parts of GME (60 km, 31 layers) on a Cray T3E1200 for a 24-h real data forecast
without postprocessing; 13 3 13 PEs have been used.

TABLE 4. GME performance at different horizontal resolutions based on measurements on the Fujitsu VPP5000 at the ECMWF. The number
of layers (i3e) is set to 31 for all resolutions: ni is the resolution of the icosahedral grid, D is the mesh size, N is the number of grid points
per layer, Dt is the time step, K4 is the linear fourth-order diffusion coefficient, and HWM is the high-water mark of memory used by GME.

ni D (km) N Dt (s) K4(1014 m4 s21)
HWM
(MW)

Cost (1012 Flop)
of 24-h forecast

Speed (Gflop s21)
for 24-h in 900 s

48
64
96

128
192

160
120

80
60
40

23 042
40 962
92 162

163 842
368 642

640
480
320
240
160

52.50
22.00

6.50
1.25
0.80

112
144
224
336
752

0.43
0.85
2.43
5.23

15.97

0.48
0.94
2.70
5.82

17.74
256
384
512
768

30
20
15
10

655 362
1 474 562
2 621 442
5 898 242

120
80
60
40

0.35
0.10
0.04
0.01

1408
2752
4864

10 000*

36.52
111.79
259.29
800.00*

40.58
124.22
288.10
900.00*

* Estimated.

31 layers) on a Cray T3E1200 for a 24-h real data fore-
cast without postprocessing. Between 5 3 5 and 13 3
13 PEs, an almost linear speedup is obtained. About 60
PEs are necessary to perform a 24-h forecast in less
than 30 min.

The distribution of the cost for the different parts of
GME expressed as a percentage of the total number of
floating point operations on a Cray T3E1200 is high-
lighted in Fig. 17.

c. Global forecasts at resolutions ranging from 160
km down to 15 km

Current global models of major NWP centers employ
horizontal mesh sizes of about 60 km and require about
5 3 1012 floating point operations (Flops) for a 24-h
forecast. A few years from now, global models with
mesh sizes in the range between 10 and 20 km will be
feasible. We have recently tested GME on the Fujitsu

VPP5000 of the ECMWF for mesh sizes of 160, 120,
80, 60, 40, 30, 20, and 15 km. The initial state for the
test runs was derived from a rather coarse resolution
analysis (T106L19, i.e., a mesh size of about 120 km,
19 layers) with interpolation to the GME grids. Thus
these runs cannot show the full potential of high-reso-
lution global modeling because the data assimilation
part is missing. Here, the main goal is to test the be-
havior of the GME at different resolutions from the
computing point of view. The case chosen is the Christ-
mas storm (see section 6d) with the initial date 25 De-
cember 1999 at 1200 UTC. A 24-h forecast with post-
processing only at 18 and 24 h was performed for each
resolution. The results are summarized in Table 4 and
Fig. 18.

A halving of the mesh size D, that is, a doubling of
the resolution, is normally associated with a factor of
8 increase of the computational cost of the forecast. This
is due to the fact that the time step of the model usually
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FIG. 18. The 24-h GME forecasts of mean sea level pressure (hPa) and maximum wind speed (m s21, shading) valid at 1200 UTC on 26
Dec 1999. Mesh sizes: (a) 120, (b) 60, (c) 30, and (d) 15 km. Initial state for all forecasts: T106 (;190 km mesh size) and 19 layers.

has to be halved as well, due to the Courant–Friedrichs–
Lewy criterion. Looking at the results presented in Table
4, in practice this factor is much less for GME, for
example, for a reduction of the mesh size from 160 to
80 km, the factor is only 5.65. This smaller increase in
the computational workload is a consequence of model
processes that do not depend on the time step directly,
namely, the parameterization of radiation and postpro-
cessing. A full radiation step is performed every 2 h at
each GME grid point. At a coarse resolution of 160 km,
radiation contributes about 40% of the total computa-
tional cost, but at high resolutions like 20 km this cost
falls to 11%. Moreover, on vector machines like the
Fujitsu VPP5000 the execution time of the model run
may not increase as much as expected because of the
greater vector length at higher resolutions. For example
the speed per processor increases from 0.9 GFlops at
160-km resolution (with an average vector length of 62
elements) to 2.3 GFlops at 20 km (with an average
vector length of 348 elements).

Of course, at very high resolutions like 10–15 km the

number of layers should be much higher than 31. More-
over, a full radiation step may be necessary every 15–
30 min for a proper cloud–radiation feedback. Thus the
true computational cost of GME at 10-km resolution
will be surely more than twice the numbers given in
Table 4.

From the meteorological point of view, the surface
pressure forecasts at the different mesh sizes (Fig. 18,
isolines) differ only in the details for resolutions finer
than 120 km. At coarser resolutions, the storm moves
too slowly to the east. On the other hand, prediction of
peak gusts clearly benefits from higher horizontal res-
olution (Fig. 18, shading). Simulation of the observed
gusts of up to 32 m s21 over France, Germany, and
Switzerland requires a high-resolution description of the
topography.

8. Summary and outlook

The DWD developed and implemented a new global
model in just three years. In December 1999 the GME
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replaced the former spectral global model (GM) and the
regional grid point model (EM) of the DWD, and be-
came the first operational NWP model based on the
icosahedral–hexagonal grid worldwide.

The code is fully portable (FORTRAN90, MPI for
message passing) and has been tested on several RISC
and vector processors. Analysis and forecast data of
GME are currently used by 11 national meteorological
services worldwide as initial and lateral boundary con-
ditions for regional modeling. The GME system has
proved very reliable with no model blowups so far.

GME has been tested successfully for a wide range
of mesh sizes between 160 and 15 km on the ECMWF
Fujitsu VPP5000. With current computer technology a
mesh size of 20 km corresponding to a TL1000 spectral
model is now feasible for operational applications.

From numerical and computational points of view,
the future development of GME will concentrate on

R an improvement of the numerical discretization of the
Laplace operator to achieve fully second-order ac-
curacy;

R a better conservation of mass (for seasonal forecasts
or climate mode runs);

R a faster solver of the Helmholtz equations, especially
for the external mode;

R a semi-Lagrangian scheme allowing for Courant num-
bers greater than one;

R better performance of the MPI communication by
combining several short messages into larger ones;
and finally

R further single-PE optimization of the code.

Based on our experience and expected improvements
of the model we believe it is justified to consider the
icosahedral–hexagonal gridpoint method a viable ap-
proach for global models of the atmospheric flow.
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