

The value of decadal predictions & links to the Arctic

Ed Hawkins

Thanks to: Rowan Sutton, Jon Robson, Buwen Dong, Sarah Keeley, Dan Hodson, Len Shaffrey

NCAS-Climate, University of Reading

National Centre for Atmospheric Science

NATURAL ENVIRONMENT RESEARCH COUNCIL

21st century EU decadal temperature trends

CMIP3 SRES AIB

• The value of decadal predictions

- > The case study approach
- Learning about model bias and ocean monitoring
- > How about statistical decadal predictions?
- What about the Arctic?
 - > Quantifying uncertainty
 - > Potential predictability

1995 rapid Atlantic warming

was the rapid warming because of the MOC or the NAO?

Thanks to Jon Robson

Retrospectively predicting North Atlantic upper ocean heat content

Decadal predictions allow:

- building trust in GCMs for making predictions and projections,
- the understanding of mechanisms causing variability,
- to identify processes causing forecast errors

Thanks to Jon Robson

Reliability of DePreSys hindcasts

For global temperature, the DePreSys hindcasts are slightly overconfident, suggesting the need for greater spread in the predictions.

Smith et al. 2007

 \rightarrow Learning about predictability and optimal observations

See Tziperman et al. 2008, Hawkins & Sutton 2009, 2010

LEARNING FROM MODEL FORECAST BIAS

Thanks to Buwen Dong

The growth of forecast bias in HadCM3

LEARNING FROM STATISTICAL DECADAL PREDICTIONS OF SSTs

Hawkins et al., in revision

SST Correlation – HadGEM1 – lead 6–10 years LIM CA

All Atl.

Correlation skill of SST predictions

SST Correlation – HadGEM1 – lead 6–10 years LIM CA

All Atl.

Correlation skill of SST predictions

SST Correlation – HadGEM1 – lead 6–10 years LIM CA

All Atl.

Correlation skill of SST predictions

SST Correlation – HadGEM1 – lead 6–10 years LIM CA

All Atl.

Correlation skill of SST predictions

 \rightarrow methods to be extended to analyse observations

LINKS TO THE ARCTIC

Sources of uncertainty in Arctic projections

Sources of uncertainty in Arctic projections

Potential predictability (PP)

"Potential predictability"

Initialised (decadal) climate predictions are not just about improving forecast skill

- They have the potential to:
 - help build trust in climate model projections
 - learn about model bias and climate variability
 - learn about physical processes leading to forecast error
 - inform model development and improvements
 - inform design of effective climate monitoring systems
- "Decadal" = anything longer than seasonal
- Need to test Arctic predictability in idealised GCM settings as well as (or before?) tackling real predictions

- Case study approach useful
- HadCM3 weakly too sensitive, mainly over land
 → constrained projections?
- Statistical decadal predictions also potentially possible as a benchmark or source of skill
- Targeted observations in far North Atlantic should be beneficial for predictions
- Arctic sea ice shows significant decadal variability in (some) GCMs