Implementation of spatial correlations in the background error covariance matrix in the BASCOE system

Quentin Errera

Belgium Institute for Space Aeronomy (BIRA-IASB)
quentin@oma.be and
Richard Ménard
Environment Canada

SPARC DA Workshop
June 20-22, 2011

The Belgium Assimilation System for Chemical ObsErvations (BASCOE)

- 4D-Var system dedicated to assimilation of stratospheric chemical observations
- 57 chemical species interact through 200 chemical reactions
- All species advected, usually by ECMWF dynamical fields
- The system includes a simple PSC parameterization
- Typical resolution: 3.75° lon $\times 2.5^{\circ}$ lat $\times 37$ levels $(0.1 \mathrm{hPa}$ to the surface)
- Up to now, B has always been considered diagonal, with a fixed error usually between 20% to 50% of the background field
- This system has been used successfully to assimilate UARS MLS, MIPAS, GOMOS and EOS MLS

Why to implement spatial correlations in \mathbf{B} ?

- NRT assimilation of EOS MLS is done by BASCOE within MACC. Correlations in \mathbf{B} might allow to improve the analyses AND also allow to increase the resolution $\quad \Rightarrow$ Double improvement
- We would also like to compare 4D-Var and EnKF. For this purpose, an optimal 4D-Var system is required.

Outline

(1) New formulation of BASCOE
(2) Numerical test: assimilation of one pseudo observation
(3) Real test: assimilation of EOS MLS ozone

Control Variable Transform (1/4)

The classical formulation of 4D-Var (i.e. not incremental), as previously implemented in BASCOE, aims at minimizing the objective function J :

$$
\begin{align*}
J\left(\mathbf{x}\left(t_{0}\right)\right) & =\frac{1}{2}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right]^{T} \mathbf{B}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right] \tag{1}\\
& +\frac{1}{2} \sum_{i=0}^{N_{\Delta t}}\left[\mathbf{y}_{i}-H\left(\mathbf{x}\left(t_{i}\right)\right)\right]^{T} \mathbf{R}_{i}^{-1}\left[\mathbf{y}_{i}-H\left(\mathbf{x}\left(t_{i}\right)\right)\right]
\end{align*}
$$

where:

- $\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)$ and \mathbf{B} are, respectively, the background model state (at time step 0) and its associated error covariance matrix
- \mathbf{y}_{i} and \mathbf{R}_{i} are, respectively, the observation vector and its associated error covariance matrix at time step $i, N_{\Delta t}$ being the number of model time step
- $\mathbf{x}\left(t_{i}\right)$ is the model state vector at time step i and is calculated from the previous time step by the model operator $M: \mathbf{x}\left(t_{i}\right)=M_{i-1}\left[\mathbf{x}\left(t_{i-1}\right)\right]$
- H is the observation operator that maps the model state into the observation space
- In the following, $J^{\text {b }}$ and J^{o} will refer to the background and observation terms of J

Control Variable Transform (2/4)

(1) As the typical dimension of \mathbf{x} is around 10^{6}, a full \mathbf{B} matrix is of size 10^{12}. This is far too large for current computers.
(2) The specification of the elements of such a matrix requires a huge amount of a priori information, more than available.

For those reasons, it is necessary to reduce the problem. Following the method used by meteorological centers [Bannister, 2008a,b, QJ, and references therein], we apply the following control variable transform (CVT):

$$
\begin{equation*}
\underbrace{\mathbf{x}-\mathbf{x}^{\mathrm{b}}}_{\delta \mathbf{x}}=\mathbf{L} \chi \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{B}=\mathbf{L L}^{T} \tag{3}
\end{equation*}
$$

Control Variable Transform (3/4)

The objective function:

$$
\begin{align*}
J^{\mathrm{b}}\left(\mathbf{x}\left(t_{0}\right)\right) & =\frac{1}{2}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right]^{T} \mathbf{B}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right] \tag{4}\\
J^{\mathrm{o}}\left(\mathbf{x}\left(t_{0}\right)\right) & =\frac{1}{2} \sum_{i=0}^{N_{\Delta t}}\left[\mathbf{y}_{i}-H\left(\mathbf{x}\left(t_{i}\right)\right)\right]^{T} \mathbf{R}_{i}^{-1}\left[\mathbf{y}_{i}-H\left(\mathbf{x}\left(t_{i}\right)\right)\right] \tag{5}
\end{align*}
$$

becomes:

$$
\begin{align*}
J^{\mathrm{b}}\left(\chi\left(t_{0}\right)\right) & =\frac{1}{2} \chi\left(t_{0}\right)^{T} \chi\left(t_{0}\right) \tag{6}\\
J^{\mathrm{o}}\left(\chi\left(t_{0}\right)\right) & =\frac{1}{2} \sum_{i=0}^{N_{\Delta t}}\left[\mathbf{d}_{i}-H\left(\mathbf{L} \chi\left(t_{i}\right)\right)\right]^{T} \mathbf{R}_{i}^{-1}\left[\mathbf{d}_{i}-H\left(\mathbf{L} \chi\left(t_{i}\right)\right)\right] \tag{7}
\end{align*}
$$

where $\mathbf{d}_{i}=\mathbf{y}_{i}-H\left[\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right]$

Control Variable Transform (4/4)

Efficient minimization of J requires ∇J. In the classical formulation, we had:

$$
\begin{equation*}
\nabla J^{\mathbf{b}}=\mathbf{B}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathbf{b}}\left(t_{0}\right)\right] \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\nabla J^{\circ}=\sum_{i=0}^{N_{\Delta t}} \mathbf{M}_{1 \rightarrow 0}^{T} \mathbf{M}_{2 \rightarrow 1}^{T} \ldots \mathbf{M}_{i \rightarrow i-1}^{T}\left(\frac{\partial H\left(\mathbf{x}\left(t_{i}\right)\right)}{\partial \mathbf{x}\left(t_{i}\right)}\right)^{T} \mathbf{R}_{i}^{-1}\left[\mathbf{y}_{i}-H\left(\mathbf{x}\left(t_{i}\right)\right)\right] \tag{9}
\end{equation*}
$$

In contrast, with the new control variable χ, we have:

$$
\begin{align*}
\nabla J^{\mathrm{b}}= & \chi_{0} \tag{10}\\
\nabla J^{\mathrm{o}}= & \mathbf{L}^{T} \sum_{i=0}^{N_{\Delta t}} \mathbf{M}_{1 \rightarrow 0}^{T} \mathbf{M}_{2 \rightarrow 1}^{T} \ldots \mathbf{M}_{i \rightarrow i-1}^{T}\left(\frac{\partial H\left(\mathbf{x}\left(t_{i}\right)\right)}{\partial \mathbf{x}\left(t_{i}\right)}\right)^{T} \\
& \mathbf{R}_{i}^{-1}\left[\mathbf{y}_{i}-H\left(\mathbf{x}\left(t_{i}\right)\right)\right] . \tag{11}
\end{align*}
$$

Formulation of $\mathbf{L}(1 / 3)$

Again, as done by meteorological centers [Bannister, 2008a,b, QJ], we construct the BECM from a set of very sparce matrices. In our case, \mathbf{L} is given by

$$
\begin{equation*}
\mathbf{L}=\mathbf{G} \boldsymbol{\Sigma} \mathbf{S} \boldsymbol{\Lambda}^{1 / 2} \tag{12}
\end{equation*}
$$

where

- $\boldsymbol{\Lambda}$ is the correlation matrix defined in the spectral space; $\chi^{\prime}=\boldsymbol{\Lambda}^{1 / 2} \chi$
- S operates the transformation from the spectral space to the gaussian grid. The control variable χ is thus a set of spherical harmonic coefficients; $\delta \mathbf{x}^{\prime \prime}=\mathbf{S} \chi^{\prime}$
- $\boldsymbol{\Sigma}$ is the background error variance matrix; $\delta \mathbf{x}^{\prime}=\boldsymbol{\Sigma} \delta \mathbf{x}^{\prime \prime}$
- G operates the transformation from the gaussian grid to the lat/lon grid of BASCOE; $\delta \mathbf{x} \equiv \mathbf{x}-\mathbf{x}^{\mathrm{b}}=\mathbf{G} \delta \mathbf{x}^{\prime}$

Formulation of $\mathbf{L}(2 / 3)$

By considering homogeneous and isotropic correlations, $\boldsymbol{\Lambda}$ is a block diagonal matrix in the spectral space. For example, if $N_{\text {lat }}=2, N_{\text {lon }}=4$ and $N_{\text {lev }}=3$ and if we organize χ as follow, $\boldsymbol{\Lambda}$ takes the form:

- $\chi_{n m}^{\prime}$ are the expansion of \mathbf{x} in spherical harmonics; I is the level index, n is the total wave number and m is the zonal wave number
- q_{n}^{\prime} are the horizontal correlation coefficients, depending on the level $/$ and on the total wavenumber n (but not on the zonal wavenumber m)
- $c_{n}^{l_{i}, l_{j}}$ are the vertical correlation coefficients, depending on the pair of levels $\left(l_{i}, l_{j}\right)$ and the total wavenumber n

Formulation of L (3/3)

Current formulation of \mathbf{L} in BASCOE

- We assume that $c_{n_{p}}^{l_{i}, l_{j}}=c_{n_{q}}^{l_{i}, l_{j}}$, i.e. vertical correlations are indendent of the total wave number n.
\Rightarrow vertical and horizontal correlations are separable
- Horizontal correlations: gaussian and second order autoregressive (SOAR) correlations can be modelled, given a correlation length scale L_{h} (in km)
- Vertical correlations: gaussian correlations can be modelled, given L_{v} (in level units)

Assimilation of a single pseudo observation (1/2)

The new formulation of BASCOE is tested with the assimilation of a single pseudo observation:

- Model grid size: 41 latitudes $\times 80$ longitudes $\times 9$ levels

Assimilation of a single pseudo observation (1/2)

The new formulation of BASCOE is tested with the assimilation of a single pseudo observation:

- Model grid size: 41 latitudes $\times 80$ longitudes $\times 9$ levels
- Uniform background field and variances: $\mathbf{x}^{\mathbf{b}}=1 ; \boldsymbol{\Sigma}=0.1 \mathbf{I}$

Assimilation of a single pseudo observation (1/2)

The new formulation of BASCOE is tested with the assimilation of a single pseudo observation:

- Model grid size: 41 latitudes $\times 80$ longitudes $\times 9$ levels
- Uniform background field and variances: $\mathbf{x}^{\mathrm{b}}=1 ; \boldsymbol{\Sigma}=0.1 \mathbf{I}$
- One observation is located on a grid point $(20,40,5)$; $\mathbf{y}^{0}=1.2 ; \sigma^{0}=0.001$

The new formulation of BASCOE is tested with the assimilation of a single pseudo observation:

- Model grid size: 41 latitudes $\times 80$ longitudes $\times 9$ levels
- Uniform background field and variances: $\mathbf{x}^{\mathrm{b}}=1 ; \boldsymbol{\Sigma}=0.1$ I
- One observation is located on a grid point $(20,40,5)$;

$$
\mathbf{y}^{\mathrm{o}}=1.2 ; \sigma^{\mathrm{o}}=0.001
$$

- Gaussian vertical and horizontal correlations. $L_{v}=1 ; L_{h}=1200 \mathrm{~km}$

Assimilation of a single pseudo observation (2/2)

Assimilation of EOS MLS Ozone observations (3/9)

BASCOE setup:

- Resolution: 2° lat $\times 2^{\circ}$ Ion $\times 37$ levels
- Only O_{3} is considered and the chemistry is turned off in order to reduce the CPU time. Ozone data are rejected above 0.5 hPa .
- wind and T° are taken from ERA-Interim

EOS MLS O 3 data are assimilated between December 2004 and March 2005

Assimilation of EOS MLS Ozone observations (4/9)

- To make the system optimal, the error parameters must be tuned
- This is done using the innovations (Hollingsworth and Lönnberg, 1986, Tellus):
$\mathbf{x}^{\mathrm{b}}=\mathbf{x}^{\text {truth }}+\epsilon^{\mathrm{b}}$
$\mathbf{y}^{\mathrm{o}}=\mathbf{H} \mathbf{x}^{\text {truth }}+\epsilon^{\mathrm{o}}$
then:
$\mathbf{y}^{\mathrm{o}}-\mathbf{H} \mathbf{x}^{\mathrm{b}}=\epsilon^{\mathrm{o}}-\mathbf{H} \epsilon^{\mathrm{b}}$
Assuming that observations errors are horizontally uncorrelated and that background errors are spattially correlated, auto-covariance of I can be used to estimates the errors.

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 1: Assimilation of EOS MLS (Dec 2004) without spatial correlations, $\sigma^{b}=30 \%$; $\sigma^{\circ}=15 \%$
\Rightarrow EXP 1

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 2: Estimating the errors parameters from EXP 1

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 2: Estimating the errors parameters from EXP 1

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 2: Estimating the errors parameters from EXP 1

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 3: Re-assimilation of EOS MLS (Dec 2004).
- σ^{b} and σ° provided by tuning of EXP 1
- Horizontal correlations: SOAR with $L_{h}=600 \mathrm{~km}$
- Vertical correlations: gaussian with $L_{v}=1.5$ level
- This is EXP 2

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 4: Estimating the errors parameters from EXP 2

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 4: Estimating the errors parameters from EXP 2

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 5: Re-assimilation of EOS MLS (Dec 2004).
- σ^{b} and σ° provided by tuning of EXP 2
- Horizontal correlations: SOAR with L_{h} tuned from EXP 2
- Vertical correlations: gaussian with $L_{v}=1.5$ level
- This is EXP 3

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 6: Estimating the errors parameters from EXP 3 and checking for convergence

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 6: Estimating the errors parameters from EXP 3 and checking for convergence

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 6: Estimating the errors parameters from EXP 3 and checking for convergence
 \Rightarrow Convergence not reached

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 7: Re-assimilation of EOS MLS (Dec 2004).
- σ^{b} and σ^{o} provided by tunning of EXP 3
- Horizontal correlations: SOAR with L_{h} tuned from EXP 3
- Vertical correlations: gaussian with $L_{v}=1.5$ level
- This is EXP 4

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 8: Estimating the errors parameters from EXP 4 and checking for convergence

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 8: Estimating the errors parameters from EXP 4 and checking for convergence

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 8: Estimating the errors parameters from EXP 4 and checking for convergence

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 8: Estimating the errors parameters from EXP 4 and checking for convergence

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- New Exp 5
- $\sigma^{b}=30 \% ; \sigma^{o}=15 \%$
- Horizontal correlations: SOAR with $L_{h}=600 \mathrm{~km}$
- Vertical correlations: gaussian with $L_{v}=1.5$ level
- This is EXP 5

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 9: Checking whether J / p has reached its theoretical value of 0.5

$$
\begin{aligned}
J\left(\mathbf{x}\left(t_{0}\right)\right) & =\frac{1}{2}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right]^{T} \mathbf{B}^{-1}\left[\mathbf{x}\left(t_{0}\right)-\mathbf{x}^{\mathrm{b}}\left(t_{0}\right)\right] \\
& +\frac{1}{2} \sum_{i=0}^{N_{\Delta t}}\left[\mathbf{y}_{i}-H\left(\mathbf{x}\left(t_{i}\right)\right)\right]^{T} \mathbf{R}_{i}^{-1}\left[\mathbf{y}_{i}-H\left(\mathbf{x}\left(t_{i}\right)\right)\right]
\end{aligned}
$$

Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lönnberg on BASCOE

- Step 9: Checking whether J / p has reached its theoretical value of 0.5

Assimilation of EOS MLS Ozone observations (6/9)

OmF: Deviation of the BASCOE background fields to EOS MLS observations
 Period considered: 01Jan2005-31Mar2005

Assimilation of EOS MLS Ozone observations (7/9)

OmA: Deviation of the BASCOE analyses fields from independent ACE-FTS observations Period considered: 01Jan2005-31Mar2005

Assimilation of EOS MLS Ozone observations (8/9)

Analyses on 22 Feb 2005

Longitude

Analyses [ppmv] for EXP-2 at 9.8925 hPa

Longitude

Assimilation of EOS MLS Ozone observations (9/9)

Increments on 22 Feb 2005

Conclusions

(1) Spatial correlation implemented in BASCOE with a new control variable defined in the spectral space

Conclusions

(1) Spatial correlation implemented in BASCOE with a new control variable defined in the spectral space
(2) Homogeneous and isotropic horizontal AND vertical correlations are modelled

Conclusions

(1) Spatial correlation implemented in BASCOE with a new control variable defined in the spectral space
(2) Homogeneous and isotropic horizontal AND vertical correlations are modelled
(3) Case studies with EOS MLS O_{3} data show:

- Errors parameters are successfully tuned using Hollingsworth and Lönnber's method
- Tuned error parameters allow to improve the lower stratosphere

