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Seasonal to Decadal Predic0on

• Recent Seasonal Predictability and
Prediction Assessments
– Current Forecast Capability (ENSO, Global

T2m, P)
– Maximum Predictability Not Achieved

• Improving Prediction Quality
– Untapped Sources of Predictability
– Improving the building blocks of forecast

systems
• Decadal: Prediction and Predictability
• Lessons Learned Outstanding Issues



1st WCRP Seasonal Predic0on

Workshop Kirtman and Pirani (2009)

Assessment of
Intraseasonal to Interannual

Climate Prediction and
Predictability

http://www.nap.edu/catalog.php?record_id=12878

Maximum
Predictability has
Not been Achieved

US National Academies
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Many sources of predictability remain to
be fully exploited by ISI forecast systems

• Land Interactions (e.g., Soil Moisture, Snow
Cover; Vegetation changes)
• Sea-Ice Interactions (i.e., atmosphere-ice;
ocean-ice)
• Troposphere-Stratosphere Interactions
• Sub-Seasonal Variability (e.g., MJO)

Predictability - “The extent to
which a process contributes to

prediction quality”



5

• Sustaining and Enhancing Observing
Systems

• Improving Data Assimilation Systems
(component wise and the coupled
system)

• Quantifying Sources of Uncertainty

• Reducing Model Errors

 Improving Forecast System
Building Blocks



ENSO Prediction:
Current Status

 Observations by
TAO/TRITON have
been critical to
progress in
understanding and
simulation.

  Dynamical models
are competitive with
statistical models.

  MME mean
outperforms individual
models

TAO Fully
Operational
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Seasonal Forecast ROC Scores for T2m
and Precipitation



Multi-Model vs.
Single Model

Large Ensemble vs.
Multi-Model



Region

2m Temperature Precipitation

JJA DJF JJA DJF

ET-
(x) ET+(x) ET-(x) ET+(x) Ep-(x) Ep+(x) Ep-(x) Ep+(x)

Australia 10.7 10.1 1.3 -0.4 -1.3 -2.5 -3.1 -3.6

Amazon Basin 14.4 9.1 23.4 25.7 2.2 2.1 9.5 8.9

Southern South America 8.5 8.2 -1.2 1.8 7.8 5.0 -0.7 -2.8

Central America 12.1 9.9 14.8 6.3 2.6 -0.7 8.7 8.5

Western North America 6.5 7.7 3.9 2.3 3.2 5.5 -0.6 0.0

Central North America -4.1 -3.6 -7.5 0.3 -1.8 -7.0 3.7 5.3

Eastern North America 0.6 5.7 4.1 9.5 -4.5 -8.3 9.2 6.0

Alaska 3.0 2.1 0.0 -0.7 -0.1 0.3 2.4 4.9

Greenland 3.6 4.2 8.0 5.8 -1.4 -0.5 -2.1 -2.0

Mediterranean Basin 7.6 10.7 3.2 3.2 -0.5 0.1 1.6 -0.9

Northern Europe -4.4 -4.2 4.8 2.9 -1.0 1.9 -1.1 -0.9

Western Africa 10.4 11.8 18.1 17.2 -1.6 -2.0 -4.9 -3.5

Eastern Africa 12.6 5.8 13.3 10.3 0.1 -0.3 1.2 0.6

Southern Africa 5.6 -1.1 15.9 15.7 0.7 -1.2 5.4 3.6

Sahara 7.6 7.4 6.9 3.9 -2.6 -4.8 -2.7 -2.7

Southeast Asia 10.7 5.9 8.7 18.1 14.7 10.3 3.4 2.5

East Asia 4.7 7.9 10.8 10.0 0.6 -1.0 -1.6 -0.9

South Asia 4.9 13.1 7.6 8.6 -1.6 -3.0 2.0 0.5

Central Asia 0.8 3.8 1.3 -0.4 0.5 0.1 -3.1 -3.6

Tibet 10.7 10.1 23.4 25.7 -1.1 0.0 9.5 8.9

North Asia 14.4 9.1 -1.2 1.8 -1.3 -2.5 -0.7 -2.8

Brier Skill Score
for Lower/Upper
tercile (1980-
2001)

Temperature and
Precipitation
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Climate Historical Forecast
Project (CHFP)



Forecast skill: r2 with land ICs minus that
obtained w/o land ICs

 Initialization is a challenge due to
spatial and temporal heterogeneity
in soil moisture

 Procedures for measuring of land-
atmosphere coupling strength are
still being developed

 Land Data Assimilation
Systems (LDAS) coupled
with satellite observations
could contribute to
initialization

  Further evaluation and
intercomparison of models
are necessary

- 2











Stratosphere resolving HFP 

Goal: Quantifying Skill Gained Initializing and
Resolving Stratosphere in Seasonal Forecast Systems

• Parallel hindcasts from stratosphere resolving and
  non-resolving models
• Action from WGSIP-12: Endorse as subproject of CHFP
• SPARC to recommend diagnostics

Additional Predictability Likely
Associated with Stratospheric Dynamics



© Crown copyright   Met Office
Dynamical forecast
Dynamical forecast + 70hPa stat fcast
(Christiansen 2005)

(Baldwin and Dunkerton 2001)

Surface wind at 60N

(Ineson and Scaife, 2009)

(Marshall and Scaife 2009)

QBO teleconnection

ENSO teleconnection



Links across WCRP

• Sea-Ice Initialization Experiment:
• Follow CHFP Protocols for Other Components, Data
• Initializing with observed Sea-Ice vs. Climatology

• 1 May, 1 November 1996 and 2007
• 8 Member Ensembles

• Spring snow melt into soil moisture and influence on spring
  temperature anomalies

Explore Seasonal Predictability 
Associated with Sea-Ice



Several areas of potential collaboration on intraseaonal time-scales:

Links across WMO

• Investigate how much ocean-atmosphere
coupling impacts skill
• Role of resolution on skill
• Multi-Scale interactions
• Ensemble techniques
• Intraseasonal Variability (e.g., MJO)
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Forecasting of MJO is relatively new; many
dynamical models still represent MJO poorly



24

• Sustaining and Enhancing Observing
Systems

• Improving Data Assimilation Systems
(component wise and the coupled
system)

• Quantifying Sources of Uncertainty

• Reducing Model Errors

 Improving Forecast System
Building Blocks



Bias
Removed

Bias
Included



CCSM3.0 Jan 1982 IC CFS Jan 1982 IC



CCSM3.0 Jan 1982 IC CCSM3.5 Jan 1982 IC
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Improvements to Building
Blocks



CFS Control

Ini0alized Coupled
Modes

GODAS

Nino34 SSTA Evolu0on

Initializing the Coupled Modes of the Coupled Model
Coupled Data Assimilation





• percentage of total variance
over decade
– associated with forced

component

– associated with internal
variability

• pΩ and pν tend to be
inverses of one another so p
= pΩ + pν is more uniform
than either

pΩ 

pν 

p 

PotenLal predictability of
temperature for 2010‐20

(“next decade”)

Boer 2008





CMIP5 Experiment Design

“Long-Term”
(century & longer)

TIER 1

TIER 2

CORE
“realistic”

diagnostic

“Near-Term”
(decadal)

(initialized
ocean state)

prediction &
predictability

CORE

TIER 1



Decadal forecast results to 2015

CCCma 



U. Miami





© Crown copyright   Met Office

Exchange of Decadal Predic0on
Informa0on

Adam Scaife and Doug Smith
WGSIP July 2010

GFDL – Tony Rosati  MRI-JMA – Kimoto Masahide
SMHI – Klaus Wyser,Colin Jones    KNMI – Wilco Hazeleger
IC3 – Francisco Doblas-Reyes MPI – Daniela Matei
RSMAS – Ben Kirtman CCCMA-EC – George Boer
IfM-GEOMAR - Mojib Latif     CERFACS – Laurent Terray
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We plan to keep ini,al exchange very simple:

Global Annual Mean Temperature
One file for each year, each member

Exchanged once per year around October
Example diagnos,cs:



Lessons Learned

• One‐Tier Systems have more Skill then 2‐0er
systems

• Probabilis0c Problem

• Mul0‐Model Useful

• No‐Chea0ng Tes0ng of Predic0on Systems

• Sample Size Issues

• Sta0s0cal and Dynamical Techniques are
Complementary



Outstanding Issues
• Quan0fying Forecast Uncertainty Due to Uncertainty in Model

Formula0on
– MulL‐Model Helps, but Ad‐Hoc; Need Models of Model Error (e.g., StochasLc physics)

• Quan0fying Forecast Uncertainty Due to Uncertainty in
Observa0onal Es0mates
– IniLal CondiLon Problem

• Model Error
– Need for InternaLonal Coordinated Effort at Improving Models

• MulL‐Model is Not an Excuse for NeglecLng Model Improvement; ResoluLon

• Data Assimila0on (Coupled Assimila0on) and Forecast Ini0aliza0on

• Sustained and Enhanced Observing Systems

• Climate System Component Interac0ons
– Coupled Ocean‐Land‐Ice‐Atmosphere; External Forcing vs. Natural Variability

• Quan0fying the Limit of Predictability
• IdenLfying Sources and Mechanisms for Predictability



Rainfall: HRC, and LRC

Rainfall: Observational 
Estimate


