The terrestrial Arctic response to (and role in) local and global climate change

David Lawrence

NCAR Earth System Laboratory Boulder, CO

NCAR is sponsored by the National Science Foundation

NCAR Sea Ice Prediction Pool Results 2008-2010 Organized by Jennifer E. Kay (jenkay@ucar.edu)

Predictions for mean September ice extent submitted on June 1 (~20 entries each year) Owner of best guess gets ice cream from worst guess

NCAR ensemble mean prediction error 2008: 0.00 (-0.11) million km² 2009: -0.63 (-0.73) 2010: -0.01 (-0.11)

Topics for today

- Impact of sea ice loss on terrestrial Arctic climate
 - T, P, Snow
 - Rate of ice loss
 - Compare impact of sea ice loss to terrestrial snow extent decrease
- Terrestrial Arctic feedbacks
 - Example of shrub cover expansion

%

Holland et al., GRL, 2006

Lawrence et al., GRL, 2008

Lawrence et al., GRL, 2008

Akerman and Johansson, 2008

Lawrence et al., JGR, 2008

Shrub cover increasing in Arctic

Figure 1. Increasing abundance of shrubs in arctic Alaska. The photographs were taken in 1948 and 2002 at identical locations on the Colville River (68° 57.9' north, 155° 47.4' west). Dark objects are individual shrubs 1 to 2 meters high and several meters in diameter. Similar changes have been detected at more than 200 other locations across arctic Alaska where comparative photographs are available. Photographs: (1948) US Navy, (2002) Ken Tape.

- Shrub cover increasing in N. Alaska at 1.2% per decade since 1950, 14% to 20% cover (Sturm et al. 2001)
- Shrub cover can increase
 much quicker in response to
 climate shifts than forest
 cover since shrubs already
 exist across most of the
 Arctic

Sturm et al. 2001

-2012 Jul 16 Jul 20 Jul 24 Jul 28 Jul 1 Aug 6 Aug

Offline CLM4: SHRUB expt – GRASS expt

Q

Coupled CAM4/CLM4: SHRUB expt – GRASS expt

The impact of expanded shrub cover is significantly different in coupled vs offline expts (i.e., increasing vs decreasing ALT)

Offline expts roughly mimic a field
manipulation study - i.e., surface
properties change from grass to
shrub but forcing (T, P, Solar, etc) is
the same

Summary

- Sea ice loss leads to substantial warming over land, peaking in autumn and winter. In CCSM3, the sea ice loss induced warming extends over 1500km inland.
- The rate of sea ice loss may exert a significant control on rate of terrestrial Arctic climate change. Many terrestrial systems may be sensitive to the rate of change.
- Projected warming is likely to result in considerable near-surface permafrost thaw, which could initiate positive (and negative) feedbacks that may be relevant on decadal timescales.
- Many of these feedback mechanisms are not represented in current generation Earth System Models. Hence, models are missing processes that could be a (small) source of decadal predictability.

Projected snow changes in CCSM3 (2080-99 – 1950-69)

Prescribed snow experiments

Snow Season LengthSnow DepthCombinedHOLD_MW_DP-HOLD_DPTRND_DP-HOLD_MW_DPTRND_DP-HOLD_DP

Offline controlled snowfall experiment NDJFMA Snowfall Integrated area with permafrost within 3m of surface 12 10 millions of km² CONTROL Snow Depth **NO SNOW TRND** 1001950-69 2080-99 **NO RAIN TRND** W/ Snow trnd 80 1960 1980 2000 2020 2040 2060 2080 No Snow trnd 60 cm Increasing snowfall is effectively a soil 40 warming agent 2010%–30% of total soil warming at 1m depth ~16% contraction of near-surface permafrost r Ν D F М А М

Lawrence and Slater, 2009

