Tutorial for week of Nov. 13 -17, 2006

Serway 10.38

A potter's wheel - a thick stone disk of radius 0.500 m and mass 100 kg - is freely rotating at $50.0 \mathrm{rev} / \mathrm{min}$. The potter can stop the wheel in 6.00 s by pressing a wet rag against the rim and exerting a radially inward force of 70 N . Find the effective coefficient of kinetic friction between wheel and rag.

Giving:
$\mathrm{m}=100 \mathrm{~kg}$
$\mathrm{R}=0.5 \mathrm{~m}$
$\mathrm{F}_{\mathrm{n}}=70 \mathrm{~N}$
$\omega_{\mathrm{i}}=50 \mathrm{rev} / \mathrm{min}=(50 \mathrm{rev} / \mathrm{min}) *(2 \pi \mathrm{rad} / \mathrm{rev}) /(60 \mathrm{~s} / \mathrm{min})=5.24 \mathrm{rad} / \mathrm{s}$
$\mathrm{t}=6.0 \mathrm{~s}$
The friction force $\left(\mathrm{F}_{\mathrm{f}}\right)$ is equal to:
$\mathrm{F}_{\mathrm{f}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{n}}$
$\therefore \mu_{\mathrm{k}}=\mathrm{F}_{\mathrm{f}} / \mathrm{F}_{\mathrm{n}}$
From the relationship between τ (its magnitude) and F_{f} :
$\tau=\mathrm{F}_{\mathrm{f}} \mathrm{R}$
We can get:
$\mathrm{F}_{\mathrm{f}}=\tau / \mathrm{R}$
τ can be calculated from:
$\tau=\mathrm{I} \alpha$
where
$\mathrm{I}=\mathrm{mR}^{2} / 2$ (see Table 10.2)
$\alpha=\left(\omega_{\mathrm{f}}-\omega_{\mathrm{i}}\right) / \mathrm{t}$
$\therefore \mathrm{I}=\mathrm{mR}^{2} / 2=(100 \mathrm{~kg})^{*}(0.5 \mathrm{~m})^{2} / 2=12.5 \mathrm{~kg} \mathrm{~m}^{2}$
$\therefore \alpha=\left(\omega_{\mathrm{f}}-\omega_{\mathrm{i}}\right) / \mathrm{t}=(0-5.24 \mathrm{rad} / \mathrm{s}) /(6.0 \mathrm{~s})=-0.873 \mathrm{rad} / \mathrm{s}^{2}$
Taking I and α to (3):
$\left.\tau=\mathrm{I} \alpha=(12.5 \mathrm{~kg} \mathrm{~m})^{2}\right)\left(-0.873 \mathrm{rad} / \mathrm{s}^{2}\right)=-10.9 \mathrm{Nm}$
Taking the magnitude of τ to Equation (2):
$\mathrm{F}_{\mathrm{f}}=\tau / \mathrm{R}=(10.9 \mathrm{Nm}) /(0.5 \mathrm{~m})=21.8 \mathrm{~N}$
Taking F_{f} to Equation (1):
$\mu_{\mathrm{k}}=\mathrm{F}_{\mathrm{f}} / \mathrm{F}_{\mathrm{n}}=(21.8 \mathrm{~N}) /(70 \mathrm{~N})=0.312$
\therefore The kinetic friction coefficient between the wheel and rag is 0.312 .

Serway 10.76

A uniform solid sphere of radius r is placed on the inside surface of a hemispherical bowl with much larger radius R. The sphere is released from rest at an angle θ to the vertical and rolls without slipping. Determine the angular speed of the sphere when it reaches the bottom of the bowl.

Giving:
R and r
$\mathrm{v}_{\mathrm{i}}=0$
$\omega_{\mathrm{i}}=0$
I of the sphere $=(2 / 5) \mathrm{mr}^{2}($ see Table 10.2 $)$
For the potential energy, taking the potential energy as zero at the centre of the bowl:
$U_{i}=-m g(R-r) \cos \theta$
$U_{f}=-m g(R-r)$
For the translational kinetic energy:
$\mathrm{K}_{\text {trans, }, ~}=0$
$\mathrm{K}_{\text {trans,f }}=\mathrm{mv}_{\mathrm{f}}^{2} / 2$
For the rotational kinetic energy:
$\mathrm{K}_{\mathrm{rot}, \mathrm{i}}=0$
$\mathrm{K}_{\mathrm{rot}, \mathrm{f}}=\mathrm{I} \omega_{\mathrm{f}}{ }^{2} / 2$
Assuming the friction between the sphere and the bowl is negligible, energy is conserved and $\Delta \mathrm{U}+\Delta \mathrm{K}_{\text {trans }}+\Delta \mathrm{K}_{\mathrm{rot}}=0$
$\{-\mathrm{mg}(\mathrm{R}-\mathrm{r})+\mathrm{mg}(\mathrm{R}-\mathrm{r}) \cos \theta\}+\left\{\mathrm{mv}_{\mathrm{f}}^{2} / 2-0\right\}+\left\{(2 / 5) \mathrm{mr}^{2} \omega_{\mathrm{f}}^{2} / 2-0\right\}=0$
$\therefore \mathrm{mg}(\mathrm{R}-\mathrm{r})(\cos \theta-1)+\mathrm{mv}_{\mathrm{f}}^{2} / 2+(2 / 10) \mathrm{mr}^{2} \omega_{\mathrm{f}}{ }^{2}=0$
As $\mathrm{V}_{\mathrm{f}}=\mathrm{r} \omega_{\mathrm{f}}$,
$\therefore \mathrm{g}(\mathrm{R}-\mathrm{r})(\cos \theta-1)+\mathrm{r}^{2} \omega_{\mathrm{f}}{ }^{2} / 2+(2 / 10) \mathrm{r}^{2} \omega_{\mathrm{f}}{ }^{2}=0$
$\therefore(7 / 10) \mathrm{r}^{2} \omega_{\mathrm{f}}{ }^{2}=\mathrm{g}(\mathrm{R}-\mathrm{r})(1-\cos \theta)$
$\therefore \omega_{\mathrm{f}}{ }^{2}=(10 / 7) \mathrm{g}(\mathrm{R}-\mathrm{r})(1-\cos \theta) / \mathrm{r}^{2}$
$\omega_{f}=\sqrt{\frac{10 g(R-r)(1-\cos \theta)}{7 r^{2}}}$
If $\mathrm{R} \gg \mathrm{r}$
$\omega_{f}=\sqrt{\frac{10 g R(1-\cos \theta)}{7 r^{2}}}$

Serway 9.52

Rocket Science. A rocket has total mass $M_{i}=360 \mathrm{~kg}$, including 33o kg of fuel and oxidizer. In interstellar space it starts from rest, turns on its engine at time $t=0$, and puts out exhaust with relative speed $v_{e}=1500 \mathrm{~m} / \mathrm{s}$ at the constant rate $k=2.50 \mathrm{~kg} / \mathrm{s}$. The fuel will last for an actual burn time of $330 \mathrm{~kg} /(2.5 \mathrm{~kg} / \mathrm{s})=132 \mathrm{~s}$, but define a "projected depletion time" as $T_{p}=M_{i} / k=144$.s.
(a) Show that during the burn the velocity of the rocket is given as a function of time by

$$
v(t)=-v_{e} \ln \left[1-\left(t / T_{p}\right)\right] .
$$

(b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132s.
(c) Show that the acceleration of the rocket is

$$
a(t)=v_{e} /\left(T_{p}-t\right)
$$

(d) Graph the acceleration as a function of time.
(e) Show the position of the rocket is

$$
x(t)=v_{e}\left(T_{p}-t\right) \ln \left[1-\left(t / T_{p}\right)\right]+v_{e} t
$$

Giving:
$\mathrm{v}_{\mathrm{i}}=0$
$v_{e}=1500 \mathrm{~m} / \mathrm{s}$
$T_{p}=M_{i} / k=144 \mathrm{~s}$
(a) From Equation (9.41) for rocket propulsion, let $v_{f}=v$:
$v-v_{i}=v_{e} \ln \left(\frac{M_{i}}{M_{f}}\right)=-v_{e} \ln \left(\frac{M_{f}}{M_{i}}\right)$
As $M_{f}=M_{i}-k t$ and $v_{i}=0$, Equation (1) becomes
$v=-v_{e} \ln \left(\frac{M_{i}-k t}{M_{i}}\right)=-v_{e} \ln \left(1-\frac{k}{M_{i}} t\right)$.
As $T_{p}=M_{i} / k$, Equation (2) becomes
$v(t)=-v_{e} \ln \left(1-\frac{t}{T_{p}}\right)$.
(b) With $\mathrm{V}_{\mathrm{e}}=1500 \mathrm{~m} / \mathrm{s}$ and $\mathrm{T}_{\mathrm{p}}=144 \mathrm{~s}$,
$v(t)=-(1500 m / s) \ln \left(1-\frac{t}{144 s}\right)($ in $m / s)$

A graph for (4) is as:

(c) The expression for the acceleration can be derived by taking a derivative of the velocity (Equation 3).
$a(t)=\frac{d v}{d t}=-v_{e}\left(\frac{1}{1-t / T_{p}}\right)\left(-\frac{1}{T_{p}}\right)=v_{e}\left(\frac{1}{T_{p}-t}\right)$
(d) With $\mathrm{v}_{\mathrm{e}}=1500 \mathrm{~m} / \mathrm{s}$ and $\mathrm{T}_{\mathrm{p}}=144 \mathrm{~s}$, $a(t)=(1500 \mathrm{~m} / \mathrm{s}) /\left(T_{p}-144 \mathrm{~s}\right)\left(\right.$ in $\left.\mathrm{m} / \mathrm{s}^{2}\right)$

A graph for (5) is as:

(e) The expression for the potion can be derived by integrating the velocity (Equation 3).

$$
x(t)=0+\int_{0}^{t}\left[-v_{e} \ln \left(1-\frac{t}{T_{p}}\right)\right] d t=v_{e} T_{p} \int_{0}^{t} \ln \left(1-\frac{t}{T_{p}}\right)\left(-\frac{d t}{T_{p}}\right)=v_{e} T_{p} \int_{0}^{t} \ln \left(1-\frac{t}{T_{p}}\right)\left(d\left(1-\frac{t}{T_{p}}\right)\right.
$$

From Table B.5:
$x(t)=v_{e} T_{p}\left[\left(1-\frac{t}{T_{p}}\right) \ln \left(1-\frac{t}{T_{p}}\right)-\left(1-\frac{t}{T_{p}}\right)\right]_{0}^{t}$
$x(t)=\left(T_{p}-t\right) \ln \left(1-\frac{t}{T_{p}}\right)+v_{e} t$
(f) With $\mathrm{v}_{\mathrm{e}}=1500 \mathrm{~m} / \mathrm{s}=1.5 \mathrm{~km}$ and $\mathrm{T}_{\mathrm{p}}=144 \mathrm{~s}$,
$x(t)=1.5(144-t) \ln [1-t / 144]+1.5 t \quad$ (in $k m)$
A graph for (5) is as:

