Supersaturations and ice crystal numbers in cirrus clouds: field observations and model simulations

MARTINA KRÄMER¹, IULIA GENSCH¹, CORNELIUS SCHILLER¹, NIKOLAY SITNIKOV², PETER SPICHTINGER³, STEPHAN BORRMANN⁴ AND MARIAN DE REUS⁴

JÜLICH FORSCHUNGSZENTRUM

250

¹ FZ Jülich, ICG-1, Germany (email: m.kraemer@fz-juelich.de)
² CAO, Region Moscow, Russia

³ ETH Zürich, Inst. Atmos. & Climate, Switzerland,
 ⁴ Univ. Mainz, Inst. Phys. Atmos., Germany

OVERVIEW

Upper tropospheric observations of high relative humidities over ice ($RH_{\rm lec}$) inside of cirrus clouds have been frequently observed in recent years (i.e. Ovarlez et al., 2002, *GRL*, or Gao et al., 2004, *Science*). High supersaturations, especially inside of clouds could be indicative for unknown microphysical and radiative properties with consequences for climate and the vertical redistribution of water. Peter et al. (2006, *Science*, and references herein) summarized this 'supersaturation puzzle' and raised the question whether it is caused by a lack of understanding of conventional ice cloud microphysics and/or by uncertainties or flaws in the water measurements.

Here, we present high quality aircraft in-situ observations of supersaturations and the respective ice crystal numbers observed during many flights in several tropical, mid-latitude and Arctic field experiments in the temeprature range 185-240K. In addition, a model case study in a very cold cirrus is performed. We show that very low ice crystal numbers at temperatures <200 K are responsible for persistent in-cloud supersaturations in this temperature range. We further show that these low ice crystal numbers could only be explained by homogeneous ice nucleation in case of very low (≤ 1 cm/s) vertical velocities. Higher vertical velocities -that are very likely to occur- would have produced a larger number of ice crystals which would efficiently reduce the high supersaturations.

It seems that the 'supersaturation puzzle' turns into a 'freezing puzzle' raising a new question: do mechanisms yet unknown exist that suppress or slow down the homogeneous formation of ice crystals at temperatures below 200 K? Very recently, Murray et al., 2008, *ACPD*, and Zobrist et al., 2008, *ACPD*, investigate the suppression of ice crystallisation at low temperatures in highly viscous glass forming aerosol particles as a possible mechanism for the suppression of ice formation.

Inverse link of ice crystal number & supersaturation The evolution of supersaturation in cirrus feeds back to the freezing threshold and number of heterogeneous ice nuclei (IN).

Influence of

IN freezing threshold

IN coated soot (higher freezing threshold) Few ice crystals ➤ long relaxation times ➤ persistent high supersaturation.

IN mineral dust

(low freezing threshold) less ice crystals appear in the beginning ➤ subsequent homogeneous ice nucleation event ➤ high ice crystal number ➤ efficient reduction of initial supersatLow IN number Same as 'mineral dust' case.

IN number

Typical IN number

Same as 'coated soot' case.

High IN number No subsequent homogeneous ice nucleation, but even though efficient reduction of initial supersaturation.

