Considerations in the prediction of regional Arctic climate change

John Walsh and William Chapman

WCRP Workshop on Polar Predictability Bergen, Norway, October 2010

Outline

- Low-frequency variability in data and models
- Model evaluation and selection
- Empirical competition

Change in surface air temperature (annual)

1957-2006

1941-1980

(from Alaska Climate Research Center)

Alaska annual temperature anomalies

Pacific Decadal Oscillation Index

20th-century Arctic (60-90°N) temperatures simulated by individual IPCC models

[from M. Wang et al., 2007, J. Climate]

IPCC CCCMA linear sfc. air temperature change Winter (DJF) 1951-2000

IPCC CNRM linear sfc. air temperature change Winter (DJF) 1951-2000

IPCC INMCM3 linear sfc. air temperature change Winter (DJF) 1951-2000

↑ individual models

Winter temperature changes, 1951-2000

composite \rightarrow

IPCC AR4 14-GCM comp. linear sfc. air temp. change Winter (DJF) 1951-2000

Change in *annual* surface air temperature, 1957-2006

Outline

- Low-frequency variability in data and models
- Model evaluation and selection
- Empirical competition

• Can Arctic climate simulations be improved by the selection of a subset of global models?

-- Is the age of model democracy over?

Temperature biases of IPCC AR4 models

Model selection

Basis:

Simulation of seasonal cycle of recent climate by 15 CMIP3 models

- Period: 1981-2000; 1961-2000
- Validation: ERA-40 reanalysis
- Variables: Surface air temperature Sea level pressure Precipitation [others]
- Metric: Root-mean-square error, integrated over:
 - 1) seasonal cycle (12 calendar months)
 - 2) domains of interest: 20-90 N

60-90 N Alaska Greenland

Ranking of CMIP3 models for various domains

Overall Rank	Model	Alaska temperature	60-90° N temperature	20-90° N temperature	Alaska precipitation	60-90° N precipitation	20-90° N precipitation	Alaska sea level pressure	60-90° N sea level pressure	20-90° N sea level pressure	Integrated Rank Index
1	MPI ECHAM5	13	1	1	5	3	3	1	1	1	29
2	GFDL CM2.1	6	3	5	2	1	2	5	4	2	30
3	MIROC 3.2	2	4	3	7	6	8	10	3	5	48
4	UKMO HADCM3	11	8	6	3	2	9	4	6	7	56
5	CCCMA 3.1	12	11	10	4	8	2	8	2	4	61
6	GFDL CM2.0	6	9	14	1	10	6	4	8	4	62
7	MRI CGM2.3.2A	11	13	7	6	5	4	2	11	6	65
8	CNRM CM3	1	5	5	12	12	13	7	12	11	78
9	NCAR CCSM3	8	2	2	9	8	7	15	15	13	79
10	INMC 3.0	7	6	10	10	13	12	9	7	9	83
11	NCAR PCM1	14	13	14	8	5	10	6	5	12	87
12	CSIRO MK3.0	6	14	12	11	11	5	11	9	9	88
13	IPSL CM4	11	7	12	13	9	11	14	11	15	103
14	GISS E R	6	10	10	14	14	15	13	14	14	110
15	IAP_FGOALS1_0_G	15	15	15	15	15	14	12	13	10	124

IPCC AR4 model performace vs. projected temp. change

IPCC AR4 model performace vs. projected SLP change

IPCC AR4 model performace vs. projected precip. change

Given the differences of in the skill shown by different models, how many models should be used to optimize a simulation (and, ultimately, a projection) of Arctic climate?

The "best" model only?

An average of all the models?

Composite GCM Sfc. air temperature RMSE

5-8 GCM composite optimum: robust across domains

Composite GCM Sfc. air temperature RMSE

Conclusions (Part 2)

- Models that perform best in the Arctic tend to show greater sensitivity to greenhouse forcing
- Different metrics of model skill produce *generally* consistent rankings of Arctic performance
- For the compositing of CMIP3 model simulations of the Arctic, the optimum number of models appears to be about half the total number

Outline

- Low-frequency variability in data and models
- Model evaluation and selection
- Empirical competition

Can we capitalize upon the observational record to assess predictability?

Completeness (%) of CRU temperature record, 1901-2008

What is the probability that the subsequent n-year period will be warmer than the preceding 1, 5, 10...years – based on the observational record?

What is the probability that the subsequent n-year period will be warmer than the preceding 1, 5, 10...years – based on CCSM3 model output?

What is the probability that the subsequent n-year period will be warmer than the preceding n years – based on observational data?

What is the probability that the subsequent n-year period will be warmer than the preceding n years – based on CCSM3 model output?

Analog forecasts based on antecedent n-year means: Correlations between predicted and observed

location	n=1	n=3	n=5	n=10	
East Greenland	+0.445	+0.372	+0.248	-0.237	
West-Central Canada	+0.181	+0.206	+0.156	-0.151	
Yukon, Canada	+0.059	+0.202	+0.175	+0.090	
West-Coast Alaska	+0.046	-0.001	-0.156	-0.183	
East Russia	+0.020	+0.268	+0.503	+0.326	
North Russia	-0.021	+0.085	+0.048	-0.125	
North Norway	+0.031	-0.099	+0.122	-0.019	
7-location mean	+0.109	+0.148	+0.157	-0.043	

Analog forecasts based on antecedent n-year means: Correlations between predicted and simulated (CCSM3)

Analog forecast correlations: CCSM3 sfc. air temps.

location	n=1	n=3	n=5	n=10	
East Greenland	+0.220	+0.420	+0.371	+0.244	
West-Central Canada	+0.037	+0.333	+0.404	+0.093	
Yukon, Canada	+0.221	+0.454	+0.663	+0.635	
West-Coast Alaska	-0.011	+0.275	+0.262	+0.198	
East Russia	+0.136	+0.287	+0.187	+0.019	
North Russia	+0.166	+0.001	+0.154	-0.189	
North Norway	+0.449	+0.453	+0.302	+0.732	
7-location mean	+0.174	+0.319	+0.335	+0.247	

Conclusions

- Low-frequency variability in the observational record can be a source of modest predictability in the Arctic
- Corresponding predictability appears to be greater in model output than in observational data; caveats include
 -- single model (CCSM3)
 - -- short observational record

Needed: Systematic *across-model* assessment of spectrum of variability, relative to observational variability