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Introduction: oe0 e Al b Experimental investigations:
What is a glass: : ' :

¢ Glasses are amorphous (non-crystalline)
materials that behave mechanically as solids
e Produced by cooling or by a liquid without

crystallizaton “F ] : ] Investigated solutes:

e Extremely high viscosities, @ the glass of Ef _ _ _ _
: e Organics: Polyols: 1,4-butanediol (C4, 90.1 gmol1); 2,5-hexanediol; 1,2,6-hexanetriol;

temperature, T, #10!2 Pa s, (honey=2 Pa s) P wamming,, ] ] _ .
e Extremely Io V\QIJ molecular diffusion, Bl L L _ | _ | | | 1,2,7,8-octanetetrol (C8); 2,2,6,6-Tetrakis(hydroxymethyl)cyclohexanol, C,,H,,O-

Dy,0~102% m?s1, which implies that a water AG Sugars/anhydrosugars: glucose; sucrose; raffinose (504.5 gmol1); levoglucosan

molecule would need more than a day (At) to L 0.100 , cooling
diffuse into a 50 nm (AX) aerosol particle:
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_ Glass temperatures, T, homogeneous ice freezing, T,,, and ice melting
metastable liquid ™. : temperatures, T, of emulsified and bulk samples made of various inorganic,

" ] organic and inorganic/organic aqueous solutions have been investigated with a
differential scanning calorimeter (DSC), see Fig.2.
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Various compounds: mixture of 5 dicarboxylic acids (M5); an aromatic compound (DL-4-
Hydroxy-3-methoxy mandelic acid, (HMMA), C,H,,0:); glycerol
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e_Inorganics: sulphuric acid, ammonium bisulphate, nitric acid, ammonium sulphate (AS) and

(Ax)* _ (50-10°m)° anics
ammonium nitrate (AN).

DHZO 10 20 2 -1

At = =2.5-10°s >1day

e Inorganic/organic mixtures: mixture of M5 and AS (M5AS); 1:1 (by mass) mixtures of
M5AS and raffinose, of C4 and C8 polyols and of glucose and AN
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[ (D)%% ' ] : : (model compounds of the water soluble organic fraction, Decesari et al. 2006; molar mass between 60-

[ warming o BV ] T 500 gmol are observed for organics in field studies e.g., Krivacsy et al.2001)
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Gordon-Taylor equation: 4001 Ratfinose

coolln I - - Glucose
- Levoglucosan

j : Glass curves as a function of the solute [ ﬂi-butanediotm

: . : weight fraction can be calculated over the i

: ] entire concentration range (see Figs 2 and i

: p : 3), with: !

- ' : 1 i
U\ : ] Wl'Tg1+EW2'Tg2 :

[ I Tg (Wz) = 1 (1) X
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Fig. 1. Enthalpy and entropy change during the I wa rmmg
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order phase change) and a glass transition. Temperature [K] Glucose weight fraction

where w; and w, are the solute weight

If aqueous aerosols form glasses, Fig. 2. DSC thermograms, panels (a)—(c), and state diagrams, panels (d)—(f), of 3 fractions of water and the solute, T,, and T, | ~ solute weight fraction, w,,

then inhibition of: different concentrated aqueous glucose solutions: 0.760, 0.100 and 0.599 weight ~ are the glass temperatures of water and the _ o
fraction. Panels (a)~(c): cooling/heating cycles from 308 K to 153 K with 10Kmin-t. ~Solute, respectively (T;,=136 K, Johari et al.  F1g. 3. Symbols: measurements; Solid lines: Glass

* Water uptake . Panels (d)—(f): The colored curves depict the course of the DSC experiments linked 1987). The T, data are then transformed  cU/Ves for five selected solutes as a function of the
e Chemical reactions to the panel on the left side. Circles: T,,: Squares: Ty, : Triangles: T,, Hash: T, of ~from the weight fraction to the water activity solute weight fraction calculated with Eq. 1.

e Crystal growth (e.q., ice) the freeze concentrated solution. 0 scale (using water activity measurements, Dasﬁe_d lines: uncertainty range on a one standard
e Ice nucleation not shown here) leading to Figs. 4 and 5. deviation level for the solid lines.

Glass temperatures of organic and multi-component solutions:
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1.0 0 9 08 07 06 05 04 03 02 10 09 08 0.7 06 05 04 03 02 1.0 09 08 07 06 05 04 03 02 the inverse molar mass of the solute. Filled and open symbols stand for agueous

Water activity Water activity Water activity organic and multi-component solutions, respectively. The colors of the filled

. . _ _ . _ _ _ _ symbols denote the different substances or compound classes. Red.: sugars; blue:
Fig.4. State diagrams for several organic/water systems as a function of water activity, a,. Circles: Ice Fig.5. State diagrams of mu/t/-component polyols; light blue: sugar alcohols; green: dicarboxylic acids; brown: HMMA;

melting temperatures, T,, squares. homogeneous ice freezing temperatures T,,., filled upward triangles solutions in the water activity scale. Circles: T, orange: levoglucosan. The open symbols are labelled as, circle: raffinose/M5AS,
and filled right pointed triangles: T "™, Solid lines: Glass curves; Dashed and solid black lines: Ice squares: T, filled triangles.: T, open triangles. square: C4/C8, triangle: glucose/NH,NO, and diamond: M5AS. The figure contains
melting and homogeneous ice freezing curves, according to Koop et al. 2000 , respectively. The large 7 pme; Solid colored curves: G/ass curves. Black some data points from the literature: Luyet and Rasmussen 1968; Roos 1993;
black circles denotes the T, for each solute, i.e., intersection between T, and T,,,, curves (see also Fig. 6) circles: see Fig.4. Maltini et al. 1997 and Murray 2008.
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Atmospheric implications: Conclusions and Outlook:

M5/H,SO, Raffinose/M5AS (b) . Glass formation was observed in most of the investigated aqueous solutions (except
AN and AS, cooling rate to low?) Gordon-Taylor can describe the measured T, over
the entire concentration range.

. It is unlikely that inorganic solutions form glasses under atmospheric conditions

. Aqueous organic and multi-component solutions undergo glass transitions important
at atmospheric temperatures and relative humidities

. T4 of such solutions depend predominantly on the molar mass of the solutes with a
larger molar mass leading to a higher T,. To a lesser extent T, also depends on the
hydrophilicity of the molecules, with more hydrophobic molecules showing higher
T,.

T%e T, curves of the multi-component solutions are located between the T, curves
of the binary solutions closer to that binary system with the lower T,,.
300 . Chemical reactions are impeded in viscous aerosol particles an might be even

i 1| F79.7. (top) Schemes for the physical states of moael aerosols following the inhibited completely in glassy aerosol particles. This may increase the lifetime of the
g0l Raffinose/MBAS trajectory on the left. Uniform-colored circles: liquid; Hexagon. ice; Spotted aerosol with respect to chemical decomposition

S M5 1 circles: glass. The white arrows denote the water exchange between the _ P L p_ g _ :

H,SO, ] aerosol and the gas phase. . Water uptake is diminished or even fully inhibited for highly viscous or glassy

aerosols, respectively.
240} Fig.8. (left) Typical atmospheric trajectory (dark blue curve with symbols) as a . Ice nucleation is inhibited at the homogeneous ice nucleation threshold when the
function of the equilibrium relative humidity of the air. Solid black and aashed aerosol is in a glassy state which leads to higher ice supersaturations than expected

220 | i black lines: T,,,,and T, curve. The black square and circle are the relative . P o
- 1| humidities at the homogeneous ice freezing point, RH(T,, ) and at the frost for liquid aerosols, mostly for T < 202 K. Vitrification organic-enriched aerosols

200 | point RH(T,,.,) of the trajectory, respectively. The colored triangles are the might lead tO_CirrUS C_|0Ud5 with sma!IIer i(fe _partide number glel_wsities when |
intersections of the trajectory with the glass curves, which are labeled as compared to inorganic aerosols, which will influence the radiative effect of cirrus.

180 1| RH(T,) inFig. 7. 9. Knowledge of the chemical composition of the UT must be improved

160l - Acknowledgements 10. Water uptake and chemical reactions will be investigated by modelling and
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