

Chemical Data Assimilation: Ozone and Tracers in WACCM4/CESM-GEOS5

- The recent chemical DA in the WACCM (Whole Atmosphere Chemistry Climate Model of CESM-1.03, top lid ~140 km).
- Overview of several O₃ analyses, zooming on O₃ Vertical Structures (VS).
- Needs for the Resolution-Dependent Analysis (RDA). Inverse mapping of OmF that constrain only visible structures, preserving scales unresolved by data.
- Value of limb data (MLS and HIRDLS) in the O₃ analysis and current efforts implementing multi-sensor (nadir + limb) RDA in the WACCM/GEOS5 research systems: OMI-MLS-HIRDLS.
- Resolution kernels, when they add information and QC for data
- Benefits to assimilate the research satellite data into "whole" atmosphere models with "Full" chemistry & RDA mapping.

Valery Yudin ⁽¹⁾, Douglas Kinnison ⁽¹⁾, Steven Pawson ⁽²⁾, Meta Sienkiewicz ⁽²⁾, John Gille ⁽¹⁾, James Hannigan⁽²⁾, Francis Vitt⁽²⁾ and Nathaniel Livesey ⁽³⁾

⁽¹⁾ NCAR/NESL, ⁽²⁾ NASA/GSFC, GMAO, ⁽³⁾ NASA/JPL

WACCM-GEOS5, forecast/analysis system

- Chemistry-climate model with physics. radiation of CESM, non-LTE, non-oro GWD,ion-e chem-ry to simulate MLT..
- VR of GEOS-5 + extra 16 lev. in 75-140 km;
- HR (144x96 ~ 2.5°x1.9°)
- 125-species chemical mechanism (MA + troposphere, surf. emissions, year-to-year variations, monthly, daily by scaling to match y locations of MODIS fire counts).
- Coupling with GEOS-5 through tendency: dX/dt= (Xwac- Xgeos)/50hr

dX/dt = 0, transition zone. [surf -:-~50 km] above 60 km; 50-60 km

(X=U, V, T, Ps)

N2O, ppbv, WACCM-GEOS5

Data analysis package in WACCM-GEOS5

- Oriented on Aura/A-train chemicals and T.
- Current setup for O3, CO, N2O and T-re.
- Interface for 4-data classes (VR):
- Conv+Limb
- Nadir-columns;
- Nadir-partial columns;
- MOPITT-CO ..radiances.
- Analysis interval time step (30 min), only linear incerements (<25%).
- **PV-tracer corr-ns and Resolution Kernels** => extra-Quality Controls (for retrievals)
- **Directional splitting (Vert/Hor)** in filter implementations, **transport of the variance**.
- Resolution dependent aspects in

 (a) reduction of variance and
 (b) adequate H^T-math for columns and low-DFS profiles.

WACCM-GEOS5 no data insertion

MOPITT-v4 + MLS-V2 (top), WACCM-GEOS5 (bottom)

WACCM3-GEOS5: Eq-r,2004-2007, daily CO anomalies

Evaluation of O₃ simulations and analyses

- Traditional against high quality independent data (sondes)
- Global evaluation: against independent data, monthly composites (MLS/HIRDLS/OMI)
- Inter-comparisons of analyses, (GFS, GMAO, ECMWF) performing OSSE-studies ("ECMW-data" in GEOS-5, NH winter 2006).
- Performing sensitivity studies: impact of data in the observing system (O3: SBUV/MLS/OMI)

Equatorial O₃-anomaly (10°S-10°N): limb data, analysis, and climate model simulations

Reproducing Vertical Structures in Ozone Analyses and Retrievals

Motivation to zoom at VS of O3 analyses by MLS and HIRDLS orbital plots in the UTLS

HIRDLS: Jan 23 2006

GEOS-5: Jan 23 2006

1) How frequently analyses fail to reproduce observed O_3 thin layers ?

- 2) Can models reproduce observed laminas ?
- 3) How severe DA can degrade polar ozone depletions ?

South Pole, Sep 30/2005: Two types of O3-DAS SBUV/2 (operational) and MLS (research) in GEOS5-3dVar

GEOS-5: Taking out SBUV/2, adding MLS => restore O3 laminas, O3-PV correlations

Ozone Laminas Jan 1- Feb 15 2006

Mar/2006: Monthly frequencies (%) of O3 Iaminas: CTM, Analysis, and HIRDLS retrievals

Analysis of SBUV/2 O_3 partial columns degrades frequency of ozone laminas => polar ozone losses, negative impact of data analysis on vertical structures.

Vertical resolutions: data and analysis grids,

resolved (visible) structures and unresolved (Nyquist) scales

Linear characterization of data resolution: a priori (X_a) and resolution (A=KH) kernels

- $X_r = X_a + A(X_t X_a)$
- $X_r = (I-A)X_a + AX_t = X'_a + X_{vis}$
- |X'_a| << X_{vis} => Linear char-n
- |X'_a| ~ X_{vis} =>Non-Linear ch-n
- To keep linearity for low-dfs or low VR => analysis of columns (T) for which: |T_t-T_a| << T_a

Numerics of RDA for retrievals with low-DFS:

1)Kernels (A_z) and a priori (X_a); 2) SVD(AH-operator) -> selection of visible scales; *) Errors (B-forecast and R-data) are scale-dependent; **) Vertical Mapping: BH^T

- *) [C]⁻¹ =/= [B]⁻¹ + H^T[R⁻¹]H ~1-3 km ~7-15km
- **) BH^T vertical projector for DFS ~1-2
- $H => A_z H_h (A_z resolution kernels)$

Inv Mapping: SVD(H) => $H\delta X = \delta Y$

- (a) selection of visible components
- (b) error reduction for observable scales only data with 7km res-n =./=> 1-3 km mod. variance.
- (c) handling **BH^T** in the minimization loops (needs practical solutions for EV-truncations)

Kernels and X_a provide powerful extra-info for QC showing when the linearity can be accepted.

Resolution Kernel A_z-matrices

Ozone Jacobians and Kernels: TES and HIRDLS, QC by images of kernels

Multi-sensors in GEOS-5: Impacts of SBUV/2, MLS & OMI

BH^T => <**B**> **H**^T Scaling O₃ profiles in DA of O₃ columns

- B-across the tropopause at model layers is up-scaled to uncertainties of columns
- => a scalar for columns and radiances when DFS ~ 1-4
- H^T for columns => scaling profiles along A-kernels
 H^T for radiances => scaling along Jacobians
- Requirements for profiling of H(p) and A(p) => specification at model layers, to ensure precise accuracy (11 layers of OMI-TOMS is not enough)

OMI-profiles ~ 50,000 per day

Height, km

⁻⁵⁰ 0 Latitude

Jan 2006: De-biasing GEOS-5 O3 forecast by analysis of MLS O₃ in the stratosphere

Jan 2006: Analyses - Model, Analysis-Analysis **Differences** (in %),

ECMWF-INT(Analysis) minus WACCM-G5 (Model), % 30 E-I m WAC5 25 Height, km 15 20 -50 50 0 Latitude

ECMWF-Interim (E-I):

GOME O3-profiles

MLS-O3 profiles

WACCM-GEOS5: (WAC5)

NCAR/NESL Community

Climate Chemistry Model driven by GEOS-5/Aura analysis system

MLS ⇔ WACCM-G5

E-I m G5-MLS

Arctic Spring 2011

2011: March Ozone at Sodankyla, 67N

80

3.5

80

4.

85

4.5

85

90

5.>

90

March 2011: OMI and WACCM4-DAS

Arctic Spring 2011: March 7 and 18, P=50hPa

Thule 76°N: March 7,8,9, 15,16, 18

Concluding Remarks and Outlook

- Ozone analysis schemes should properly acknowledge separation of visible and data-null scales.
- WACCM-GEOS5 system effectively utilizes the OMI and MLS/Aura O₃ data.
- WACCM (2004-2011) simulations with GEOS5 analyzed winds demonstrate a good quality for the ozone dynamics in the UTLS.
- **Current work: Implementation of RDA-schemes** for both nadir+limb data **with resolution kernels** => OMI, MLS, and HIRDLS.
- **Other possible implementations of RDA:** the radiance data analysis (AMSU-A channels in upper stratosphere) and CO/CO2 data analysis
- Need to communicate with data providers.....Kernels, Linear Char-n, A priori

Intermediate solution => analyze only total columns, with column Kernels.

(example: analysis OMI columns in GEOS-5 with and w/o LEFs)

MOPITT CO: V3-V4-V5 kernels and RDA

2011 Adrianal Hainht

Danger to put nadir

column-based data as a grid-wise measurements

Inverse mapping =>

Localization of vertical sensitivity in AK, compared to the RDA mapping by SVD-schemes

