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The decline in stratospheric ozone observed over the last several decades
is on the verge of reversing. The models participating in the SPARC chem-
istry climate model validation (CCMVal) project predict that the ozone
hole will close in the first half of the 21st century (Fig. |). Analyses of both
CCMVal and IPCC/AR4 model output show that this ozone recovery will
have a profound effect on the Southern Hemisphere summer climate. Spe-
cifically, the expected closing of the ozone hole will likely weaken or even
reverse the present trend in the Southern Annular Mode, resulting in a
wind deceleration in the southern high latitudes. Accompanying this
change in the westerly jet, the recent expansion of the Southern Hemi-
sphere Hadley cell is expected to slow down. Furthermore, ozone recov-
ery is likely to accelerate warming over the Antarctic and reduce precipita-
tion in the southern high latitudes.
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Figure 1. October Antarctic (90°S to 60°S) total column ozone anomalies from CCMVal models (colored
lines) and the mean from four observational data sets (thick black line for smoothed curve and black

dots for individual years). Time series have been smoothed by applying 1-2-1 filter iteratively 30 times,
and anomalies have been calculated by subtracting the 1980-1984 mean from the smoothed time series.

Light gray shading between 2060 and 2070 shows the period when stratospheric concentration of halogens

in the polar lower stratosphere are expected to return to their 1980 values. From Eyring et al. (2007 JGR).

Data

* [IPCC/AR4: all 20C3M and A1B integrations (see Fig. 3 legend).
* SPARC CCMVal: 7 long-term scenario integrations (see Fig.3 legend).
* GEOS-CCM: 4 sensitivity integrations.
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Future Jet (19 IPCC/AR4 & 7 CCMVal)
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Figure 2. Trends in December-February zonal-mean zonal wind. The multi-model mean trends between
2001 and 2050 are shown A, for the CCMVal models; B, for the AR4 models; C, for the AR4 mod-
els with prescribed ozone recovery; and D, for the AR4 models with no ozone recovery. Shading and
contour intervals are 0.05 ms™!/decade. Deceleration (acceleration) is indicated with blue (red) colors,
and trends weaker than 0.05 ms™!/decade are omitted. Superimposed black solid lines are December-
February zonal-mean zonal wind averaged from 2001 to 2010, with a contour interval of 10 ms—! starting
at 10 ms~!. From Son et al. (2008 Science).
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Figure 3. Relationships among SH polar-cap ozone recovery at 100 hPa, polar-cap temperature trend at
100 hPa, and extratropical zonal wind trend at 850 hPa; A, for ozone and temperature trends as simu-
lated by CCMVal models; B, for zonal wind and temperature trends as simulated by CCMVal models;
and C, for zonal wind and temperature trends as simulated by AR4 models. Here, ozone and tempera-
ture trends are calculated for September-December and November-January mean quantities, respectively.
The averaging months are chosen to reflect the largest trends at 100 hPa, as seen in Fig. 1. The zonal
wind trends at 850 hPa are quantified by A[u], the difference in December-February averaged zonal wind

at +10° from the latitude of maximum wind. Negative values denote the deceleration (acceleration) of

westerlies on the poleward (equatorward) side of the maximum wind. The filled and open circles in (C)
correspond to the AR4 models with and without prescribed ozone recovery. Solid and dashed gray lines
in (B) and (C) respectively indicate linear fit for CCMVal models and AR4 models with prescribed ozone
recovery. Parenthesized numbers in the legend denote the number of ensemble members used for each
model. From Son et al. (2008 Science).

RESULTS |

|. Reversal of westerly jet trend (Fig. 2) : SH westerly is predicted, by both
CCMVal and IPCC/AR4 models with ozone recovery, to decelerate
on the poleward side of the climatological jet.

2. Linear relationship between stratospheric ozone and tropospheric jet changes
(Fig. 3) : Stratospheric ozone recovery — Antarctic polar-cap warming
— Equatorward acceleration of the near-surface westerlies.

Hadley Cell (15 IPCC/AR4 & GEOS-CCM)

* Both past (1960-1999) and future trends (2000-2049) are examined.

* 15 IPCC/AR4 models: 6 models use climatological ozone, whereas 9 models
use time-varying ozone. Only models with resolution higher than T42 are used.
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Figure 4. Sensitivity of the SH circulation trends to Antarctic ozone as simulated by the IPCC/AR4 mod-
els: (a) polar-cap temperature, integrated south of 70°S, at 100 hPa for October-January, (b) location of
westerly jet maximum at 850 hPa for December-February, and (c) location of the poleward boundary of
the Hadley cell for December-February. The long-term trends are computed with a least square fit, for
the time period of 1960-1999 in the 20C3M integrations (circles) and for the time period of 2000-2049
in the A1B scenario integrations (squares). The multi-model ensemble mean and one standard deviation
are shown. Negative trends in (b,c) denote poleward shift in westerly jet or poleward expansion of the
Hadley cell. From Son et al. (2008, manuscript in preparation).
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Figure 6. Relationship between the location of westerly jet maxima and the poleward boundary of the
Hadley cell during December-February: (a) trends as simulated by all IPCC/AR4 models, and (b) in-
terannual variability as simulated by all GEOS-CCM integrations. From Son et al. (2008, manuscript in
preparation).
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Figure 7. DJF-mean eddy momentum flux convergence at 200 hPa as simulated by the GEOS-CCM in-
tegrations: (a) C20C11960 [with fixed ozone] and, (b) C20 integrations [with ozone depletion|. Solid and
dashed lines denote the first and last 10-year averages, respectively. From Son et al. (2008, manuscript
in preparation).

RESULTS II

3. Weakening of Hadley cell expansion (Figs. 4,5) : Both IPCC/AR4 and
GEOS-CCM predict weaker Hadley cell expansion due to strato-
spheric ozone recovery.

4. Linear relationship between jet location and Hadley cell boundary (Figs. 6) :
Both quantities change coherently during austral summer. This sug-
gests that both the jet location and the Hadley cell boundary are
modulated by the same physical process.

5. Importance of midlatitude eddies (Fig.7) : Systematic changes are caused
by midlatitude eddies, which are affected by stratospheric ozone.

Surface Climate (21 IPCC/AR4)

* Both past (1960-1999) and future trends (2000-2049) are examined.

e 21 IPCC/AR4 models: 11 models use climatological ozone, whereas 10 models
use time-varying ozone.
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Figure 8. Long-term trends in DJF-mean surface zonal wind as simulated by IPCC/AR4 models: Top
row for 20C3M integrations with and without ozone depletion, and bottom row for corresponding A1B
scenario integrations. Negative and postive trends are shown in blue and red, respectively. Shading
interval is indentical in all panels. From Tandon et al. (2008, manuscript in preparation).
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Figure 9. Long-term trends between 2000-2050 in (top) DJF-mean sea level pressure, (middle) skin
temperature, and (bottom) precipitation as simulated by IPCC/AR4 scenario integrations: Left column
with ozone recovery, right column without. Negative and postive trends are shown in blue and red,
respectively. Shading interval is same for each pair of integrations, with and without ozone recovery.
From Tandon et al. (2008, manuscript in preparation).

RESULTS Il

6. Weakening of surface westerly trend (Fig. 8) : Stratospheric ozone recovery
weakens the poleward intensification of the surface westerlies.

/. Negative trend in Southern Annular Mode, weaker trend in precipitation, and ac-
celeration of Antarctic warming (Fig. 9) : These are consistent with surface
wind changes.
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