WCRP Workshop on Seasonal to Multi-Decadal Predictability of Polar Climate Bergen, Norway, 25-29 October 2010

Numerical studies on internal and external variations of the winter polar vortex with a mechanistic circulation model

YODEN Shigeo

Dept. of Geophysics, Kyoto Univ., JAPAN

- 1. General introduction
- 2. Internal variations of the polar vortex
- 3. Response to external variations
- 4. Associated predictability variations
- 5. Concluding remarks

1. General introduction

stratospheric sudden warming (SSW)

- breakdown of the polar vortex in the winter stratosphere
 - ➤ a rise of temperature by several tens K in a few days
 - Several minor warming events in a year, while a major warming event occurring roughly every two years

intraseasonal and interannual variability

in the stratosphere

Labitzke diagram

histograms of the monthly mean temperature at the North Pole

Iarge variability in winter

> mostly due to the occurrence or non-occirrence of an SSW

Internal variations

VS

responses to external forcings

• possible "external" forcings

- out of the atmosphere: solar forcings, volcanic eruption, biomass, anthropogenic influences (~trend)
- ➢ in the atmosphere but far from the poles: equatorial QBO, ENSO

some difficulty in observational studies

- data length is limited
 - ➤ at most 50 years (e.g., Berlin data since 1950s)
- essential difficulty (nearly impossible) in separation of each response of the polar stratosphere variations
 - highly nonlinear processes with interactions among dynamics, radiation and/or chemistry with multiple time scales
- Only numerical experiments overcome this difficulty
 - can supply much longer data to obtain statistical significance
 - can do the experiments that control the external forcings

hierarchy of numerical models

 Hoskins (1983, Q.J.R.M.S.)
 "Dynamical processes in the atmosphere and the use of models"

the optimum situation for meteorological research

Over a decade in Kyoto, we have made numerical studies on internal and external variations of the winter polar vortex with a mechanistic circulation model

3-D global MCM

- ➢ GFD Dennou Club AGCM5 (1998)
- ≻ Resolution: T21L42 (surface to the mesopause)
- Simplified physical processes:
 - Newtonian heating/cooling (in some cases, under perpetual-winter condition)
 - Rayleigh friction at the surface and at the top sponge layer
 - dry atmosphere
 - idealized surface topography only in NH, s =1, amp =1000m

 experiments on some parameter dependence with long enough data for statistical significance tests

experiments on some parameter dependence with long enough data (max ~ 15,000 years) for statistical significance Taguchi, Yamaga and Yoden (2001) SSWs in a stratosphere-troposphere (S-T) coupled system Taguchi and Yoden (2002a,b,c) internal variations associated with SSWs ➤ Naito, Taguchi and Yoden (2003) **QBO** effects ➢ Nishizawa and Yoden (2004) annular-mode variability ➢ Nishizawa and Yoden (2005) spurious trends due to short dataset ➤ Naito and Yoden (2006) **QBO** effects on SSWs ➢ Ito, Naito and Yoden (2009) QBO and 11-year solar cycle ➢ Kohma, Nishizawa and Yoden (2010) PJO and fast variations (SSW, VI)

2. Internal variations of the polar vortex

seasonal dependence of internal interannual variability

- due to the occurrence of SSWs in winter stratosphere
- breakdown of the polar vortex is a highly nonlinear process under a purely periodic annual forcing

Real atmosphere (Berlin data)

 Nishizawa and Yoden (2005, JGR) non-Gaussian nature of internal interannual variability
 > normalized pdfs of monthly [T] at the north pole

An application: seasonally dependent detectability of a linear trend

a cooling trend experiment

➢ 96 ensembles of 50-year integration with an external linear trend

-0.25K/year around 1hPa

Natural variability:

seasonally dependent detectability

- How many years do we need to get a statistically significant trend ?
- How small trend can we detect in finite length data with a statistical significance ?

3. Response to external variations

QBO effects on the occurrence of SSWs

- Naito, Taguchi and Yoden (2003, JAS)
- Naito and Yoden (2006, JAS)

➤ "QBO forcing" in the zonal momentum eq.:

$$\partial u \, / \, \partial t = \cdots - \alpha_{QBO} \left(u - U_{QBO} \right)$$

 $U_{\it QBO}$: prescribed zonal mean zonal wind of a particular phase of the QBO

- Under a perpetual winter condition (10,800-day statistics)
- Assess the atmospheric response to a small (or finite) change in the external parameter by a statistical method

- statistical assessment of difference: QBO effects on the polar troposphere
- a large sample method
 - ➤ A standard normal variable:

$$Z = \frac{[T_w] - [T_E]}{\sqrt{\frac{\sigma_w^2}{N_w^2} + \frac{\sigma_E^2}{N_E^2}}}$$
$$= \frac{226.8 - 225.8}{[1.87^2] \cdot 1.75^2} = 40.6$$

Highly significant differences between W'ly and E'ly phases but heavy overlapping of PDFs due to internal variations

Frequency distributions of zonal-mean temperature [K] (86N, 449hPa, 10800 days)

4. Associated predictability variations

- A preliminary result on predictability variations in JMA operational one-month numerical weather predictions (NWPs)
 - global atmospheric model

> with observed SST anomalies at t = 0

• full stratosphere

▶ p_top = 0.1 hPa, 60 layer

- breeding + time-lagged ensemble forecasts
 - > once a week: every Wednesday and Thursday (25+25 = 50 members)

temperature deviation from the climatological Min. for each calendar day at the North Pole, p=10 hPa in 2007-8 winter

≻ cf. Kohma, Nishizawa and Yoden (2010, *J. Climate*)

• temperature deviation from the climatological Min. for each calendar day at the North Pole, p=10 hPa in 2007-8 winter

≻ cf. Kohma, Nishizawa and Yoden (2010, *J. Climate*)

• another year: 2006-7 winter

5. Concluding remarks

- Stratospheric sudden warming is the most important process to cause intraseasonal and interannual variability in the stratosphere
 - a highly nonlinear process: breakdown of the polar vortex
 - mostly (largely) due to internal dynamics in planetary scales
 - could be a key process which may amplify a (small) external forcing, such as solar influence, QBO, or else
- There are some difficulties in observational studies
 - data length is at most 50 years
 - difficulty in the separation of the stratospheric responses to external forcings (solar cycle, QBO, ...) from large internal variations
 - limitation of a cause-result argument for highly nonlinear processes with interactions among dynamics, radiation and/or chemistry with multiple time scales

Only numerical experiments overcome the difficulties

- can supply much longer data to obtain statistical significance
- can do the experiments that control the external forcings
- can provide dynamically consistent and complete data
- Advancement in computing powers has enabled us to perform numerical experiments with 3-D MCMs
 - very long-time integrations to obtain reliable PDFs
 > non-Gaussian, bimodal, ...
 - nonlinear perspectives on climatic variations and trend
 - Iarge sample method is useful for statistical assessment
 - parameter sweep experiments to investigate for highly nonlinear processes with combination of external forcings
- Predictability variations in operational one-month numerical weather predictions look interesting
 - long (3~4 weeks?) lead time for extremely warm days (SSWs)

Thank you !

June 14, 2010 Mt. Rainier

seasonally dependent detectability in the troposphere

- a natural variability run of AOGCM for 1,000 years
- necessary data length [years] to detect a linear trend of +0.05K/decade with 90% statistical significance

3. Solar effect in the presence of QBO

Motivations

- Labitzke (1987, 2006)
 - Correlations between 30-hPa heights and the solar flux of 10.7cm
 - > 1958-2006 (49 years; NCEP/NCAR RA), (20 more years, in blue)

Ε

С

Experimental design

- equatorial QBO
 - identical to Naito and Yoden(2006)
 - ➤ WWWW and EEEE

• solar heating

≻ Kodera and Kuroda(2002)

QBO Westerly

QBO Easterly

Spurious trend may exist in a finite-length dataset

• natural variability

long period variations of external forcing
 periodic forcing: solar 11-year cycle
 intermittent forcing: volcanic eruptions
 gap in quality of data

Change in observation method: Start of satellite obs., ...

Previous studies

- Standard deviation of the spurious trend
 - ≻ Tiao et al. (1990)
 - ≻ Weatherhead et al. (1998)
- Student's *t* -test for statistical significance of estimated trend
 - > assumption: the spurious trend has a normal distribution
- The PDF of the spurious trend depends on the PDF of natural variability
 - Some atmospheric natural variations have a non-normal distribution

North Pole February 30-hPa Heights NCEP/NCAR + REC

