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In this appendix we provide a detailed description of the TSAM analysis, focusing on its development 
and application to CCMVal-1 and CCMVal-2 ozone-related time series in this chapter. This material is 
complemented by the supplement to Chapter 9 in which a more complete set of TSAM diagnostics is in-
cluded, along with an analysis of its sensitivity to outliers and a comparison with the simpler 1:2:1 filter-
ing employed by previous studies of CCMVal-1 time series.

B.1 Multi-Model Ensemble Analysis

The REF2 CCMVal-1 experiment (REF-A2) had a 
specified integration period of 1980-2050, while the cur-
rent CCMVal-2 experiment (REF-B2) has a specified in-
tegration period of 1960-2100. In each inter-comparison 
project, ensembles of simulations were also requested. 
Designing a multi-model analysis of REF-A2 (CCMVal-1) 
and REF-B2 (CCMVal-2) time series for the purpose of 
making multi-model trend (MMT) estimates represents a 
significant challenge due to a number of complicating fac-

tors. Particularly,
1. The specified periods for the REF-A2 and REF-B2 

experiments are not of equal extent. Furthermore, 
each modelling centre generally provided a subset of 
the requested data. For example, individual REF-A2 
contributions ranged from ensembles of one, extend-
ing over the period 2000-2019, to ensembles of three, 
extending over the expanded period 1960-2100.

2. In general, large inter-model differences in various 
latitude bands make it difficult to compare directly the 
model time series of ozone and chlorine indices, as 
well as to compute multi-model trend estimates.

Here, we introduce a statistical modelling approach 
that uses nonparametric regression to estimate smooth 
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trends from the CCMVal raw data. The nonparametric re-
gression uses a set of optimal thin plate splines to repre-
sent the trends and can be used to make formal inference 
(e.g., calculate confidence and prediction intervals). As 
discussed in Section 9.2, the approach adopted here con-
sists of three distinct steps: estimation of individual model 
trends (IMT), baseline adjustment of the trends, and the 
weighted combination of the individual model trends to 
produce a multi-model trend (MMT) estimate. In this ap-
pendix the development and application of this approach 
will be illustrated using the time series data presented in 
Figure B.1.

This data corresponds to the CCMVal-1 raw time se-
ries in Figure 7 of Eyring et al. (2007), which includes both 
REF-A1 and REF-A2 data for several of the models. The 
top panel (Figure B.1a) presents the March averaged total 
column ozone in the latitude band 60°N-90°N, while the 
bottom panel (Figure B.1b) presents the October averaged 
total column ozone in the latitude band 60°S-90°S.

B.2 Nonparametric estimation of  the 
individual model trends

The time series yjk(t) of an ozone-related index, such 
as one of those displayed in Figure B.1, is additively mod-
elled as the sum of a smooth unknown model-dependent 
trend, hj(t), and irregular normally-distributed noise:

yjk(t) = hj(t) + εjk(t), 

where the noise field

εjk(t) ~  N(0, σ2) 

is assumed to be an independent normally distributed ran-
dom variable with zero mean and variance σ2, and the in-
dices j and k respectively represent model and ensemble-
member number. (Here, the ensemble index k extends over 
both REF-A1 and REF-A2 simulations for some models.) 
This is a nonparametric regression of the index on time. 
The regression is nonparametric because the function of 
time does not have a fixed functional form with explicit 
parameters. The noise term (Equation B.2), representing 
natural variability about the trend, is considered to be an 
independent normally distributed random variable; inde-
pendent between different times, models, and runs. The 
variance of the noise is assumed to be constant over all 
models and runs. By fitting the trend to all the data rather 
than to each model separately, one can obtain better es-
timates of the noise variance (referred to as “borrowing 
strength”).

The unknown smooth functions hj(t) are estimated 
by fitting the data to a finite set of smooth basis functions 
having optimal interpolating properties. This was done 

here by using the gam() function in the mgcv library of 
the R language (R Development Core Team, 2008). The 
default option was used, which fits the data to a set of thin 
plate regression splines, by maximising penalized likeli-
hood to find the coefficients multiplying the basis func-
tions. The smoothness of the basis functions is controlled 
by a smoothing parameter, which is chosen using a leave-
one-out generalised cross-validation prediction approach 
(see Woods (2006) for more details). Unlike iterated 1:2:1 
smoothing (e.g., see Section 9S.3 of the supplement to 

Figure B.1: CCMVal-1 time series of monthly aver-
aged total column ozone in the latitude band 60°N-
90°N for March (panel a) and in the latitude band 
60°S-90°S for October (panel b). Following Eyring et 
al. (2007), these time series include REF-A1 data in 
addition to REF-A2 data for several  of the models.

(B.1)

(B.2)
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Chapter 9), the thin plate splines are guaranteed to give 
smooth trend estimates and do not alter their properties at 
the ends of the series.

The first step in the TSAM analysis is to apply the 
nonparametric regression (Equation B.1) to the raw time 
series data. This is illustrated in panels a and b of Figure 
B.2 by the IMT estimates hj(t) of the CCMVal-1 March 
60°N-90°N and October 60°S-90°S total column ozone 
displayed in Figure B.1. (Note that, while the smooth trend 
estimates hj(t) extend over the full period (1950-2100), in 
Figure B.2a,b we have elected to display the hj(t) only over 
the period where data exists for each model.)

B.3 Baseline-adjustment of  the trend 
estimates

The initial IMT estimates hj(t) in Figure B.2a, b reveal 
significant differences in the background values of column 
ozone - particularly in the Arctic (panel a). To facilitate a 

comparison of the trends across models, anomaly time se-
ries are constructed relative to a pre-ozone-hole baseline 
value of the index. While this is analogous to the proce-
dure employed by Eyring et al. (2007), the smoothness of 
hj(t) allows a more robust definition of the baseline at a 
particular time t0 (i.e., hj(t0)), rather than from the average 
over some period about t0. This results in the anomaly time 
series:

yjk(t) – hj(t0).

By construction, the anomaly time series (Equation B.3) is 
centred on a baseline value of zero at the time t0. Here, we 
chose to have this baseline changed from zero to the multi-
model mean of hj(t0) resulting in the “t0 baseline-adjusted 
time series”:

yʹjk(t) = yjk – hj(t0) + h(t0)

where

h(t0) = meanjʹ[hjʹ(t0)].

Figure B.2: Panels a and b: The initial estimate of the individual model trends hj(t) for the raw time series dis-
played in Figure B.1. This represents the first step in the TSAM analysis. Panels c and d: the 1980 baseline-
adjusted time series data y′jk following from (Equation B.7) with t0 =1980. Panels e and f: The 1980 baseline-ad-
justed trend estimate h′j(t). This represents the second step in the TSAM analysis. The thick grey line in panels 
c and d represents the trend estimate g′(t) for the simpler nonparametric additive model (9.9). For reference, 
following Eyring et al. (2007) smooth fits to the observations in these plots have been created by 30 iterations 
of a 1:2:1 filter (black lines).
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As discussed in Section 9.3, since the multi-model aver-
age of the IMT estimates h(t0) is a close approximation to 
the final multi-model trend estimate (MMT) derived in the 
third step of the TSAM analysis, the baseline adjustment 
may be viewed simply as forcing the anomaly time series 
to go roughly through the final MMT estimate at the refer-
ence date t0.

The time series (B.4) contains all the information 
of (B.3) plus the multi-model average h(t0), which can 
be compared with observations. In the comparison of 
CCMVal-1 and CCMVal-2 we have used the baseline t0 
= 1980. Following (B.4), the 1980 baseline-adjusted time 
series data, yʹjk for the CCMVal-1 March 60°N-90°N and 
October 60°S-90°S total column ozone are displayed in 
Figure B.2c and d respectively. The corresponding 1980 
baseline-adjusted non-parametric IMT estimates hʹj(t) are 
presented in Figure B.2e and f. Following (B.1) and (B.4) 
the 1980 baseline-adjusted non-parametric smooth trend in 
our model is:

hʹj(t) = hj(t) – hj(t0) + h(t0)

with

yʹjk(t) = hʹj(t) + εjk(t).

Before moving on to the third step in the TSAM, we 
may ask if (9.8) represents one of the simplest models that 
satises the assumptions of our statistical model (e.g., that 
the noise term εjk(t) is independent from year-to-year, is 
normally distributed, and is drawn from the same underly-
ing distribution with zero mean and similar variance). For 
example, we could have chosen the simpler nonparametric 
model:

yʹjk(t) = gʹ(t) + εjk(t),

where one trend estimate is made for all time series data 
instead of individual trend estimates for each model (B.7). 
This implicitly defines a different random noise component 
εjk(t). The nonparametric trend estimate gʹ(t) is displayed 
as the thick grey line in panels c and d of Figure B.2. If 
(9.9) were a reasonable model for the data then, in addition 
to being an IMT, gʹ(t) could also serve as the MMT thereby 
eliminating the need for the third step of the TSAM. Visual 
inspection of the smooth estimate gʹ(t) to the 1980 base-
line-adjusted time series yʹjk in Figure B.2c, d would sug-
gest a reasonable fit. However, because we have built the 
analysis on a probabilistic model, the goodness of the gʹ(t) 
and hʹj(t) fits may be tested against the model’s underlying 
assumptions.

Figure B.3: Individual model autocorrelation functions for the residuals εjk(t) for CCMVal-1 October total col-
umn ozone in the latitude band 60°S-90°S. This noise corresponds to the nonparametric model (9.8) with 1980 
baseline trend estimates hj(t) displayed in Figure B.2f. The blue dashed lines represent 96% confidence limits 
for the sample autocorrelation function. This suggests that the assumption of year-to-year independence is a 
good one for the (B.7) model.

(B.7)

(B.6)

(B.8)^

^
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The year-to-year independence of the model noise 
term may be tested by calculating its autocorrelation func-
tion. In Figure B.3 the autocorrelation function for the 
noise term εjk(t) is displayed for each model for the non-
parametric fit (B.7) to the CCMVal-1 October 60°S-90°S 
column ozone. The dashed blue lines in this figure repre-
sent 95% confidence limits. Lines that extend beyond these 
limits are considered to be sample correlations that are sig-
nificantly different from zero. Inspection of all the models 
reveals that the assumption of year-to-year independence 
is a good one for the model (B.7). This is not, however, the 
case for the simpler model (B.8). The autocorrelation of 
the noise term εjk(t) is displayed in Figure B.4 and displays 
significant violations of the assumption of year-to-year in-
dependence for several of the models.

Model assumptions related to the noise term may be 
further investigated by “notched box-and-whisker” plots. 
These are displayed for εjk(t) and εjk(t) respectively in pan-
els a and b of Figure B.5 again for the CCMVal-1 October 
60°S-90°S column ozone (see caption for details). From 
panel b we can see that the noise term εjk(t) has a similar 
location and scale for each model, validating the model 
assumption that the residuals were drawn from the same 
distribution with zero mean and roughly the same variance. 

Again, the same cannot be said for the εjk(t) residuals (pan-
el a) suggesting that gʹ(t) in (B.9) is not a good estimate of 
the trend.

We conclude, therefore, that (B.7) represents one of 
the simplest nonparametric additive models that is satisfied 
by the ozone indices considered in the two examples. (The 
same is basically true for the remainder of ozone-related 
indices analysed in Chapter 9).

B.4 Multi-model trend estimates

The final step of the TSAM analysis involves combin-
ing the IMT estimates hʹj(t) to arrive at an MMT estimate:

hʹ(t) =Σjwj(t)hʹj(t),

where the weights wj(t) have the properties

wj(t) ≥ 0 and Σj wj(t) = 1.

If the weights are assumed to be non-random, and the er-
rors in the individual trends are assumed to be independent, 
then the standard error of the weighted sum is given by:

s2
h(t) =Σjw

2
j(t)s

2
j(t),

Figure B.4: Individual model autocorrelation functions for the noise term εjk(t) for CCMVal-1 October total col-
umn ozone in the latitude band 60°S-90°S. This noise corresponds to the simpler nonparametric model(9.9) 
with a 1980 baseline trend estimate g(t) displayed in Figure B.2d. The lines extending past the blue-dashed 
lines for several models indicates that the assumption of year-to-year independence is not well satisfied for the 
(B.8) model.

^

^

(B.11)

(B.10)

(B.9)

^
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where sj(t) is the standard error of the trend estimate hʹj(t), 
which can be calculated using standard expressions from 
linear regression (Woods, 2006). The standard error (B.11) 
can then be used to estimate the confidence and prediction 
intervals respectively as:

[hʹ(t) – 1.96sh(t), hʹ(t) + 1.96sh(t)]

and

[hʹ(t) – 1.96�(s2
h(t) + s2

ε), hʹ(t) + √(s2
h(t) + s2

ε)].     

The 95% confidence interval in the trend gives the 
uncertainty in the trend estimate. In other words, there is 
a 95% chance that this interval will overlap the true trend. 
The interval is point-wise (rather than simultaneous) in that 
it represents the uncertainty in the trend at each year rather 
than being an interval for all probable trend curves over 
the whole period. The 95% prediction gives an idea of how 
much uncertainty their might be in a predicted index value 
for a particular year. In other words, there is a 95% chance 

that a particular index value on a specific year will lie in 
this interval. This interval is the combination of uncertainty 
in the trend estimate and the uncertainty due to natural in-
terannual variability about the trend.

The specific choice of weights in (B.9) remains 
open. In general, we decide to base the construction of 
the weights on a statistical probability model with testable 
assumptions. Here, we have chosen a “random-effects” 
model to determine the weights. This model assumes that 
the trends for individual models hʹj(t) are random samples 
from a “true” trend ~hʹj(t):

hʹj(t) = ~hʹj(t) + η(t)

where

η(t) ~ N(0, λ2).

The quantity λ2  is included to account for additional vari-
ance between model trends that cannot be accounted for 
merely by sampling the uncertainty s2

j. Using this random 

Figure B.5: Individual model notched box-and-whisker plots for the noise term εjk(t) corresponding to the simpler 
nonparametric additive model (B.8) (panel a) and for the noise term εjk(t) corresponding to the nonparametric 
additive model (B.7). These apply to the CCMVal-1 October total column ozone in the latitude band 60°S-90°S. 
In these plots the central black line represents the median, the extent of the notches away from the median line 
indicates the 95% confidence interval of the median, the top and bottom of the boxes respectively represent the 
upper and lower quartiles, and the top and bottom whiskers extend out to 1.5 times the distance from the first to 
third quartiles. For the noise term εjk(t) (panel b) the medians of all models fall within the notches and are close 
to zero. Also, the similar height of the boxes indicates that all models have a similar amount of variance away 
from the estimated trend h′j(t). For the noise term εjk(t), the means are significantly different and the inter-model 
variance is larger suggesting that (B.8) is not a suitable model for this data.

(B.12)

(B.13)

^

^

(B.15)

(B.14)
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effects model, (B.11) then generalises to:

s2
h(t) =Σjw

2
j(t)(λ

2 + s2
j(t)), 

which is used here to calculate intervals. Assuming this 
model is valid, a least-squares estimate of may be obtained 
from (B.9) employing the weights:

Figure B.6: For time series of CCMVal-1 October total column ozone in the latitude band 60°S-90°S are pre-
sented the individual model fits (panels a, d, and h), weights (panels b, e, and i), and trend (MMT) estimate 
(thick grey line in panels c, f, and j) for three approaches to determining the weights. Results from the “random-
effects” model (B.17) are shown in panels a-c. One problem with this approach is that models can contribute 
to the final MMT estimate at times when no data exists of that model (i.e., in regions where h′j(t) represents an 
extrapolation). The introduction of prior weights (9.21) can help mitigate this problem. Results from the use of a 
simple on/offset of prior weights (having values of one where there is model data and zero where there is none) 
are presented in panels d-f. One artifact of this approach is that it causes discontinuities in the final MMT esti-
mate. Finally, results from set of prior weights used for the present chapter, which employ a smoother quadratic 
taper from a value of 1 where time series data exists to a value of 0 where it is absent, is displayed in panels h-j.

(B.16)
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wj(t) =w(t)/(λ2 + s2
j(t))

where

w-1(t) =Σj(λ
2 + s2

j(t))
-1.

Specification of the weights wj(t) from (B.17) requires 
an estimate of the parameter λ2. For this we have used the 
following iterative approach: An initial estimate of the true 
trend is obtained by calculating hʹλ=0(t). Then, an iterative 
Newton-Raphson algorithm is employed to determine the  
λ that gives scaled residuals that have unit variance as is 
expected from (B.14):

var               = 1.

Employing this model for the weights produces the MMT 
estimate hʹ(t) for the 1980 baseline CCMVal-1 October 
60°S-90°S column ozone displayed in Figure B.6c. The 
associated individual model trend estimates hʹj(t) and 
weights wj(t) are respectively displayed in panels a and b 
of this figure. In this figure, the weights are scaled by the 
number of models so that a scaled weight of 1 implies a 
proportional contribution of that model to the MMT esti-
mate.

While this formulation of weights provides a smooth 
final trend estimate hʹ(t), for this example it highlights a po-
tential problem - the individual model weights wj(t) are very 
insensitive to the absence of data in the original time series. 
For example, the time series for the MAECHAM4CHEM 
model (green) extends only over the period 1980-2019 
(see Figure B.2). Its scaled weight, however, has a value 
of roughly 1 over the entire period 1960-2100 suggesting 
significant contributions of its trend estimate hʹj(t) at times 
when there are no model data. The original idea behind 
this model for the weights was that the natural increase in 
standard errors s2

j(t) in the region where hʹj(t) is extrapo-
lated beyond the model data would cause the weights to de-
crease naturally towards zero. While Figure B.6b indicates 
that there is some tendency for the weights to display this 
behaviour, it clearly remains unphysical.

To correct this unphysical behaviour, we introduce 
the concept of prior weights wp

j(t) into the formulation 
such that the final weights now have the form:

wp
j(t) =                          ,

(with wʹj(t) implicitly replacing wj(t) in expressions (B.11) 
and (B.17)). An example set of prior weights would be the 
“on/off” set: wp

j(t) = 1 at times t when raw time series data 
exist for model j and wp

j(t) = 0 otherwise. This prescription 
is illustrated in panels d-f of Figure B.6. It corrects the un-
physical behaviour identified when wj(t) of (B.17) is used 
alone. However, this on/off prescription is still problematic 
in that it causes discontinuities in the MMT estimate Figure 
B.6f. The set of prior weights used for the Chapter 9 em-

ploys a smoother quadratic taper, from a value of 1 where 
time series data exists to a value of 0 where it is absent:

wp
j(t) =            , 

where

z = –1 + 2(t – tj,min)/(tj,max – tj,min), 

and where [tj,min, tj,max] defines the period within which data 
exist for model j. This scheme is illustrated in panels h-j of 
Figure B.6. 

Finally, the formulation of prior weights (B.20) al-
lows a natural entry point for the specification of prior, 
time-independent, model weights based on performance 
metrics. Such metric based weights would take on values 
in the range [0, 1] and simply multiply wp

j(t) in the expres-
sion (B.20).
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(B.17)

(B.22)

(B.21)

(B.20)

hʹj(t) – hʹλ=0(t)

�λ2 + s2
j(t)

(B.19)

wp
j(t)wj(t)

Σjʹw
p
jʹ(t)wjʹ(t)

1 – z2   if 0 ≤ z2 ≤ 1
    0      otherwise






 




