What We Can Learn from the Midlatitudes – Intercomparison Studies

Mary C. Barth Mesoscale and Microscale Meteorology and Atmospheric Chemistry Divisions National Center for Atmospheric Research

Si-Wan Kim, NCAR; now at NOAA/ESRL/CSD Chien Wang, MIT Ken Pickering, NASA/GSFC Lesley Ott, Univ. Maryland G. Stenchikov, Rutgers Univ. Maud Leriche, Sylvie Cautenet, CNRS/U. Blaise-Pascal Ann Fridlind, Andy Ackerman, NASA/GISS Jean-Pierre Pinty, Celine Mari, Lab. D'Aerologie, CNRS Vlado Spiridonov, Hydrological Inst., Macedonia John Helsdon, Richard Farley, SDSMT

Motivation

- Convective processing of chemical species is important to
 - Moving pollutants to upper troposphere
 - Cleansing the atmosphere (rain out)
- Large-scale models produce inconsistent results for convective transport of scalars

Results from the NCAR CCSM Using Different Convection Parameterizations

Emanuel, Stochastic mixing model

Standard, CCSM bulk formulation

Kain-Fritsch, Plume model

Mixing ratio of surface tracer averaged over the TOGA-COARE region as a function of day (December 18 – January 8) and pressure

From Phil Rasch, EGS talk, 2003

Motivation

- Convective processing of chemical species is important to
 - Moving pollutants to upper troposphere
 - Cleansing the atmosphere (rain out)
- Large-scale models produce inconsistent results for convective transport of scalars
- Convective-scale models produce reasonably represent convective transport

Results From the COMMAS Convective Cloud Model Coupled With Chemistry

From Skamarock et al. (2000)

Motivation

- To improve sub-grid convective transport and wet deposition in large-scale models
 - multiple convective-scale models can be used to obtain general characteristics of these processes.
- The Chemistry Transport in Deep Convection Intercomparison
 - means to *calibrate* a variety of convective-scale models coupled with chemistry.
- Determine what the variability among reputable cloud chemistry convective models is for a given storm.

Acknowledgment

The Chemistry Transport in Deep Convection Intercomparison

6th International Cloud Modeling Workshop

July 2004 Hamburg, Germany

WMO

Simulate the 10 July 1996 STERAO storm

Chemistry Transport by Deep Convection

Primary Species: Ozone (O_3) – tracer Carbon monoxide (CO) – tracer Nitrogen oxides (NOx = NO + NO₂) – enhanced by lightning

Soluble species: Nitric acid (HNO₃) Hydrogen peroxide (H₂O₂) Formaldehyde (CH₂O) affected by microphysics parameterization

Initialization

- Soundings for T, qv, u, and v
- Initiation via 3 warm bubbles
- Aircraft vertical profiles for chemical species

400

150

Participants and their Models

Mary Barth and Si-Wan Kim (NCAR) – WRF–AqChem 👌 sensitivity sim.

Chien Wang (MIT) – **C.Wang** *sensitivity sim.*

Ken Pickering and Lesley Ott (U. Maryland), and Georgiy Stenchikov (Rutgers Univ.) – UMd/GCE

Ann Fridlind and Andy Ackerman (NASA/Ames) – DHARMA

Jean-Pierre Pinty and Celine Mari (CNRS--Toulouse) – Meso-NH

Maud Leriche and *Sylvie Cautenet*, (LaMP, U. B-P, Clermont-Ferrand) –Leriche or RAMS

Vlado Spiridonov, (Hydrometeor. Inst., Macedonia) – **Spiridonov**

John Helsdon, Richard Farley (South Dakota School M&T) – SDMST

Formulation of Models for the Convective-Scale Simulations

- 3-d, fully compressible, non-hydrostatic
 WRF-AqChem WRF dynamics (flux form)
 - C.Wang pseudo-elastic
 - UMd/GCE GCE dynamics (anelastic)
 - DHARMA Large Eddy Simulation
 - Meso-NH anelastic, MPDATA advection
 - Leriche/RAMS RAMS dynamics (anelastic)
 - Spiridonov based on Klemp and Wilhelmson
 <u>SDMST modified Clark-Hall model</u>, MPDATA

Microphysics and Chemistry

Models Configured for an Idealized Convective Case

- 160 km x 160 km x 20 km Domain: WRF-AqChem
- 120 km x 120 km x 20 km Domain: C.Wang, DHARMA, Meso-NH, RAMS/Leriche, Spiridonov, SDSMT
- 360 km x 328 km x 25 km Domain: UMd/GCE
- Resolution: $\Delta x = \Delta y = 1$ km

stretched vertical grid (50 grid points): WRF-AqChem, Meso-NH, RAMS/Leriche $\Delta z = 500$ m: Spiridonov, UMd/GCE $\Delta z = 400$ m: C. Wang $\Delta z = 250$ m: DHARMA, SDSMT

Sample of the Results Analyzed for the Intercomparison

STERAO-1996 From Dye et al. (2000)

Radar Reflectivity z = 10.5 km m.s.l. t = 1 hr

observations

55.

25.

120

120

Radar Reflectivity along-axis cross section t = 1 hr

Maximum Updraft

Transects across Anvil

NOx production from Lightning

DeCaria et al. (2005)

- Lightning interferometer data as input
- Finds region of reflectivity > 20 dBZ
- Distributes NO vertically WRF-AqChem, UMd/GCE

Parameterized flash rate based on max updrafts RAMS/Leriche

Parameterized electric field based on microphysics C. Wang

Predicts charge density in model Meso-NH, SDSMT

Transects across Anvil

Left side has linear plots, Right side has log plots

Cross sections CO

50 km from core

t = 6000 s

z=10.5 km, m.s.l. 2312UTC

0년. DBZ

Cross sections

NO_x

50 km from core t = 6000 s z=10.5 km, m.s.l. 2312UTC

Cross sections

 O_3

0 E. 25

DBZ

Flux Through Anvil

Average values through vertical cross-sections from t = 1 h to t = 2 h

Model	Anvil Area (10 ⁶ m2)	Mass Flux (kg m ⁻² s ⁻¹)	CO Flux (10 ⁻⁵ mol m ⁻² s ⁻¹)	NOx Flux (10 ⁻⁸ mol m ⁻² s)	
Observations*	315	5.9	1.90	5.8	*Skamarock et al. (2003) JGR
WRF-AqChem (Barth, Kim)	187.7	6.75	1.94	7.23	7
C. Wang	442.7	6.72	1.94	5.97	
DHARMA (Fridlind et al.)	531.9	7.69	2.39	n/a	
Meso-NH (Pinty, Mari)	n/a	5.41	1.59	2.84	F
RAMS (Leriche et al.)	332.7	7.68	2.29	5.30	<i>¥</i>
V. Spiridonov	444.0	5.00	3.3	3.2	
U. Md / GCE (Pickering et al.)	274.0	9.06	2.54	8.45	J
SDSMT (Helsdon et al.)	196.9	6.59	1.93	13.04	7
avg +/- std dev	344.3 +/- 133.0	6.86 +/- 1.30	2.24 +/- 0.53	6.58 +/- 3.49	

Simulations of HNO₃, H₂O₂, and CH₂O

Chemistry and Aerosols

- CO, O₃, NO_x, H₂O₂, CH₂O, HNO₃
 Chemistry simulated: WRF-AqChem, C. Wang, RAMS/Leriche, UMd/GCE
- Aerosols simulated:
 C. Wang

Microphysics and Chemistry

Liquid to ice, snow, or hail: WRF-AqChem, C. Wang Liquid to gas: UMd/GCE*, RAMS

Liquid to ice, snow, or hail: WRF-AqChem, C. Wang Liquid to gas: UMd/GCE*, RAMS

Transects across Anvil

Microphysical effects

Degassing during drop freezing

No adsorption of gases onto ice

Observations WRF-AqChem (NCAR) Chien Wang U.Md/GCE RAMS/Leriche

Gas-phase mixing ratios

Conclusions

- Tracer transport (CO and O₃) are similar among models and similar to observations.
- NOx is consistently underestimated when no lightning is included.
- Lightning-NOx parameterizations perform reasonably well.
- Comparison of soluble species HNO₃, H₂O₂, and CH₂O shows we have much more to evaluate.

What's next?

Observations

 Measurements of HOx precursors in both the inflow air and the convective outflow are lacking.

Intercomparison of tropical convection and chemistry? Impact of aerosols?

Planning: Deep Convective Clouds and Chemistry (DC3) Field Experiment

Lightning Mapping Array

Initialization

Sounding data came from Skamarock et al. (2000)

Convection initiated with 3 warm bubbles

Initialization of Chemical Species

where $\Delta \ell$ = horizontal length of grid cell in cross-section C = mixing ratio of species (= 1 for air mass flux)

Calculation is done on grid cells that contain cloud particles. The area of the anvil is the denominator.

Spatial Scales and Time Scales

Adapted from Brasseur et al. (1999)