tropical lower stratosphere
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Introduction

Water vapor in the stratosphere is important both chemically and
radiatively. Increasing trends in the historical record have been noted
(see Figure 1),however mechanisms for that increase are not well
understood, and will likely involve both increases in methane and
circulations changes over the time period in question. What is easier to
explainis the annual cycle in entry of water into the stratosphere
(Figures 2 & 3). The amplitude of the cycle 1s large (1-2 ppmv peak to
peak), and is correlated with the annual cycle in temperatures at the
tropical tropopause.

Therefore, to understand changes in water vapor, we also need to
understand changes in tropical temperatures. Because of the tight
correlationsnoted betweenthem,and theindependence of the
measurements,wecanalsousetemperatureand watervapor
measurements together to show reliably when significant changes occur.
Such a change occured at the end of 2000. In this work we will examine
that change in greater detail (also see Rosenlof and Reid [2008]).

What changed?

The drop in water vapor noted in the HALOE/MLS tropical record
appears in other measurements and at other latitudes as well. Figure 4
showsthechangeinPOAMIIIhighNHIlowerstratospheric
measurements, in HALOE measurements at 40°N, and 1n a long-term
frostpoint balloon record taken by NOAA GMD in Boulder, Colorado.

The temperature change i1s present in the UKMO asimilation (Figure
5), 1in the radiosonde record as (Figure 6), and in the MSU/AMSU LST
temperatures (Figure 7).

The difference in water vapor near the tropical hygropause between
the time before 2000 and that after 2001 1s ~1 ppmv. The temperature
drop 1s on the order of 1-2° as determined from radiosonde station data.
Ice saturation at 191.25° and 100 mb 1s ~4 ppmv; a drop of 1.75° gives
1ce saturation of 3 ppmv. Therefore, the magnitude of the tempeature
and water vapor decreases are consistent with one another.
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Figure 2: Tropical water vapor (tape recorder). Note the change
to lower values at the hygropause at the end of 2000. The time
series was created by combining UARS HALOE and Aura MLS
after adjusting HALOE to match MLS on an average basis during
the overlap period from September 2004-December 2005.
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Figure 4: Time evolution of water vapor in the Northern Hemi-
sphere, from POAM (high latitudes) (top panel), HALOE at 40°N,

(middle panel) and the NOAA GMD frost point hygrometer
(bottom panel).
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Figure 3: NCAR/NCEP reanalysis 10°N-10°S zonally averaged tropopause
temperatures (upper panel) and pressures (lower panel). 82-mb water vapor
(combined UARS HALOE and Aura MLS time series) averaged between
10°N and 10°S is also plotted on each panel. They key feature to note here is
that there 1s a coincident drop in both water vapor entering the stratosphere
and tropical tropopause temperatures at the end of 2000. The change in
the NH wintertime temperature and water vapor has persisted into 2008.
The tropical average tropopause is also higher after 2000 during NH

winter. (NCEP data from NOAA ESRL PSD)
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Figure 5: Tropical (10°S - 10°N) temperature anomolies from the
UARS UKMO assimiilation product (obtained from BADC).
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Figure 6: Monthly mean temperature anomalies at the 70 hPa pressure
level over Koror (upper curve), and SST anomalies averaged over the area
of the western tropical Pacific between 7.5°S and 4.5°N latitude and be-
tween 120°E and 180° longitude (lower curves).
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Mechanisms?

The actual temperaturedrop attheend of 2000 appearstobe
correlated with an increase in the Brewer Dobson circulation in the lower
stratosphere, also noted by Randel et al. (2006). An estimate of the
anomalies in the 10°S-10°N zonal tropical upwelling 1s shown in Figure
8. There 1s a marked increase near the tropopause level at the end of
2000 thatisnotevidenthigherup. Thisisconsistentwith the
observation in Figure 5 that the cooling post-2001 1s in arelatively
narrow layer near the tropical cold point.

We find that the drop 1n tropopause temperatures at the end of 2000
correlates well with a change in SSTs at the western edge of the warm
pool (Figure 9). Thereisacorresponding expansion of the near
tropopause cold pool,asseeninFigure 10. Whatremainstobe
determined 1s why the atmosphere changed at this time, and what the
consequences will be. Figure 11 shows that the anomalies in water have
propagated to the upper stratosphere. As seen in Figure 12, there are
some unusual relationships between lower troposphere and lower
stratosphere temperatures in the 3 years before this apparent regime shift.
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Figure 9: 10°N-10°S tropopause temperature anomalies and SST anomalies

from the Optimal Interpolation V2 data obtained from NOAA ESRL PSD.

These are for longitudinal regions in the Pacific; 139°-171° for the SSTs, and
171°-200° for the tropopause temperatures. The left axis is for the tropo-

pause temperature anomalies, while the right axis is for the SST anomalies.
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Figure 10: NCEP/NCAR reanaly-
sis tropical tropopause tempera-
tures; longitude versus time. Blue
values are low, red values are high.
Note the growth of the blue (cold)
area at Pacific longitudes with
fime.

time

color scale:purple = 185 K; red =204 K
1980 | | | | | | | |

0 40 80 120 160 200 240 280 320 360
longitude

UARS HALOE & Aura MLS combined tropical H>O anomaly (10°N-10°S)

1 1.0

0.9 Figure 11: Tropical

0.8

0.7 water vapor
o anomaly, from UARS
0.4 HALOE and Aura

0.3

02 MLS through the

0.1

00 depth of the strato-
ol sphere.

-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
- -1.0

Satellite
Levels

10

Pressure (mb)
ppmv

100

1994 1996 1998 2000 2002 2004 2006 2008
Year

Figure 12: MSU/AMSU zonally av-
eraged tropical temperature
1 anomalies, for the lower strato-
3 sphere (black) and the lower tropo-
sphere (green). Of interest is the
3 97/98 El Nino, showing a zonally
1 averaged and rather large positive
' Hi 1 anomaly, and the 1999 warm

' 1 period in the lower stratosphere,
unprecedented in the record in the
s absence of a large volcanic erup-
m 1 tion. The period folloing 2000 is

1 cold on average in the lower strato-
2% sphere, and warm in the lower tro-
posphere.
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