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Abstract
Much of our knowledge about the structure of

the atmosphere is obtained by in situ measurements:
aircraft, radiosondes and more recently, dropsondes.
However, turbulence, especially in the wind field,
affects these measurement platforms by altering the
trajectories of measuring devices; they are no longer
along straight horizontal or vertical sections. Indeed,
a model of turbulence is required in order to inter-
pret the measurements. For example, if the turbu-
lence is isotropic in three dimensional space, then
one expects (at least naïvely) that unique exponents
will exist and — at least as far as the scaling expo-
nents are concerned — that the nonrectilinear trajec-
tories are unimportant. Similarly, in 2D isotropic
turbulence, the vertical structure is too smooth to
lead to biases. However, if the turbulence is aniso-
tropic (neither 3D nor 2D) — and growing evidence
shows that it is indeed in-between with D ⋲ 2.55 —
then the trajectories can be perturbed over long
ranges. Recently Lovejoy, et al. (2004) have shown
that aircraft can have fractal trajectories and anoma-
lous horizontal scaling exponents over hundreds of
kilometers.

We have investigated the corresponding problem
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for state-of-the-art dropsondes and the implications
for the vertical structure of the atmosphere.
Dropsondes measure temperature, humidity and
pressure as they fall through the troposphere. The
wind velocity is estimated by accurately tracking
their position using GPS and then applying a correc-
tion using a simple dynamical model of how the
sonde responds to the wind. When averaged over all
altitudes from 0 to 12 km, the scaling is generally
excellent but yields a scaling exponent ~30% higher
than the Bolgiano-Obukhov value of 3/5. However,
when “conditional” statistics are examined, it is
found that, at least for altitudes below 6 km,
Bolgiano-Obukhov scaling holds as expected. The
deviation from Bolgiano-Obukhov statistics is appar-
ently due to strong shear layers above 6 km, which
are associated with jet streams. We also show that
apparently stable layers consist in reality of a suc-
cession of nested, successively smaller, alternating
unstable and stable layers in a fractal pattern.

Lovejoy, S., D. Schertzer and A. F. Tuck (2004), Fractal aircraft trajectories and
nonclassical turbulent exponents, Physical Review E, 70, 036306-1-5.



Introduction to Scaling
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Here we use the quantity H to denote the scaling
exponent calculated from a data series f(t) by appli-
cation of the first order structure function. The qth
order structure function of f(t) is defined by

Sq(r;f) = 〈|f(t+r) - f(t)|q〉

where the lag r is real and positive, the angle brack-
ets denote an average over t and ensemble averaging
over f. We denote by ζ(q) the functional relationship
of log Sq(r;f) to log(r) and implicitly define the con-
stant H by

ζ(q) = qH - K(q)

where K(q) is an intermittency correction. It turns
out that for conservative multifractals such as we
are dealing with here, K(1) = 0, leading to a particu-
larly simple expression for H as ζ(1). In fact, even
for q = 2, K(q) is not very large, so it is possible to
write H ≈ ζ(2)/2.

The quantity H is called a scaling exponent because
when ζ(q) is linear it follows that

〈|Δf(Δt)|q〉 ≈ (Δt)ζ(q).
Similarly the spectral exponent β indicates that

an energy spectrum is in power law relationship with
its wave numbers:

E(ω) ≈ ω -β

ζ, β and H are related by

β = 1 + ζ(2) ≈ 1+2Η.

Bolgiano-Obukhov theory posits that the atmosphere
evinces H = 3/5 (β = 11/5) in the vertical.
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Examples

(a) (b)

(c) (d)

(e) (f)

The usual way to generate a synthetic
signal having H = 0.5 is to integrate a
Gaussian noise, which has spectral exponent
β = 0. Integrating always adds 2 to β,
which then yields H = (β - 1)/2 = 0.5. Such
a signal and its variogram are indicated in
figures (a) and (b) to the right.

By spectral filtering to reduce β to a
value below 2, we get a signal with H < 0.5,
as illustrated in figures (c) and (d). Notice
that the signal has become more rough.
Whereas in figure (a) neighboring points are
uncorrelated, in figure (b), they generally
have negative correlation. That is, there is a
tendency for the signal to change in a man-
ner that opposes the current trend. This is
called antipersistence.

Similarly, by spectral filtering to
increase β to a value above 2, we get a sig-
nal with H > 0.5, as illustrated in figures (e)
and (f). Notice how smooth the signal has
become. This is indicative of positive neigh-
bor-to-neighbor correlation, also called
persistence.

It should be noted that the persistent and antipersistent
classifications are reserved for Gaussian processes and are
not used to describe Lévy or multifractal processes.
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The data are from the 2004 Winter Storms
mission, during which the NOAA Gulfstream 4SP
released 261 dropsondes as indicated in the follow-
ing map.

The analysis presented here was performed on
data from the 24 dropsondes released on 29 February
2004. The plot below shows the trajectories. Note that
often the dropsondes were released in pairs with as lit-
tle as a 3-seconds separation, so that there are not a
full 24 distinctly visible trajectories.
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Initial Results
The figures to the right are composite variograms, cre-

ated by overlaying the individual variograms computed for
each dropsonde and then fitting a line to the aggregate.

While variograms typically involve variance, we use the
first order structure function in order to minimize intermit-
tency corrections and to facilitate comparison with theoreti-
cal (dimensional analysis) exponents.

Each individual variogram contained about 100 points,
and there were 235 drops that successfully measured wind
speed, and 246 that measured temperature and relative
humidity. Therefore the lines to the right are each fitting
roughly 24,000 points. The errors are 95% confidence
intervals.

The surprise is that the slope (i.e. H) for horizontal
wind speed, came out appreciably higher than the Bolgiano-
Obukhov theoretical value of 0.6. This indicates smoother
than expected horizontal wind speed profiles. It is clear
also that temperature behaves differently in the vertical
than the other variables.

Subsequent spectral analysis has shown that the near-
unity value of H for temperature is an artifact of the struc-
ture function method, which does not produce a good esti-
mate of H when H > 1 or H < 0. For the data of 20040229,
the spectral method yielded H ≈ 5/4, again a value unique to
temperature.
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Horizontal Wind Speed vs Altitude
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Below is an average (blue) of all of the 235
horizontal wind speed profiles. The error bars are
standard deviations. The green traces indicate
minima and maxima. Note that at high altitudes
the wind speed manifests both a greater mean and
a greater spread.

Above is a scatter plot of H for horizontal wind speed
as a function of jet stream vertical depth for the subtropi-
cal jet (STJ), the polar front jet (PFJ), and the stratospher-
ic polar night jet (SPNJ). Each value of H was calculated
by computing the structure function for the entire drop.
Here, the Bolgiano-Obukhov theoretical value of H = 0.6 is
associated with a jet stream thickness of roughly 2 km, but
the values for the whole drop are spread between 0.6 and
0.9 and display a positive correlation with jet stream depth.



“Conditional” H for Wind Speed
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We computed structure functions conditional on the
data coming from layers below a given altitude. Each
color to the right corresponds to a different maximum
height. The data (from all drops indicated in frame 4)
were filtered so that the structure function would be
applied only to those points lying below that altitude
threshold. For example, the lowest (orange) points cor-
respond to a maximum altitude of 158 m; the middle
(cyan) trace corresponds to a maximum altitude of 1585
m. The traces were offset in the vertical by 1.0 for clar-
ity. The points to the left of the vertical dashed black
line (Δz < 5 m) are dominated by altitude measurement
noise. Including these points in the determination of H
decreases H by about 0.002. The line fits to each col-
ored set of points are shown in black, with slopes (i.e.
H) printed to the right of each fit. Note that Bolgiano-
Obukhov 0.6 scaling theory holds up to about 1000 m,
beyond which there is a steady increase in H so that the
scaling up through 12600 m is nearly 0.8.
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Humidity and Sonde Vertical Velocity



This figure compares the
results obtained from the analysis
that produced the preceding two
frames. For example, the horizon-
tal wind speed trace (purple) is
from frame 7 and the humidity
(cyan) and sonde vertical velocity
(green) traces are from frame 8.
Filled circles indicate the calcula-
tion involved all the sonde data
from the flights of frame 4. Open
circles indicate the calculation was
performed only on the data from
20040229. The latter are seen on
the traces of several computed
quantities: the Richardson Number,
Ri = g(∂logθ/∂z)(∂v/∂z)-2, where v
is velocity, g is the acceleration
due to gravity, and θ is potential
temperature; the Froude Number,
Fr = 1/Ri1/2; and the Brunt-Väisälä
Frequency (squared),
N2 = -(g/ρ)(∂ρ/∂z), where ρ is den-
sity.

Intercomparison
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Unstable

Stable

Aircraft

This figure shows (for sonde #2 of 20040229), at high-
er and higher resolution, the Richardson dynamic sta-
bility criterion for layers 640 m, 160 m, 40 m, and 5 m
thick. It shows that within each stable layer, there
are unstable layers, within which is embedded another

stable layer, etc. The fractal pattern has fractal corre-
lation codimension 0.09, i.e. a dimension of 1 - 0.09 =
0.91, so that the transitions are sparse but not too
sparse. It would seem that the notion of a homoge-
neous stable layer is quite academic!

Richardson Dynamic Stability

Ocean
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Simulation
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For scales much larger than the sphero-scale
(apparently of the order of 10 cm), for a given spatial
displacement, the vertical gradients are much larger
than the horizontal gradients, so that the approximation
for the horizontal wind speed, vx(x(t),z(t),t) ≈ vx(z(t)), is
relatively accurate. It is therefore not necessary to
make a 2D or 3D simulation of the horizontal wind; the
zonal wind u(z) is adequate.

Fourteen independent universal multifractal simula-
tions with H = 3/5 (the Bolgiano-Obukhov value) were
used with a resolution of 1 meter over a range of 12 km.
The mean wind as a function of altitude was determined
using a quadratic fit to the data, as was the mean
“spread” about the average wind.

The vertical wind w was taken as an independent
realization of a multifractal process with the same
multifractal parameters but with 1/10 the amplitude of
fluctuations and with zero mean.

Ignoring the second horizontal (y) component, we
may express the vertical acceleration of the sonde as

,



Sample Simulation Results
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Spectral Comparison - Horizontal
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Data: horizontal
sonde velocity

Simulation:
estimated
horizontal wind

Data: estimated
horizontal wind

Simulation:
horizontal
sonde velocity

reference slope 2.2 break at ω ≈ (10s)-1

ω = (1s)-1
ω = (750s)-1



Data: sonde
vertical velocity
(dz/dt)

Simulation: sonde
vertical velocity
computed with
noisy z

Data: sonde
vertical velocity
(official)

Simulation:
sonde
z velocity

reference slope 2.2

break at ω ≈ (25s)-1

ω = (1s)-1
ω = (750s)-1

Spectral Comparison - Vertical
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The agreement between blue (data) and cyan
(simulation) curves shows that the noisy z coordinate
explains the spectrum of the sonde vertical velocity
quite well. Without it, the spectrum would be very dif-
ferent (bottom magenta). The break at about 25 s is
well reproduced; this is an inertial effect which causes

smoothing (spectral steepening) in the actual velocity
spectrum, but not in the noisy one. The parameters:
v
0,z
= 11 m/s , wmean= 0.1. (That is, the vertical veloci-

ty has fluctuations 0.1 times the amplitude of the hor-
izontal. As long as this is not too big, the results are
insensitive to this.)



Summary
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For all of the drops indicated in frame 4, first order
structure functions conditional upon all data coming
from layers below logarithmically increasing altitude
thresholds were determined for the horizontal wind,
sonde vertical velocity, temperature and humidity.
Also determined for 20040229 were the Richardson
number and Brunt-Väisälä frequencies. The effort to
interpret the results in the light of Bolgiano-Obukhov
theory is ongoing. The climb in wind speed H to a value
near 0.8 is probably attributable to jet streams. The
vertical scaling of temperature is also unique, probably
reflecting the effect of gravity acting through the
hydrostatic relation.

One of the most compelling results is that the usual
idealization of the atmosphere into homogeneous layers
is untenable since we find that within each stable layer
there is a hierarchy of unstable sublayers whose fractal
dimension we estimate. Elsewhere we examine the con-
sequences for gravity waves and other linearizations of
the dynamical equations.

The internal structure revealed here in stable lay-
ers will have implications for tropopause folds, both

chemically and dynamically. The mixing rate with the
free troposphere will be affected, as will the rates of
chemical reactions, both internally and at the boundar-
ies of the fold. The ultimate stable layer is the strato-
sphere itself - will it have this sort of vertical struc-
ture?

Data Analysis

Simulations
In order to understand the limitations of the data,

simulations were made of the sonde trajectories using
multifractal horizontal wind fields and Newton’s laws
with a quadratic friction law.

For both horizontal and vertical displacements, the
low frequencies were accurately simulated as well as
breaks in the scaling due to inertial effects at about 25
s, 10 s (vertical, horizontal respectively). We were able
to well simulate the high frequency vertical statistics
by assuming that the dynamical pressure leads to erro-
neous pressure altitude corrections. The high frequen-
cy horizontal statistics imply noisy estimates of the
horizontal position (scales < 10 m).


