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Robert Walter1, Felix Plöger1, Rolf Müller1 and William J. Randel2

Forschungszentrum Jülich
in der Helmholtz-Gemeinschaft
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Abstract
Multi-annual simulations with the Chemical Model of the
Stratosphere (CLaMS) are used to study transport of air
and the seasonality of its composition within the tropical
tropopause layer (TTL). In agreement with satellite and in-situ
observations, CLaMS simulations show a pronounced sea-
sonal cycle in CO and O3 and, in addition, in the mean age.
Below the zero clear sky heating rate level (Q=0) around 360
K potential temperature, the semi-annual cycle of convection,
with strongest upwelling around April and November, deter-
mines the composition of the TTL. Although above this level,
the contribution of photochemistry modulated by the annual
cycle of the Brewer-Dobson circulation increases with altitude,
the seasonality of O3 and CO is overlaid by a clear annual
and a weak semi-annual cycle of horizontal in-mixing from the
stratosphere into the TTL. The strongest in-mixing occurs from
the northern hemisphere during the boreal summer. Both,
CLaMS simulations and pure trajectory calculations show that
this equatorward transport is mainly driven by the Asian mon-
soon anticyclone.

CLaMS Simulations
Multi-annual, global CLaMS simulations of the whole tropo-
sphere and stratosphere (from the ground up to θ = 2500 K)
follow the model set-up described by Konopka et al., 2007, and
cover the time period from October 2001 to December 2005 with
100 km horizontal resolution and the highest vertical resolution
of 400 m around θ = 380 K. The horizontal winds are driven
by the European Centre for Medium-Range Weather Forecast
(ECMWF) analysis.
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Annual mean, ± 10 deg N   
       Konopka et al., 2007, ACP   
       "only" ECMWF below 360 K   
        + mean mass conservation   

Seasonality of the upwelling in CLaMS described in term of the
hybrid vertical velocity ζ̇ averaged zonally and within the ±10◦N
range during the 2002-05 period. Below and above θ = 360K, ζ̇
is derived from the ECMWF vertical velocity and from the clear
sky radiation, respectively. In the white dashed regions, strato-
sphere is warmer by at least 3K compared to the annual aver-
age. Right: The corresponding annual mean (red) compared
with the version described in Konopka et al., 2007, (black). The
green line was derived from winds corrected in order to fulfill the
annually averaged mass conservation.

Tape-Recorder in CLaMS Simulations
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From a) to d): Time series of CLaMS O3, mean age, CO and H2O averaged zonally and
within the ±10◦N latitude range as function of θ. Black lines are the isobars. Above and
below the blue lines (Q = 0), the upward transport is driven by radiation and convection,
respectively. The thick gray lines denote the moist phase of the tape-recorder signal as
derived from the HALOE climatology (annual cycle). The gray arrows in the CO plot ap-
proximate the semi-annual cycle of convection.

CLaMS versus Observations
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Seasonal CLaMS time series of CO (left, red), O3 and pO3 (middle, red
and black) and H2O (right, red) at θ-levels 450, 420, 400, 380, 360 and
340 K (from top to bottom) versus HALOE (pink) MLS (blue) ACE-FTS
(black circles) SHADOZ (green circles) and the in situ observation on
board the high altitude Russian aircraft, Geophysica (violett squares). Be-
low θ = 380K, CLaMS H2O (red) is set to the assimilated ECMWF water
vapor. The dashed regions describe the year-to-year variability, the ver-
tical lines denote the standard deviations with exception of the SHADOZ
data where total variability between the considered 7 stations is shown.

In-mixing
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Mean age (relative to the boundary layer) at θ = 380 K as calculated with CLaMS.Cross
equatorial transport from the Asian monsoon anticyclone dominates latitudes lower then
15◦N where easterly jet prevails at the southern edge of the monsoon anticyclone.

Conclusions

• Seasonal variability of O3/CO/mean age (in the TTL) can be understood as a superposition of the following cycles:

1. below ≈ 360K: semi-annual cycle, with strongest upwelling in April and November (mainly over Africa/Amazon
and Western Pacific regions, Liu et al., GRL, 2007)

2. 360< θ < 400K: annual cycle of the vertical velocity that responds to the well-known annual cycle of the temper-
ature with enhanced upwelling during the boreal winter.

3. 360< θ < 400K: annual cycle of horizontal in-mixing from the northern hemisphere stratosphere into the TTL
4. 360< θ < 450K: weak semi-annual cycles of upwelling and in-mixing
5. θ > 400K semi-annual cycle of the photo-chemistry

• during the boreal summer, ≈12-25% of the air in the TTL originates from the sub- and extra-tropics.

In-mixing and the Asian Monsoon Anticyclone

Summer, JJA, θ = 420 K

Mean distributions of O3 (top) and CO (bottom) as calculated
with CLaMS during the summer (JJA, 2004) at θ = 420K in-
dicates that the Asian monsoon anticyclone strongly isolates
the air masses with tropospheric character within the anticy-
clone from the air masses with stratospheric character out-
side.

Winter, DJF, θ = 380 K

Summer, JJA, θ = 380 K

Mean age as calculated with CLaMS during the winter (DJF,
top) and summer (JJA, bottom) at θ = 380K. The red arrows
indicate the region of isentropic in-mixing. The thick red ar-
rows illustrate the main direction of in-mixing triggered by the
Asian monsoon anticyclone.

Winter, DJF, θ = 380 − 400 K

Summer, JJA, θ = 380 − 400 K

PDFs of the 3 month backward trajectory positions starting
from September 1, 2004 (top) and March 1, 2004 (bottom)
within the TTL.
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