Unprecedented evidence for deep convection hydrating the tropical stratosphere

Thierry Corti, Beiping Luo, Thomas Peter (ETH Zürich, Switzerland) and the Geophysica team

Abstract: We report on in situ and remote sensing measurements of ice particles in the tropical stratosphere found during the Geophysica campaigns TROCCINOX and SCOUT-O3. We show that the deep convective systems penetrated the stratosphere and deposited ice particles at altitudes reaching 420 K potential temperature. These convective events had a hydrating effect on the lower tropical stratosphere due to evaporation of the ice particles. In contrast, there were no signs of convectively induced dehydration in the stratosphere.

Date	380 K altitude	Ice particles \leq	RH
YYMMDD	km	km (K)	%
	TROCCIN	IOX	
050204	17.0	18.0(410)	66
050204	17.0	18.0(410)	66
050205	17.1	17.5 (387)	48
	SCOUT-	03	
051119	17.8	18.2(390)	- 74
051125	17.5	18.9(415)	- 54
051129	17.5	18.2 (395)	65
051130	17.4	18.8(417)	74

Table 1. List of flights on which ice particles have been observed in the stratospheric overworld (above 380 K potential temperature) during TROCCINOX and SCOUT-O3 tropical campaigns. Date of flight, mean altitude of 380 K potential temperature, highest altitude and potential temperature of ice particle observation, mean relative humidity over ice betw 380 and 400 K potential temperature

Figure 1. Ice water content. Black: STEP Tropical 1987. Blue: TROCCINOX Feb. 2005; red: SCOUT-O3 Nov. 2005 derived from the measurements by the two water vapour instruments (FISH and FLASH) during the flights listed in Table 1. Contours: Lines of constant volume mixing ratios. Observations suspected to stem from contrail sampling were excluded (see below).

19.0

18.0

17.0

180 190 200

Ê

Altitu

Figure 2. Observation on 30 November 2005 in Darwin

(a) Temperature (blue) and potential temperature (red) (solid TDC; dashed MTP)

(b) Total water (solid blue). gas phase water (dashed blue), and water vapor saturation mixing ratio over ice (dashed gray); FSSP particle number density (r > $0.25~\mu m)$ (red); MAS total backscatter ratio (green).

(c) Backscatter ratio from the downward looking lidar MAL (color coded). Black curve: aircraft altitude. Blue curves: MTP 380 K (solid) and cold point tropopause (dashed).

Supported by downward

Air parcel model shows

are possible (Figure 5).

that such overshoots

→ The only plausible

explanation

looking lidar MAL

(Figure 2c)

Convective overshoots!

mbaci

Observations

Supersaturation required → but subsaturation observed

10 um

Flight level

380

RHI = 50-75 %

Some particles would have had nucleated at around 23 km and grown during 1 h to reach the observed size of 100 µm →unrealistic.

20 um

50 u

Contrail sampling?

bin]

per

[ppmv 2

vater

Particulate

3 5

operational data taking the contrail's spreading into account.

ick to tr

Initial particle radius [µm]

concentration. Upper blue line: observations. Shaded

50

100

 H_2

convection

Figure 4. Contrail

(UCSE) and wind

tracking using measured wind

from ECMWF

→ In some cases, contrail sampling was impossible because some convective systems were overflown only once.

→ Some ice particle observations (~3%) might have originated from contrail sampling. These observations were excluded from Figure 1.

Figure 5. Air parcel trajectory for an overshooting event following Adler and Mack [1986] for 30 November 2005. Level of neutral buoyancy (LNB) at 16.5 km, equivalent potential temperature 360K Figure 8. 30 November 600 50 40 4dd 300

Temperature / K

2005 (first flight). Ozone vs CO measurements, Colours indicate potential temperature. Black symbols: Air influenced by convective overshoots → Mixing of lower tropospheric air (blue) (after latent heat release and overshooting) with stratospheric air (yellow, orange or red) → Mixing occurs along mixing lines (e.g., dashed grey line). Different levels of

dilution of tropospheric air are indicated

 $\rightarrow \rightarrow$ High dilution.

Attempt of an Upscaling (tropics, 20°N-20°S)

statistics of convective overshooting [Liu and Zipser, 2005] Usina

55			
Assumption 1:	Assumption 2:		
H ₂ O transport ~ duration of	H ₂ O transport ~ duration × area		
overshoot	of overshoot		
Hector: 10^5 kg H ₂ O/hr	Hector: $10^5 \text{ kg H}_2\text{O}/(\text{hr x } 40 \text{ km}^2)$		
TRMM: 12 events on average	TRMM: 12 events on avg. at any		
at any time	time with 722 km ² mean area		
$\rightarrow 12 \times 24 \times 10^5 = 3 \times 10^7$ kg	\Rightarrow 12 × 24 × 722/40 × 10 ⁵ = 5 ×		
H ₂ O per day	10 ⁸ kg H}_2\text{O per day}		
→ Compared to 10 ⁹ kg H ₂ O per day from large scale upwelling	→ Compared to 10 ⁹ kg H ₂ O per day from large scale upwelling		

This remains inconclusive 8

Figure 6. Modelling the sedimentation and evaporation of observed ice particles Typical < 15 um → evaporation in the stratosphere r > 40 um sedimentation back

Figure 9. Geophysica flight path for first flight on 30 November 2005 (thin line). Black symbols: flight above 380 K potential temperature. Red symbols: Convective influence (ice particle observations). Blue circle: Main area influenced by convective overshoot (approx, 2000 km²)

10 20

Figure 7. Size dependent particulate water

Figure 10. Particulate H₂O budge

98 t input of water vapour into stratospheric overworld

this volume is moistened on average by 1.6 ppmv

Jpscaling

össische Technische Hochschule Zürich iss Federal Institute of Technology Zurich

Institute for Atmospheric and Climate Science