Regional Arctic processes and interactions

Potential importance for predictability on seasonal scale?

Annette Rinke and Klaus Dethloff,

Wolfgang Dorn, Dörthe Handorf

Alfred Wegener Institute for Polar and Marine Research (AWI) Potsdam, Germany

Part I

Two selected regional processes/feedbacks in the Arctic

- Physical parameterizations for key Arctic atmospheric processes (atmospheric boundary layer - ABL)
- Interactions/feedbacks between atmosphere and sea ice

Part I

Two selected regional processes/feedbacks in the Arctic

- Physical parameterizations for key Arctic atmospheric processes (atmospheric boundary layer - ABL)
- Interactions/feedbacks between atmosphere and sea ice

Sensitivity to atmospheric boundary layer (ABL) parameterization

Exp.: HIRHAM simulations with 3 different ABL schemes

MO: Monin-Obukhov similarity theory in srfc layer, mixing length approach aboveRO: Rossby-number similarity theory in whole ABL (Monin-Zilintikevich)TKE: Monin-Obukhov similarity theory in srfc layer, turbulent kinetic energy closure

Mean sea level pressure (hPa; color) and near-srfc. wind (m/s); winter

- HIRHAM-RO most successful in simulation of vertical exchange and srfc. temperature for cold and stable ABL conditions
- different energy fluxes srfc/atm different baroclinic structures strong regional differences in atmospheric circulation and wind → impact on Transpolar drift and sea ice export

Sensitivity to atmospheric boundary layer (ABL) parameterization

Exp.: HIRHAM simulations with 3 different ABL schemes

MO: Monin-Obukhov similarity theory in srfc layer, mixing length approach above
 RO: Rossby-number similarity theory in whole ABL (Monin-Zilintikevich)
 TKE: Monin-Obukhov similarity theory in srfc layer, turbulent kinetic energy closure

Mean sea level pressure (hPa; color) and near-srfc. wind (m/s); summer

- Especially pronounced pressure differences in Beaufort and Barents/Kara Seas
- Strong regional wind differences and influence on atmospheric circulation
 strong impact on sea ice circulation

Sensitivity to atmospheric boundary layer (ABL) parameterization

Exp.: HIRHAM simulations with different stability functions (Viterbo et al., 1999)

<u>ECMWF model</u>: turbulent diffusion above the surface layer \rightarrow eddy diffusivity concept (Louis et al., 1982) **K**=f(wind shear, turbulent length-scales for momentum/heat, prescribed **stability functions**)

LTG: revised stability functions to increase turbulent heat diffusion in stable situations, which increases the coupling between atmosphere and surface

<u>Sensitivity to atmospheric boundary layer (ABL) parameterization</u>

Exp.: HIRHAM simulations with different stability functions (Viterbo et al., 1999)

Mean sea level pressure (hPa); difference "Viterbo-run minus CTRL"; 1979-1993

Dethloff, Rinke, et al. 2010

Part I

Two selected regional processes/feedbacks in the Arctic

- Physical parameterizations for key Arctic atmospheric processes (atmospheric boundary layer - ABL)
- Interactions/feedbacks between atmosphere and sea ice

Sensitivity of sea ice simulation to atmospheric forcing

Exp.: HIRHAM-NAOSIM ensemble simulations; 1948-2008

Sea ice extent/thickness and mean sea level pressure (hPa), summer 1995

Sensitivity of atmosphere to sea ice/SST forcing

Exp.: HIRHAM simulations with 2 different sea ice/SST data sets

ERA15: SST, sea ice fraction, ice thickness=2m **NPS ocean-ice model**: SST, sea ice concentration and thickness

Impact on atmosphere ("HIRHAM.nps minus HIRHAM.era"); 1979-1993

500 hPa geopotential height

- dynamical large-scale response is modest, but of similar magnitude in the seasons
- more regional pattern in summer
- Iess accurate sea ice /SST data leads to deviations of modeled atm. pressure patterns

<u>Sensitivity of atmosphere to sea ice and snow albedo changes</u>

Exp.: ECHO-G simulations with 2 different surface albedo parameterizations

Ctrl: from Echam4 Koltzøw (2007): improved parameterization of melt ponds, snow cover, etc

Impact on atmosphere ("ECHO-G.koltzøw minus ECHO-G.ctrl"); winter

Divergence of Eliassen-Palm fluxes

change in planetary wave trains

500 hPa geopotential height

impact on global teleconnection patterns (NAO-/AO-)

Sensitivity of atmosphere to sea ice cover changes

Exp.: ECHO-G simulations; different phases of sea ice cover

Impact on atmosphere ("high ice minus low ice"); winter; Eliassen-Palm flux differences

- Sea ice impacts atmospheric planetary and baroclinic waves
- EP fluxes change in opposite direction

Part II

Predictability on seasonal scale

Hindcast ensemble simulations with HIRHAM over last 30 years 1979-2009 (each run is over 15 months, each with start in Mar. and Sep.)

- atmospheric initialization
- sea ice/SST initialization
- sea ice/SST forcing
- snow initialization

Part II

Predictability on seasonal scale

Hindcast ensemble simulations with HIRHAM over last 30 years 1979-2009 (each run is over 15 months, and start in Mar. and Sep.)

- atmospheric initialization
- sea ice/SST initialization
- sea ice/SST forcing
- snow initialization

Temporal development of area-averaged hindcast spread of MSLP (Pa)

Start in March

Start in September

Spatial patterns of hindcast spread of MSLP (hPa) and T2M (K)

December (start in September, after 3 months)

1980 1995 2007 2008 [hPa] 4 **MSLP** 3.5 3 2.5 2 1.5 1 0.5 [K] 3 T2M 2.5 2 1.5 0.5

<u>Temporal development of area-averaged hindcast spread of MSLP (Pa)</u> 1980

Start in March

Start in September

Spatial patterns of hindcast spread of MSLP (hPa) and T2M (K)

September (start in March, after 6 months), 1980

HIRHAM

HIRHAM-NAOSIM

[hPa]

3.5 3 2.5 2 1.5 1

[K]

3 2.5 2 1.5

MSLP

T2M

Summary

- Key Arctic processes (ABL, sea ice, land) and associated interactions & feedbacks are relevant; influence on atm. regional & large-scale circulation
- Connection of Arctic sea ice (snow) changes and quasi-stationary planetary waves and transient systems on synoptic to seasonal scales
 - complex interactions between baroclinic & planetary waves
 - September sea ice cover important for winter atm. large-scale circulation
- Seasonal predictability: initial value problem; external forcing important winter: response of atmosphere largely determined by large-scale forcing; enhanced predictability summer: regional feedbacks & baroclinic wave systems are more important