List of Figures

Chapter 1: Introduction

	Figure 1.1: Model of the relationships between CCMVal, the CCM groups, and the WMO/L Assessment.	JNEP 2
	Figure 1.2: Schematic diagram of the CCMVal evaluation approach.	3
С	hapter 2: Chemistry Climate Models and Scenarios	
	Figure 2.1: Basic structure of a CCM and external forcings	.19
	Figure 2.2: HadISST1 and HadGEM1 SSTs	.47
	Figure 2.3: Surface total chlorine and total bromine as defined in the A1 scenario. Surface N_2O , and CH_4 as defined in the SRES A1b scenario	CO ₂ , .48
	Figure 2.4: Surface emissions of NO_x , CO and CH_2O as used for CCMVal-2 simulations	.48
	Figure 2.5: Aerosol surface area density, reconstructed from SAGE data.	.49
	Figure 2.6: Zonal wind (u) from merged observations at Canton Island, Gan and Singa vertically extended.	pore, .49
	Figure 2.7: Total solar irradiance updated from Lean et al. (2005)	.50

Chapter 3: Radiation

Figure 3.1: Climatological global and annual mean temperature, ozone mixing ratio, and water vapour mixing ratio and baises for REF-B1 model simulations74 Figure 3.2: Near global (70°S-70°N) and annual mean trends over 1980-1999 for (a) temperature, (b) ozone, and (c) water vapour ratio, for REF-B1 model simulations......77 Figure 3.3: Near global mean time series (70°S-70°N) of MSU/SSU satellite observations and REF-B1 model temperature data.....79 Figure 3.4: Global and annual mean temperature trends from (a) REF-B1 for 1980-1999; and Figure 3.5: The global and diurnal mean SW, LW and total net flux deviations from the LBL code at the model pseudo-tropopause (200 hPa)......83 Figure 3.6: The global and diurnal mean SW (red circles), LW (blue circles) and total (black diamonds) net flux deviations from the LBL code (AER for LW and libRadtran for SW) at the Figure 3.7: The vertical profiles of the global and diurnal mean LW downward flux from the LBL code (AER) and the absolute deviations of SOCOL, LMDZrepro and CCSRNIES results from the Figure 3.8: The vertical profiles of the global and diurnal mean SW downward flux from the LBL code (libRadtran) and the absolute deviations of SOCOL, MRI and LMDZrepro results from the Figure 3.9: The global and diurnal mean SW, LW and total net flux deviations of the radiative forcing due to CO₂ (case B) increase relative to the results of LBL codes at the pseudo-

Figure 3.10: The global and diurnal mean SW, LW and total net flux deviations of the radiative forcing due to LLGHG (case G) increase relative to the results of LBL codes at the pseudo-Figure 3.11: The global and diurnal mean SW, LW and total net flux deviations of the radiative forcing due to stratospheric ozone depletion (case H) relative to the results of LBL codes at the Figure 3.12: The global and diurnal mean SW, LW and total net flux deviations of the radiative forcing due to stratospheric water vapour increase (case J) relative to the results of LBL codes Figure 3.13: The global and diurnal mean SW, LW and total net flux deviations of the radiative forcing due to LLGHG and stratospheric ozone changes (case L) relative to the results of LBL Figure 3.14: Globally averaged shortwave heating rates for case A (control) and for case L minus Figure 3.15: Globally averaged longwave cooling rates for case A (control) and for case L minus Figure 3.16: The bias in the simulated global mean temperature at 2 hPa and the estimated contributions of CCM biases in: ozone climatology, water vapour climatology, and longwave/ Figure 3.17: Global mean, shortwave heating rate differences between minimum and maximum of the 11-year solar cycle in January (K/d), calculated offline in CCM radiation schemes and one Figure 3.18: CCM grades for globally averaged climatological stratospheric temperatures and Figure 3.19: CCM grades for globally averaged fluxes at the 200 hPa tropopause and their Figure 3.20: CCM grades for globally averaged climatological stratospheric heating rates and Figure 3.21: A summary of the average CCM grade for temperature, flux, heating rate and solar

Chapter 4: Stratospheric Dynamics

Figure 4.1: Climatological mean temperature biases for 60°N–90°N and 60°S–90°S for the winter and spring seasons
Figure 4.2: Descent of the zero zonal-mean zonal wind at 60°S based on the climatological mean annual cycle for REF-B1 simulations
Figure 4.3: Zonal wind speed and latitude of the jet maximum of the NH DJF climatology, and of the SH JJA climatology in the REF-B1 simulations
Figure 4.4: Temperature trends from 1980 to 1999, 2000 to 2049 and 2050 to 2099 115
Figure 4.5: Latitudinal location and value of the maximum amplitude of the stationary wave field for the NH DJF climatology, and for the SH SON climatology
Figure 4.6: Seasonal variation of the maximum amplitude of the NH and SH 10 hPa climatological stationary wave
Figure 4.7: Phase in degrees and amplitude (contour interval 200 m), in polar coordinates, of

wave-1 and wave-2 10 hPa stationary waves for NH DJF and SH SON. Ratio of wave-2 to wave-1 amplitude on 10 hPa for NH DJF and for SH SON
Figure 4.8: Trends in the amplitude of the seasonal-mean stationary wave for the periods 1980-1999, 2000-2049, and 2050-2099 in the REF-B2 simulations
Figure 4.9: Annual mean residual vertical velocities at 70 hPa, "turn-around" latitudes, and upward mass flux at 70 hPa calculated from residual vertical velocity. Seasonal anomalies from the annual mean are shown
Figure 4.10: Annual mean upward mass flux averaged from 1980 to 1999 for the REF-B1 simulations and from 1992 to 2001 for the UKMO analyses
Figure 4.11: For the REF-B2 simulations. (a) Annual mean upward mass flux at 70 hPa, calculated from w*. Also shown is the annual mean mass flux trend at 70 hPa from (b) 1980-1999, (c) 2000-2049 and (d) 2050-2099.
Figure 4.12: Monthly mean climatology of the eddy meridional heat flux at 100 hPa for the months of January and July, 1980-1999
Figure 4.13: Linear trends in the mean meridional heat flux averaged between 40°N/S and 80°N/S for the winter seasons
Figure 4.14: Parameters of the linear fit to the scatter plot of the 100 hPa heat flux vs. the 50 hPa temperature
Figure 4.15: Seasonally accumulated area at 50 hPa where daily temperatures are below 195 K and below 188 K for REF-B1 and REF-B2 simulations
Figure 4.16: Linear trend (1980-1999) for the Antarctic and the Arctic of the seasonally accumulated area at 50 hPa where daily temperatures are below 195 K and below 188 K for REF-B1 simulations
Figure 4.17: Linear trend (1980-1999, 2000-2049, 2050-2099) for the Antarctic and the Arctic of the seasonally accumulated area at 50 hPa where daily temperatures are below 195 K and below 188 K for the REF-B2 simulations
Figure 4.18: Location and amplitude of the maximum interannual standard deviation of the zonal- mean zonal wind in the NH in DJF poleward of 45°N and in the SH in JJA between 80°S and 30°S
Figure 4.19: Eigenvalue of the leading mode of variability of the 50 hPa zonal-mean zonal wind for the SH (right) and NH (left)
Figure 4.20: Regression patterns (m/s) of first (top) and second (bottom) mode of the 50 hPa zonal-mean zonal wind determined for regions poleward of 45°; (left) SH and (right) NH131
Figure 4.21: Profiles of the standard deviation in the de-trended zonal-mean zonal wind averaged from 10°S-10°N for the REF-B1 simulations
Figure 4.22: Profiles of the amplitude of the "QBO" in the zonal-mean zonal wind averaged between 10°S-10°N for the REF-B1 simulations
Figure 4.23: Profiles of the amplitude of the SAO in the zonal-mean zonal wind averaged between 10°S-10°N for the REF-B1 simulations
Figure 4.24: Profiles of the amplitude of the annual-cycle in the zonal-mean zonal wind averaged between 10°S-10°N for the REF-B1 simulations
Figure 4.25: Mean frequency of NH major SSWs per year for the REF-B1 and REF-B2 simulations between 1960 and 2000
Figure 4.26: Histograms showing the frequency of major SSWs in the REF-B1 simulations (1960-

	2000) in comparison to EDA 40 meandurie	400
	2000) In companison to ERA-40 reanalysis	130
	(1980-1999).	ulations
	Figure 4.28: Linear trend in the date of the SH final warming from REF-B1 and F simulations.	REF-B2 138
	Figure 4.29: Matrix showing the performance of the model ensemble in a variety of described in Table 4.1a, b after Waugh and Eyring (2008)	metrics 142
С	Chapter 5: Transport	
	Figure 5.1: Schematic of the stratospheric circulation	150
	Figure 5.2: Water vapour tape recorder signal from the models and the combined HALO data set from Schoeberl et al. (2008).	E+MLS 152
	Figure 5.3: Phase lag and amplitude, relative to the maximum amplitude as a function or above the levels of maximum amplitude, of the water vapour tape recorder, average 10°S-10°N.	f height ed over 153
	Figure 5.4: The tape recorder phase speed versus the scale height for the TLS, and the and versus the scale height per wavelength	e TMS, 154
	Figure 5.5: Mean age from 15 CCMs and the multi-model mean	155
	Figure 5.6: Comparison of the tropical vertical velocities derived from the tape recorder (⁻ mean age gradient (AG), as well as model residual vertical velocities	ΓR) and 158
	Figure 5.7: Tropical (10°N-10°S) CH_4 profiles from all CCMs in two seasons compared to mean profiles.	HALOE 161
	Figure 5.8: Contoured probability distribution functions of N_2O for 10°S-45°N for NH spring April-May) for 16 CCMs. MIPAS and MLS observations are shown in the first two panels	(March- 3.164
	Figure 5.9: Probability distribution functions of N_2O on the 800 K surface for NH spripanels) and SH spring (bottom panels).	ng (top 165
	Figure 5.10: Fractional release of inorganic Cl as a function of mean age of air	167
	Figure 5.11: Modelled and observed Cl _y times series for 1980-2006	168
	Figure 5.12: Area-weighted mean over 45° S-89°S of monthly mean N ₂ O tendencies at and 100 hPa.	50 hPa 170
	Figure 5.13: Same as Figure 5.12, but for 45°N-89°N	171
	Figure 5.14: Performance metrics for model mean age of air at 60°N and 60°S, 50 hPa.	172
	Figure 5.15: Contoured PDF of HALOE CH ₄ data and models for SH spring	173
	Figure 5.16: The most probable values of the CH ₄ PDFs identified from HALOE and analyses.	I model 174
	Figure 5.17: 18 CCM and observed profiles of N ₂ O, 80°S-88°S, for September	175
	Figure 5.18: Mean age changes in the REF-B2 simulations during the 21st century	176
	Figure 5.19: Quantitative assessment of model performance on transport diagnostics	183
	Figure 5.20: Correlations between the average mean age grade and four fundamental dia quantities	ignostic 185
	Figure 5.21: Mean age from 10 CCMs participating in CCMVal-1 and their multi-model n 186	nean.

Chapter 6: Stratospheric Chemistry

Figure 6.1: Model deviations in In(J) (sec ⁻¹) from the robust mean for nine selected J-values (NO, O2, O3, O3(1D), NO2, H2COa, CFCI3, CF2CI2, N2O) from PhotoComp experiment P1a (clear sky, SZA = 15°)
Figure 6.2: Ratio of J-values for a Pinatubo-like stratospheric aerosol layer
Figure 6.3: Ratio of J-values for a stratus cloud layer
Figure 6.4: Model deviations in $In(J)$ from the robust mean for three selected J-values (NO, O_2 , O_3) from PhotoComp experiment P2a, and for J-NO, $J-O_2$ and $J-O_3$ and $J-Cl_2O_2$ for experiments P1a, P2n, P2a, and P2m
Figure 6.5: J-values (sec ⁻¹) vs. pressure altitude for (a) O_3 yielding O(¹ D), (b) O_3 total, and (c) NO_2 from the Photocomp P3 experiment201
Figure 6.6: Matrices displaying PhotoComp grades for the nine participating CCMs202
Figure 6.7: Sulfate surface area density versus pressure and versus geometric altitude for 35°N, September 1993 and 22°N, February 1996 from eight CCMs
Figure 6.8: Comparison of N_2O profiles and the relation of radical precursors versus N_2O (black) to zonal monthly mean values from various CCM models for 35°N in September 1993206
Figure 6.9: Comparison of zonal monthly mean profiles of radicals from CCM models versus 24-hour average radical profiles found using a PSS box model constrained by profiles of T, O3, H_2O , CH_4 , CO, NO_y , Cl_y , Br_y , and sulfate SAD from the various CCMs for 35°N in September 1993
Figure 6.10: Metrics for radical precursors and sulfate surface area and radicals for a simulation carried out at 35°N, September 1993212
Figure 6.11: Scatter plot of metrics for the radical precursors, sulfate surface area, and fast chemistry for the simulation carried out at 35°N, September 1993 vs. metrics for the same quantities from the 22°N, February 1996 simulation
Figure 6.12: Correlation of CH_4 vs. N_2O for zonal-mean monthly-mean output from the final 10 years of REF-B1 runs from 17 CCM runs and MIPAS data214
Figure 6.13: Correlation of CH_4 vs. H_2O for zonal-mean monthly-mean output from the final 10 years of REF-B1 runs from 17 CCMs and MIPAS data215
Figure 6.14: Correlation of NO_y vs. N_2O for zonal mean monthly mean output from the final 10 years of REF-B1 runs from 16 CCMs
Figure 6.15: Crading plot for 18 CCMs for tracer tracer correlations, comparisons with the mean
annual cycle and mean vertical profiles of a range of tracers
annual cycle and mean vertical profiles of a range of tracers
Figure 6.15: Grading plot for 18 CCMs for tracer-tracer correlations, comparisons with the mean annual cycle and mean vertical profiles of a range of tracers
Figure 6.15: Grading plot for 18 CCMs for tracer-tracer correlations, comparisons with the mean annual cycle and mean vertical profiles of a range of tracers. 218 Figure 6.16: Mean annual cycle for 30° N- 60° N at 50 hPa for modelled CH ₄ , H ₂ O, CO, O ₃ , HCl, CIONO ₂ , HNO ₃ , N ₂ O ₅ , NO ₂ and BrO. 219 Figure 6.17: Mean profiles for 30° S- 60° S for CH ₄ , H ₂ O, CO, O ₃ , HCl, CIONO ₂ , HNO ₃ , N ₂ O ₅ , NO ₂ and BrO compared with observations. 219 Figure 6.18: Time series of modelled zonal-mean trace gas abundance in the tropical upper stratosphere for OH, H ₂ O ₂ , HO ₂ , NO ₂ , CIO, HCl, H ₂ O, CH ₄ and O ₃ . 220
Figure 6.15: Grading plot for 18 CCMs for tracer-tracer correlations, comparisons with the mean annual cycle and mean vertical profiles of a range of tracers

Figure 6.21: Time series of total chlorine volume mixing ratio from 1960 to 2100223	3	
Figure 6.22: As Figure 6.21 but for total bromine mixing ratio (ppbv)	4	
Figure 6.23: Time series of O ₃ (ppmv), CH ₄ (ppmv), N ₂ O (ppbv), H ₂ O (ppmv) and NO _y (pp annually averaged between 10°S and 10°N at 5 hPa from REF-B2 runs of 14 CCMs and multi-model mean	bv) the 5	
Figure 6.24: As Figure 6.23 but for an annual average between 30°N and 60°N at 70 hPa.22	26	
Figure 6.25: As Figure 6.23 but for a September–November average between 90°S and 60°S 50 hPa	S at 6	
Figure 6.26: Southern hemisphere profiles of HNO ₃ versus θ from Aura MLS at mid-month fr May through October228	rom 8	
Figure 6.27: CCM climatological profiles of HNO ₃ from mid-May through mid-October22	9	
Figure 6.28: Change in HNO ₃ from 350 K to 600 K, relative to May, for Aura MLS (abbreviated AMLS in legend) and 12 CCM climatologies (legend uses first 4 letters of each model) and the multi-model mean (MMM)	l as heir 0	
Figure 6.29: Grades obtained for 12 CCMs and their multi-model mean (MMM) from a comparis of model versus MLS-derived climatological changes in HNO ₃	son 1	
Figure 6.30a: Variations in average HNO ₃ at 500 K during the course of a year in 4 EqL bit based on climatologies from Aura MLS, 6 CCMs and their multi-model mean, and correspond rms variability over the 5-year climatology, for each sampled day of year	ins, ling 2	
Figure 6.30b: Same as Figure 6.30a, but for Aura MLS HNO_3	3	
Figure 6.31: Climatological profiles of H ₂ O from mid-May through mid-October234	4	
Figure 6.32: Climatological profiles of HCI from mid-May through mid-October23	5	
Figure 6.33: Summary of grades relating to SH changes in HNO ₃ , H ₂ O, and HCI236	6	
Figure 6.34: Comparison of model maximum SAD for NAT and ICE.	7	
Figure 6.35: Vortex average temperatures (top), and PACI (bottom) from January through Ma for the Arctic (left) and from July through September for the Antarctic (right) and between 4 550K.	rch 40- 8	
Figure 6.36: Chemical ozone depletion in the polar vortex from January through April and J through October between 350-550 K	July 9	
Figure 6.37: Relationship between Arctic chemical ozone loss and PACI for the years betwee 1990 and 2005. Model Cl _x versus PACI is also shown	een 0	
Figure 6.38: Relationship between Antarctic chemical ozone loss and PACI for the years between 1960 and 2005. Model Cl _x versus PACI is also shown	een 1	
Figure 6.39: Summary of grades, as discussed in the text	2	
Chapter 7: Upper Troposphere and Lower Stratosphere		
Figure 7.1: Schematic of the UTLS	7	
Figure 7.2: A sample Taylor diagram	9	
Figure 7.3: Annual cycle of tropical cold point tropopause temperature	2	
Figure 7.4: Time series of annual mean tropical cold point tropopause temperature263	3	

Figure 7.7: Lagrangian cold point diagnostics for ERA-40, E39CA, and CMAM	.265
Figure 7.8: Residence time for the trajectories in the TTL (385-395 K)	.266
Figure 7.9: Annual cycle of tropical ozone mixing ratio	.267
Figure 7.10: Annual cycle of tropical water vapour at 80 hPa	.267
Figure 7.11: Correlation of minimum monthly mean water vapour with saturation vapour ratio (Q _{sat})	mixing .268
Figure 7.12: Zonal-wavenumber-frequency spectrum of tropical temperatures at 100 hPa symmetric component.	for the .269
Figure 7.13: Same as Figure 7.12, but for the antisymmetric component	.270
Figure 7.14: Zonal cross section of static stability in tropopause coordinates	.272
Figure 7.15: Tropical vertical profiles of static stability in tropopause coordinates	.273
Figure 7.16: Zonal-mean zonal wind at 200 hPa	.275
Figure 7.17: Metrics for the zonal-mean zonal wind at 200 hPa	.276
Figure 7.18: Seasonal cycle in LMS mass	.276
Table 7.19: Same as Figure 7.17, but for LMS mass	.277
Figure 7.20: Extra-tropical tropopause pressure variability for SH and NH	.277
Figure 7.21: Extra-tropical vertical profiles of static stability in tropopause coordinates	.278
Figure 7.22: Extra-tropical seasonal cycles in monthly mean O_3 , HNO ₃ , and H ₂ O at 100 h 200 hPa for NH.	Pa and .279
Figure 7.00 Corres on Figure 7.00 but for OLL	
Figure 7.23: Same as Figure 7.22, but for SH	.280
Figure 7.23: Same as Figure 7.22, but for SH Figure 7.24: Meridional gradient in O_3 at 200 hPa	.280 .281
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa	.280 .281 .282
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO	.280 .281 .282 .283
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons	.280 .281 .282 .283 .284
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS.	.280 .281 .282 .283 .283 .284 .285
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates	.280 .281 .282 .283 .283 .284 .285 .286
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL)	.280 .281 .282 .283 .284 .285 .286 .286 .287
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL) Figure 7.31: Probability function maps of O_3 variability in NH	.280 .281 .282 .283 .284 .285 .286 .286 .287 .287
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL). Figure 7.31: Probability function maps of O_3 variability in NH Figure 7.32: Grades of O_3 variability at 68 hPa in NH.	.280 .281 .282 .283 .284 .285 .286 .287 .287 .287 .288
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL). Figure 7.31: Probability function maps of O_3 variability in NH Figure 7.32: Grades of O_3 variability at 68 hPa in NH. Figure 7.33: Annual cycle in O_3 differences (low-high tropopause) at 68 hPa	.280 .281 .282 .283 .284 .285 .286 .287 .287 .287 .288 .288
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL). Figure 7.31: Probability function maps of O_3 variability in NH Figure 7.32: Grades of O_3 variability at 68 hPa in NH. Figure 7.33: Annual cycle in O_3 differences (low-high tropopause) at 68 hPa Figure 7.34: Trends in tropical lapse rate tropopause pressure.	.280 .281 .282 .283 .284 .285 .286 .287 .287 .287 .287 .288 .289 .290
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL) Figure 7.31: Probability function maps of O_3 variability in NH Figure 7.32: Grades of O_3 variability at 68 hPa in NH. Figure 7.33: Annual cycle in O_3 differences (low-high tropopause) at 68 hPa Figure 7.34: Trends in tropical lapse rate tropopause pressure. Figure 7.35: Trends in tropical cold point tropopause.	.280 .281 .282 .283 .284 .285 .286 .287 .287 .287 .288 .289 .290 .290
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL). Figure 7.31: Probability function maps of O_3 variability in NH Figure 7.32: Grades of O_3 variability at 68 hPa in NH. Figure 7.33: Annual cycle in O_3 differences (low-high tropopause) at 68 hPa Figure 7.35: Trends in tropical lapse rate tropopause pressure. Figure 7.36: Trends in tropical 80 hPa water vapour time series	.280 .281 .282 .283 .284 .285 .286 .287 .287 .287 .288 .289 .290 .290 .291
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL). Figure 7.31: Probability function maps of O_3 variability in NH Figure 7.32: Grades of O_3 variability at 68 hPa in NH. Figure 7.33: Annual cycle in O_3 differences (low-high tropopause) at 68 hPa Figure 7.35: Trends in tropical lapse rate tropopause pressure. Figure 7.36: Trends in tropical 80 hPa water vapour time series . Figure 7.37: Trends in O_3 and H ₂ O in pressure and tropopause coordinates.	.280 .281 .282 .283 .284 .285 .286 .287 .287 .287 .287 .288 .289 .290 .290 .290 .291
Figure 7.23: Same as Figure 7.22, but for SH. Figure 7.24: Meridional gradient in O_3 at 200 hPa. Figure 7.25: Same as Figure 7.17, but for meridional gradient in O_3 at 200 hPa Figure 7.26: Profiles of normalised CO Figure 7.27: O_3 profiles in tropopause coordinates for four seasons. Figure 7.28: Grades for mean ozone values in the UTLS. Figure 7.29: CO and H ₂ O annual mean profiles in tropopause coordinates. Figure 7.30: Comparison of the extra-tropical tropopause transition layer (ExTL). Figure 7.31: Probability function maps of O_3 variability in NH Figure 7.32: Grades of O_3 variability at 68 hPa in NH. Figure 7.33: Annual cycle in O_3 differences (low-high tropopause) at 68 hPa Figure 7.35: Trends in tropical lapse rate tropopause pressure. Figure 7.36: Trends in tropical 80 hPa water vapour time series Figure 7.37: Trends in O_3 and H ₂ O in pressure and tropopause coordinates. Figure 7.38: Trends in extra-tropical tropopause pressure in NH and SH.	.280 .281 .282 .283 .284 .285 .286 .287 .287 .287 .288 .289 .290 .290 .290 .291 .291 .291 .292

Chapter 8: Natural Variability of Stratospheric Ozone

Figure 8.2: Monthly mean ozone mixing ratios at 1 hPa, 40°S, equator and 40°N, and 46 hPa, 72°S, equator and 72°N from MLS observations and models
Figure 8.3: Climatological zonal mean O_3 mixing ratios from the CCMVal-2 CCMs and HALOE in ppmv
Figure 8.4: Normalised Taylor diagram of the annual and semi-annual harmonics of the zonal- mean ozone, latitude-pressure distribution, for the NIWA-3D data set and the CCMVal-2 models
Figure 8.5: Normalised Taylor diagram of the annual cycle of the zonal-mean column ozone, latitude-month distribution, for the NIWA-column and TOMS+gb data sets and the CCMVal-2 models
Figure 8.6a: Interannual variability of polar cap averaged column ozone and corresponding normalised Taylor diagrams for NH and SH over the period onward of 1980
Figure 8.6b: Mean polar cap averaged column ozone and corresponding normalised Taylor diagrams
Figure 8.7: Slope parameter of the linear fit to the scatter plots of the Spring/Autumn ozone ratio versus the 100 hPa winter heat flux, plotted against the mean Spring/Autumn ozone ratio for each model
Figure 8.8: Slope parameter of the linear fit to the scatter plots of the polar cap averaged column ozone versus 50 hPa temperature, plotted against the column ozone value of the linear fit at T = 200 K for each model data
Figure 8.9a: Regression of column ozone on the simplified annular mode for NH March319
Figure 8.9b: Regression of column ozone on the simplified annular mode for SH Nov320
Figure 8.10: Normalised Taylor diagrams of the regression of column ozone on the simplified annular mode for NH March and SH November
Figure 8.11: Annual mean tropical (25°S-25°N) solar regression coefficients for temperature and ozone, and the relative uncertainty in temperature and ozone
Figure 8.12: Solar cycle shortwave heating rate differences in Kelvin per day in 100 units of the F10.7cm solar flux averaged between 25°S and 25°N for those CCMs that prescribed a solar cycle
Figure 8.13: Amplitude of the solar cycle in the upper stratosphere over latitude for ozone at 3 hPa in %/100 units of the F10.7cm radio flux and temperature at 1 hPa in K/100 units of the F10.7 cm radio flux
Figure 8.14: Monthly zonal-mean standard deviation of zonal-mean zonal wind (left, m/s) and ozone (right, DU/km) averaged from 5°S to 5°N
Figure 8.15: Annual mean QBO regression coefficient in ozone in percent at equatorial latitudes (5°S-5°N) from the CCMVal-2 CCMs (1960-2004) and observations
Figure 8.16: Latitudinal distribution of the annual mean QBO amplitude in column ozone from the CCMVal-2 CCMs (1960-2004) and observations
Figure 8.17: Reconstruction of the QBO contribution to the monthly zonal mean column ozone averaged from 5°S to 5°N
Figure 8.18: Annual mean tropical (25°S-25°N) ENSO regression coefficients from 1000 to 1 hPa for temperature ozone from models and observations
Figure 8.19: Scatter plot of the February-March polar cap ENSO anomaly in column ozone versus temperature (30-70 hPa average)

	Figure 8.20: Annual mean global mean 50 hPa temperature anomalies from pre-volcanic conditions for the Agung, El Chichón and Pinatubo eruptions
	Figure 8.21: Annual mean tropical (25°S-25°N) contribution from the volcanic basis function from models and observations to temperature for Pinatubo from 1000 to 1 hPa
	Figure 8.22: Annual mean global mean column ozone anomalies from pre-volcanic conditions for the Agung, El Chichón and Pinatubo eruptions
	Figure 8.23: Post volcanic eruption annual mean global mean anomalies of column ozone as a function of similarly calculated anomalies in CIO at 50 hPa
	Figure 8.24: Matrix displaying the model performance
С	hapter 9: Long-term projections of stratospheric ozone
	Figure 9.1: Raw time series data of annually averaged total ozone for the latitude range 25°S-25°N and initial individual model trend (IMT) estimates, and 1980 baseline-adjusted time series data and 1980 baseline-adjusted IMT estimates for the TSAM analysis
	Figure 9.2: 1980 baseline-adjusted multi-model trend (MMT) estimates of annually averaged total ozone for the latitude range 25°S-25°N
	Figure 9.3: Results of the MLR analysis for the CCMVal-2 models in the latitude band $25^{\circ}S-25^{\circ}N$. Sensitivity of the model ozone to halogen, sensitivity of the model ozone amounts to temperature and sensitivity of the model ozone amounts to NO_y
	Figure 9.4: Results of the MLR analysis for the CCMVal-2 models for 25°S-25°N for the evolution of ozone at 5 hPa, change in 5 hPa ozone relative to 1980 levels, and the evolution of $Cl_y + \alpha Br_y$ and contribution of $Cl_y + \alpha Br_y$ to the ozone and temperature changes
	Figure 9.5: Vertical profile results of the MLR analysis for the models for 25°S-25°N for ozone in the year 2000, ozone change from 2000 to 2100, and $Cl_y + \alpha Br_y$ change from 2000 to 2100 and contribution of the $Cl_y + \alpha Br_y$ change to the ozone, temperature and NO _y change355
	Figure 9.6: Scatter plot showing the differences (from 1960 to 2100) in 70 hPa \overline{w}^* and 50 hPa ozone for models
	Figure 9.7: As in Figure 9.2 but for the latitude range 35°N-60°N
	Figure 9.8: As in Figure 9.2 but for the latitude range 35°S-60°S
	Figure 9.9: As in Figure 9.2 but for 50 hPa Cl _y in the latitude range 35°N-60°N358
	Figure 9.10: Vertical profiles of differences in mid-latitude ($35^{\circ}S-60^{\circ}S$ and $35^{\circ}N-60^{\circ}N$) ozone over the the 21 st century and the contributions of Cl _y + α Br _y , temperature, and NO _y
	Figure 9.11: As in Figure 9.2 but for the month of March and the latitude range 60°N-90°N.361
	Figure 9.12: As in Figure 9.2 but for the Month of October and the latitude range
	60°S-90°S
	Figure 9.13: As in Figure 9.2 but for 50 hPa Cl _y in the latitude range 60°N-90°N
	Figure 9.14: As in Figure 9.2 but for 50 hPa Cl _y in the latitude range 60°S-90°S363
	Figure 9.15: Total column ozone as a function of latitude, averaged for the period 1996-2005 for 10 days before and after the minimum column ozone
	Figure 9.16: Meridional gradient in total column ozone averaged for the period 1996-2005 for the 10 days on either side of the ozone minimum
	Figure 9.17: Latitude of maximum meridional gradient in total column ozone, as a function of the ozone value at that latitude

	Figure 9.18: Simulated and observed ozone hole areas, based on a fixed, 220 DU amount, the 1960-1965 minimum, and the value at the maximum gradient	
	Figure 9.19: Ozone hole area versus cold area (50 hPa T < 195 K), averaged for July to September for each model compared with observations. The results were calculated from the REF-B1 simulations, and are averaged for the period 1990-2008	
	Figure 9.20: Date of return to 1980 values for the annual average and spring total ozone column derived from the IMT and MMT estimates for CCMVal-1 and CCMVal-2	
	Figure 9.21: Date of return to 1980 values for the annual average 50 hPa Cl _y derived from the IMT and MMT estimates for CCMVal-1 and CCMVal-2	
	Figure 9.22: Date of return to 1960 (left) and 1980 (right) values for the annual average (tropical and mid-latitude) and spring (polar) total ozone column derived from the IMT and MMT]estimates for CCMVal-2	
	Figure 9.23: Date of return to 1960 and 1980 values for the annual average 50 hPa CI_y derived from the IMT and MMT estimates for CCMVal-2	
	Figure 9.24: Relationship between the date of return of Cl_y to the 1980 value compared with the date of return of column ozone for the selected latitude ranges in Figure 9.20	
	Figure 9.25: Date of return of the annual mean ozone to the value appropriate to the reference year indicated on the abscissa	
	Figure 9.26: The average seasonal cycle of total column ozone over NH and SH mid-latitudes for two periods and its change	
	Figure 9.27: The relationship between the recovery date of mid-latitude (35°-60°) annual average ozone from the MMT analysis and the change in amplitude of the seasonal cycle of ozone averaged over the spring in each hemisphere	
Chapter 10: Effects of the stratosphere on the troposphere		
	Figure 10.1: JFM multi-model errors in zonal-mean zonal wind	
	Figure 10.2: CCMVal-2 seasonal mean combined performance for u, v, and T	
	Figure 10.3: Comparison between CCMVal-2 and CCMVal-1 for u and T	
	Figure 10.4: Median uncertainty comparison between CCMVal-2 (REF-B1) and CMIP3 (AMIP experiment) for u, v, and T combined	
	Figure 10.5: Composite differences of the standardized NAM index between strong and weak stratospheric events	
	Figure 10.6: Composite differences of the standardized SAM index between strong and weak stratospheric events	
	Figure 10.7: The RMS amplitude of the annular mode pattern of variability as a function of pressure in the NH and SH	
	Figure 10.8: The variance of the NAM and SAM indices as a function of seasonal and height: ECMWF reanalysis and the multi-model ensemble mean	
	Figure 10.9: The e-folding time scale of the NAM and SAM indices as a function of seasonal and height: ECMWF reanalysis and the multi-model ensemble mean	
	Figure 10.10: The fraction of the variance of the monthly mean 850 hPa AM index, lagged by 10 days, that is linearly correlated with the instantaneous AM index as a function of season and height: ECMWF reanalysis and the multi-model ensemble mean	
	Figure 10.11: The annular mode e-folding time scale (left) in the lower stratosphere and (right)	

mid-troposphere as a function of season for the CCMVal-2 models: (top) NH, (bottom) SH.393 Figure 10.12: Seasonal cycle of linear trends (1969-1998) in temperature and geopotential Figure 10.13: 30-yr trends (1969-1998) in Antarctic September-December total ozone versus the Figure 10.14: Long-term mean and linear trend of the DJF-mean zonal-mean zonal wind (a) for the time period of 1960-1999 in REF-B1 runs, and (b) for the time period of 2000-2079 in Figure 10.15: Trend relationship between SOND-mean ozone at 50 hPa integrated south of 64°S and variables of interest: ONDJ-mean temperature at 100 hPa integrated south of 64°S, DJF-mean extra-tropical tropopause pressure integrated south of 50°S, location of the DJFmean zonal wind maximum at 850 hPa, and location of the SH Hadley cell boundary at 500 Figure 10.16: SH circulation changes as simulated by the SPARC/CCMVal-2 models and four Figure 10.17: REF-B1 Runs: Annual means of surface clear-sky erythemal irradiance changes Figure 10.18: REF-B2 runs. Annual means of surface clear-sky erythemal irradiance changes (in Figure 10.19: (a) Average of surface erythemal irradiance for October - November at 75°S-90°S. (b) same as in (a) but for March –April at 90°N-75°N......401 Figure 10.20: 20-year averages of clear-sky and all-sky erythemal irradiance changes (%) for January and July with respect to the 1965-1979 average......402 Figure 10.21: Calculated changes in global mean ozone-induced radiative forcing evaluated at the tropopause based on simulated ozone in 17 REF-B1 simulations and a fixed dynamical heating model......403 Figure 10.22: Multi-model comparison of the time evolution of global, northern hemispheric, southern hemispheric stratospheric ozone flux into the troposphere between 1960 and 2100

Appendix B: Time Series Additive-Model Analysis

Figure B.4: Individual model autocorrelation functions for the noise term $\varepsilon_{jk}(t)$ for CCMVal-1 October total column ozone in the latitude band 60°S-90°S. This noise corresponds to the simpler nonparametric model(9.9) with a 1980 baseline trend estimate g(t) displayed in Figure B.2d.

Figure B.5: Individual model notched box-and-whisker plots for the noise term $\varepsilon_{jk}(t)$ corresponding to the simpler nonparametric additive model (B.8) and for the noise term $\varepsilon_{ik}(t)$ corresponding to

the nonparametric additive model (B.7)	424
Figure B.6: For time series of CCMVal-1 October total column ozone in the latitu	de band
60°S-90°S are presented the individual model fits, weights, and trend (MMT) estimate	for three
approaches	425