WCRP Workshop on Seasonal to Multi-Decadal Predictability of Polar Climate

Bergen, 25-29 October 2010

Importance of physics, resolution and forcing in hindcast simulations of Arctic and Antarctic sea ice variability and trends

François Massonnet, Thierry Fichefet with contributions from H. Goosse, M. Vancoppenolle, C. König Beatty, P. Mathiot

Georges Lemaître Centre for Earth and Climate Research (TECLIM) Earth and Life Institute (ELI)

Uncertainties in sea ice variability

IPCC model projections of annual Arctic mean sea ice area anomalies (under various scenarios). From Zhang and Walsh, 2005

• What are the reasons for this spread?

• None of the 15 GCMs evaluated in *Arzel et al. (2006)* study can simultaneously capture observed mean state, trend and interannual variability with < 10% error for 1981-2000

• *Stroeve et al. (2007)* note that GCMs tend to underestimate summer Arctic sea ice losses, but **sophisticated** sea ice models perform better than others²

Understanding sea ice variability with an OGCM

- 1) How is model's variability performance modified along arrows?
- 2) How does model variability behave along arrows?

Outline

- 1. Reference simulation
- 2. Sensitivity to physics representation \uparrow
- 3. Sensitivity to resolution
- 4. Sensitivity to atmospheric forcing
- 5. Illustration of sensitivity experiments
- 6. Conclusions

Atmospheric Forcing

NCEP/NCAR daily surface air temperatures and wind speeds (1948-2008) + monthly climatological surface relative humidities, cloud fractions and precipitation rates + monthly climatological river runoffs

Bulk formulas

Surface fluxes of heat, freshwater and momentum (*salinity restoring*)

Tripolar global grid, 1° resolution 1948-2008 runs; analyses for 1979-2007

• Explicit representation of the subgridscale ice thickness, enthalpy, salinity and age distributions (5 categories)

• Multi-layer halo-thermodynamic component (1 snow layer + 5 ice layers)

• Mechanical redistribution that takes into account ridging/rafting processes and ridge porosity

• EVP rheology on a C-grid

www.climate.be/lim

NEMO (OCEAN MODEL)

• Primitive equation, free surface ocean general circulation model on a C-grid

• Level-1.5 turbulence closure scheme

• Isopycnal mixing + G&M parameterisation of eddy-induced tracer advection

• Bottom boundary layer scheme + partial step topography, 42 levels

www.nemo-ocean.eu

About observations

- OSISAF 1979-2007 reprocessed data set for ice concentrations (*EUMETSAT OSISAF, 2010*), interpolated to respective model grids
- ULS for ice thicknesses (Rothrock et al., 2003)
- PMW and ULS for Fram Strait outflow (Kwok et al., 2004)

2. Sensitivity to physics representation

Main differences LIM2 – LIM3

2. Sensitivity to physics representation

Absolute relative error of simulated VS observed variability

3. Sensitivity to resolution

Absolute relative error of simulated VS observed variability

4. Sensitivity to atmospheric forcing

4. Sensitivity to atmospheric forcing

- DFS4 2m air temperatures known to be warmer than NCEP (Bromwich and Wang, 2005)
- Higher winter temperatures → smaller summer ice extents

5. Illustration of sensitivity experiments

- Higher variability for smaller mean extents (as in *Goosse et al., 2009*)
- Higher variability with ITD representation, through ice-albedo feedback (*Holland et al., 2006*)

- Previous studies (e.g. Bitz et al.,
 2001): ITD → thicker ice. However...
- Increased ice thickness variability with higher mean ice thickness (as in *Holland and Curry, 1999*)

6. Conclusions

6. Conclusions

<u>Take home message</u>

• Keep in mind that this study considers sensitivity of sea ice variability for atmosphere-driven OGCMS at a decadal time scale

• Don't direct your priorities to higher resolutions if you work at ~ 1°. Eddypermitting resolutions (< ¼ °) have not been tested here. Also, higher resolution for the reanalyses could be important (DeWeaver and Bitz, 2006)

• Include a subgrid parametrization of ice thickness distribution to better simulate observed variability (NH). For GCMs, ITD also allows warmer surface air temperatures above perennial ice (Holland et al., 2006)

• Quality of atmospheric reanalyses are of higher importance. For GCMs, much effort should be directed to atmosphere modelling

francois.massonnet@uclouvain.be

thierry.fichefet@uclouvain.be

References

- Arzel O., Fichefet T., Goosse H., 2006: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMS, Ocean Modelling **12** 401-415
- EUMETSAT Ocean and Sea Ice Satelitte Application Facility, (v1, 2010): *Global sea ice concentration reprocessing dataset 1978-2007* [Online]. Norwegian and Danish Meteorological Institutes. Available from http://osisaf.met.no
- Bitz C., Holland M., Weaver A., Eby M., 2001: Simulating the ice-thickness distribution in a coupled climate model, Journal of Geophysical Research **106** C2 2441-2463
- Brodeau L., Barnier B., Treguier A.-M., Penduff T., Gulev S., 2010, An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Modelling **31**, 88-104
- Bromwich D.H., Wang S.-H., 2005, Evaluation of the NCEP–NCAR and ECMWF 15- and 40-Yr Reanalyses Using Rawinsonde Data from Two Independent Arctic Field Experiments, Monthly Weather Review-Special Section **133** 3562-3578
- DeWeaver E., Bitz C., 2006 Atmospheric Circulation and its effect on arctic sea ice in CCSM3 simulations at Medium and High resolution, American Meteorological Society **19** 2415-2436
- Kwok R., Cunningham G.F., Pang S.S., 2004: Fram Strait sea ice outflow, Journal of Geophysical Research 109, C01009
- Fichefet T., Morales Maqueda M., 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, Journal of Geophysical Research **102** C6 12609-12646
- Goosse H., Arzel O., Bitz C. M., de Montety A., Vancoppenolle M., 2009, *Increased variability of the Arctic summer ice extent in a warmer climate*, Geophysical Research Letters **36** L23702
- Holland M., Bit C., Hunke E., Lipscomb W., Schramm J., 2006: Influence of the Sea Ice Thickness distribution on Polar Climate in CCSM3, Journal of Climate 19 2398-2414
- Holland M., Curry J., 1999: The role of physical processes in Determining the Interdecadal Variability of Central Arctic sea ice, American Meteorological Society, **12** 3319-330
- Kalnay and coauthors, 1996: The NCEP-NCAR Reanalysis Project, Bulletin of the American Meteorological Society, 437-471
- Rothrock D.A., Percival D.B., Wensnahan M., 2003: *The decline in arctic sea–ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data,* Journal of Geophysical Research **113** C05003
- Stroeve J., Holland M., Meier W., Scambos T., Serreze M., 2007: Arctic Sea ice decline: Faster than forecast, Geophysical Research Letters 34 L09501
- Tartinville B., Cavanié A., Ezraty R., Fichefet T., 2002: Arctic multiyear ice coverage: a model study. Institut d'Astronomie et de Géophysique Georges Lemaître Scientific Report 2002/1. Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Vancoppenolle M., Fichefet T., Goosse H., Bouillon S., Madec G., Morales Maqueda M., 2009: Simulating the mass balance and salinity of Arctic and Antarctic Sea ice. 1. Model description and validation, Ocean Modelling **27** 33-53
- Zhang X., Walsh J. E., 2006: Toward a Seasonally Ice-Covered Arctic Ocean: Scenarios from the IPCC AR4 Model Simulations, Journal of Climate **19** 1730-1747